Compare commits

...

13 Commits

Author SHA1 Message Date
Joseph Hopfmüller
80e9a3379e add autosampler support 2024-11-20 23:10:14 +01:00
Joseph Hopfmüller
8d4d0468bd complexhalf (complex32) isn't supported by torch.linalg.qr 2024-11-20 22:56:26 +01:00
Joseph Hopfmüller
6358c95c42 new hyperparameter db 2024-11-20 22:49:40 +01:00
Joseph Hopfmüller
674033ac2e move hypertraining class into separate file;
move settings dataclasses into separate file;
add SemiUnitaryLayer;
clean up model response plotting code;
cnt hyperparameter search
2024-11-20 22:49:31 +01:00
Joseph Hopfmüller
cdca5de473 training loop speedup 2024-11-20 11:29:18 +01:00
Joseph Hopfmüller
1622c38582 refactor: remove unused Optuna visualization utility 2024-11-17 22:23:37 +01:00
Joseph Hopfmüller
2bba760378 add: implement Optuna visualization utility with Dash 2024-11-17 22:23:01 +01:00
Joseph Hopfmüller
9ec548757d add: regen.py (main hyperparameter training file)
feat: add utility functions for fiber dataset visualization and hyperparameter training;
housekeeping: rename dataset.py -> datasets.py
2024-11-17 22:22:37 +01:00
Joseph Hopfmüller
05a3ee9394 refactor: clean up .gitignore, remove unused scripts 2024-11-17 22:18:44 +01:00
Joseph Hopfmüller
086240489a minor edits on notes 2024-11-17 22:16:52 +01:00
Joseph Hopfmüller
87f40fc37c add SlicedDataset class and utility scripts; refactor: remove _path_fix.py and update imports; 2024-11-17 01:04:33 +01:00
Joseph Hopfmüller
90aa6dbaf8 housekeeping 2024-11-17 01:04:14 +01:00
Joseph Hopfmüller
744c5f5166 rename dir;
add torch import test script
2024-11-16 00:39:19 +01:00
27 changed files with 2369 additions and 57 deletions

1
.gitattributes vendored
View File

@@ -1,4 +1,5 @@
data/**/* filter=lfs diff=lfs merge=lfs -text
data/*.db filter=lfs diff=lfs merge=lfs -text
data/*.ini filter=lfs diff=lfs merge=lfs text
## lfs setup

4
.gitignore vendored
View File

@@ -1,7 +1,5 @@
src/**/*.ini
# VSCode
.vscode
.*
# Byte-compiled / optimized / DLL files
__pycache__/

View File

@@ -10,6 +10,7 @@ use is covered by a right of the copyright holder of the Work).
The Work is provided under the terms of this Licence when the Licensor (as
defined below) has placed the following notice immediately following the
copyright notice for the Work:
```raw
Licensed under the EUPL
```

View File

@@ -13,7 +13,7 @@ Full license text in LICENSE file
# optical-regeneration
## Notes on cloning:
## Notes on cloning
- `pypho` is added as a submodule -> `--recurse-submodules`
- This repo has about 7.5GB of datasets in it. The `git lfs fetch` step will take a while.
@@ -29,4 +29,5 @@ git lfs checkout
```
## License
This project is licensed under EUPL-1.2.
This project is licensed under EUPL-1.2.

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:e12f0c21fca93620a165fbb6ed58d0b313093e972ef4416694c29c9cea6dc867
size 831488

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:7231dea2c9107f443de9122fdc971d9ce6df93db2ee27a9d68a5e22c986373eb
size 937984

View File

@@ -1,6 +1,6 @@
# CUDA 12.4 Install
> https://unknowndba.blogspot.com/2024/04/cuda-getting-started-on-wsl.html (@\_freddenis\_, 2024)
> <https://unknowndba.blogspot.com/2024/04/cuda-getting-started-on-wsl.html> (@\_freddenis\_, 2024)
```bash
# get md5sums
@@ -49,10 +49,9 @@ make
./devicequery
```
### if the cuda-toolkit install fails with unmet dependencies
>https://askubuntu.com/a/1493087 (jspinella, 2023, CC BY-SA 4.0)
><https://askubuntu.com/a/1493087> (jspinella, 2023, CC BY-SA 4.0)
1. Open the *new* file for storing the sources list
@@ -60,7 +59,7 @@ make
sudo nano /etc/apt/sources.list.d/ubuntu.sources
```
2. Paste in the following at the end of the file:
2. Paste in the following at the end of the file:
```raw
Types: deb
@@ -71,4 +70,3 @@ make
```
3. Save the file and run `sudo apt update` - now the install command for CUDA should work.

View File

@@ -1,4 +1,4 @@
# useful links
- (Optuna)[https://optuna.org] Hyperparameter optimization framework
- [Optuna](https://optuna.org) Hyperparameter optimization framework
`pip install optuna`

View File

@@ -1,46 +1,42 @@
# pyenv install
# pyenv installation
## install
## pyenv
nice to have:
1. Install pyenv
```bash
sudo apt install python-is-python3
```
```bash
curl https://pyenv.run | bash
```
```bash
curl https://pyenv.run | bash
```
2. setup zsh
## setup zsh
add the following to `.zshrc`:
add the following to `.zshrc`:
```bash
export PYENV_ROOT="$HOME/.pyenv"
[[ -d $PYENV_ROOT/bin ]] && export PATH="$PYENV_ROOT/bin:$PATH"
eval "$(pyenv init -)"
```
```bash
export PYENV_ROOT="$HOME/.pyenv"
[[ -d $PYENV_ROOT/bin ]] && export PATH="$PYENV_ROOT/bin:$PATH"
eval "$(pyenv init -)"
```
## python installation
## pyenv install
1. prerequisites
prerequisites:
```bash
sudo apt update
sudo apt install build-essential libssl-dev zlib1g-dev \
libbz2-dev libreadline-dev libsqlite3-dev curl git \
libncursesw5-dev xz-utils tk-dev libxml2-dev libxmlsec1-dev \
libffi-dev liblzma-dev python3-pip
```
```bash
sudo apt update
sudo apt install build-essential libssl-dev zlib1g-dev \
libbz2-dev libreadline-dev libsqlite3-dev curl git \
libncursesw5-dev xz-utils tk-dev libxml2-dev libxmlsec1-dev \
libffi-dev liblzma-dev python3-pip
```
2. install
install:
```bash
# using python 3.12.7 as an example
pyenv install 3.12.7
```bash
# using python 3.12.7 as an example
pyenv install 3.12.7
# optional
pyenv global 3.12.7
pyenv versions
```
# optional
pyenv global 3.12.7
pyenv versions
```

View File

@@ -8,7 +8,8 @@ source ./.venv/bin/activate
```
## install pytorch
> https://pytorch.org/get-started/locally/
> <https://pytorch.org/get-started/locally/>
```bash
pip install torch torchvision torchaudio

View File

@@ -0,0 +1,37 @@
# add_pypho.py
#
# This file is part of the repo "optical-regeneration"
# https://git.suuppl.dev/seppl/optical-regeneration.git
#
# (c) Joseph Hopfmüller, 2024
# Licensed under the EUPL
#
# Full license text in LICENSE file
###
# copy this file into the directory where you want to use pypho
import sys
from pathlib import Path
__log = []
# add the dir above the one where this file lives
__parent_dir = Path(__file__).parent
# search for a dir containing ./pypho/pypho, then add the lower ./pypho
while not (__parent_dir / "pypho" / "pypho").exists() and __parent_dir != Path("/"):
__parent_dir = __parent_dir.parent
if __parent_dir != Path("/"):
sys.path.append(str(__parent_dir / "pypho"))
__log.append(f"Added '{__parent_dir/ "pypho"}' to 'PATH'")
else:
__log.append('pypho not found')
def show_log():
for entry in __log:
print(entry)

View File

@@ -19,9 +19,8 @@ import time
from matplotlib import pyplot as plt # noqa: F401
import numpy as np
import _path_fix # noqa: F401
import path_fix
import pypho
# import inspect
default_config = f"""
[glova]
@@ -498,6 +497,7 @@ def plot_eye_diagram(
if __name__ == "__main__":
path_fix.show_log()
config = get_config()
length_ranges = [1000, 10000]

View File

@@ -1,9 +0,0 @@
import sys
from pathlib import Path
# hack to add the parent directory to the path -> pypho doesn't have to be installed as package
parent_dir = Path(__file__).parent
while not (parent_dir / "pypho" / "pypho").exists() and parent_dir != Path("/"):
parent_dir = parent_dir.parent
print(f"Adding '{parent_dir / "pypho"}' to 'sys.path' to enable import of '{parent_dir / 'pypho' / 'pypho'}'")
sys.path.append(str(parent_dir / "pypho"))

View File

@@ -0,0 +1,740 @@
import copy
from datetime import datetime
from pathlib import Path
from typing import Literal
import matplotlib.pyplot as plt
import numpy as np
import optuna
import optunahub
import warnings
import torch
import torch.nn as nn
# import torch.nn.functional as F # mse_loss doesn't support complex numbers
import torch.optim as optim
import torch.utils.data
from torch.utils.tensorboard import SummaryWriter
from rich.progress import (
Progress,
TextColumn,
BarColumn,
TaskProgressColumn,
TimeRemainingColumn,
MofNCompleteColumn,
TimeElapsedColumn,
)
from rich.console import Console
# from rich import print as rprint
import multiprocessing
from util.datasets import FiberRegenerationDataset
from util.optuna_helpers import (
force_suggest_categorical,
force_suggest_float,
force_suggest_int,
)
import util
from .settings import (
GlobalSettings,
DataSettings,
ModelSettings,
OptunaSettings,
OptimizerSettings,
PytorchSettings,
)
class HyperTraining:
def __init__(
self,
*,
global_settings,
data_settings,
pytorch_settings,
model_settings,
optimizer_settings,
optuna_settings,
console=None,
):
self.global_settings: GlobalSettings = global_settings
self.data_settings: DataSettings = data_settings
self.pytorch_settings: PytorchSettings = pytorch_settings
self.model_settings: ModelSettings = model_settings
self.optimizer_settings: OptimizerSettings = optimizer_settings
self.optuna_settings: OptunaSettings = optuna_settings
self.console = console or Console()
# set some extra settings to make the code more readable
self._extra_optuna_settings()
def setup_tb_writer(self, study_name=None, append=None):
log_dir = (
self.pytorch_settings.summary_dir
+ "/"
+ (study_name or self.optuna_settings.study_name)
)
if append is not None:
log_dir += "_" + str(append)
return SummaryWriter(log_dir)
def resume_latest_study(self, verbose=True):
study_name = self.get_latest_study()
if study_name:
print(f"Resuming study: {study_name}")
self.optuna_settings.study_name = study_name
def get_latest_study(self, verbose=True):
studies = self.get_studies()
for study in studies:
study.datetime_start = study.datetime_start or datetime.min
if studies:
study = sorted(studies, key=lambda x: x.datetime_start, reverse=True)[0]
if verbose:
print(f"Last study: {study.study_name}")
study_name = study.study_name
else:
if verbose:
print("No previous studies found")
study_name = None
return study_name
def get_studies(self):
return optuna.get_all_study_summaries(storage=self.optuna_settings.storage)
def setup_study(self):
module = optunahub.load_module(package="samplers/auto_sampler")
self.study = optuna.create_study(
study_name=self.optuna_settings.study_name,
storage=self.optuna_settings.storage,
load_if_exists=True,
direction=self.optuna_settings.direction,
directions=self.optuna_settings.directions,
sampler=module.AutoSampler(),
)
print("using sampler:", self.study.sampler)
with warnings.catch_warnings(action="ignore"):
self.study.set_metric_names(self.optuna_settings.metrics_names)
self.n_threads = min(
self.optuna_settings.n_trials, self.optuna_settings.n_threads
)
self.processes = []
if self.n_threads > 1:
for _ in range(self.n_threads):
p = multiprocessing.Process(
# target=lambda n_trials: self._run_optimize(self, n_trials),
target=self._run_optimize,
args=(self.optuna_settings.n_trials // self.n_threads,),
)
self.processes.append(p)
# def plot_eye(self, width=2, symbols=None, alpha=None, complex=False, show=True):
# data, config = util.datasets.load_data(
# self.data_settings.config_path,
# skipfirst=10,
# symbols=symbols or 1000,
# real=not complex,
# normalize=True,
# )
# eye_data = {"data": data.numpy(), "sps": int(config["glova"]["sps"])}
# return util.plot.eye(
# **eye_data,
# width=width,
# show=show,
# alpha=alpha,
# complex=complex,
# symbols=symbols or 1000,
# skipfirst=0,
# )
def run_study(self):
if self.processes:
for p in self.processes:
p.start()
for p in self.processes:
p.join()
remaining_trials = self.optuna_settings.n_trials % self.n_threads
else:
remaining_trials = self.optuna_settings.n_trials
if remaining_trials:
self._run_optimize(remaining_trials)
def _run_optimize(self, n_trials):
self.study.optimize(
self.objective, n_trials=n_trials, timeout=self.optuna_settings.timeout
)
def _extra_optuna_settings(self):
self.optuna_settings.multi_objective = len(self.optuna_settings.directions) > 1
if self.optuna_settings.multi_objective:
self.optuna_settings.direction = None
else:
self.optuna_settings.direction = self.optuna_settings.directions[0]
self.optuna_settings.directions = None
self.optuna_settings.n_train_batches = (
self.optuna_settings.n_train_batches
if self.optuna_settings.limit_examples
else float("inf")
)
self.optuna_settings.n_valid_batches = (
self.optuna_settings.n_valid_batches
if self.optuna_settings.limit_examples
else float("inf")
)
def define_model(self, trial: optuna.Trial, writer=None):
n_layers = force_suggest_int(
trial, "model_n_layers", self.model_settings.model_n_layers
)
input_dim = 2 * trial.params.get(
"model_input_dim",
force_suggest_int(trial, "model_input_dim", self.data_settings.model_input_dim),
)
dtype = trial.params.get(
"model_dtype",
force_suggest_categorical(trial, "model_dtype", self.data_settings.dtype),
)
dtype = getattr(torch, dtype)
afunc = force_suggest_categorical(
trial, "model_activation_func", self.model_settings.model_activation_func
)
layers = []
last_dim = input_dim
for i in range(n_layers):
hidden_dim = force_suggest_int(
trial, f"model_hidden_dim_{i}", self.model_settings.unit_count
)
layers.append(
util.complexNN.SemiUnitaryLayer(last_dim, hidden_dim, dtype=dtype)
)
last_dim = hidden_dim
layers.append(getattr(util.complexNN, afunc)())
layers.append(
util.complexNN.UnitaryLayer(
hidden_dim, self.model_settings.output_dim, dtype=dtype
)
)
model = nn.Sequential(*layers)
if writer is not None:
writer.add_graph(
model, torch.zeros(1, input_dim, dtype=dtype), use_strict_trace=False
)
return model.to(self.pytorch_settings.device)
def get_sliced_data(self, trial: optuna.Trial, override=None):
symbols = trial.params.get(
"dataset_symbols",
force_suggest_float(trial, "dataset_symbols", self.data_settings.symbols),
)
xy_delay = trial.params.get(
"dataset_xy_delay",
force_suggest_float(trial, "dataset_xy_delay", self.data_settings.xy_delay),
)
data_size = trial.params.get(
"model_input_dim",
force_suggest_int(trial, "model_input_dim", self.data_settings.model_input_dim),
)
dtype = trial.params.get(
"model_dtype",
force_suggest_categorical(trial, "model_dtype", self.data_settings.dtype),
)
dtype = getattr(torch, dtype)
num_symbols = None
if override is not None:
num_symbols = override.get("num_symbols", None)
# get dataset
dataset = FiberRegenerationDataset(
file_path=self.data_settings.config_path,
symbols=symbols,
output_dim=data_size,
target_delay=self.data_settings.in_out_delay,
xy_delay=xy_delay,
drop_first=self.data_settings.drop_first,
dtype=dtype,
real=not dtype.is_complex,
num_symbols=num_symbols,
)
dataset_size = len(dataset)
indices = list(range(dataset_size))
split = int(np.floor(self.data_settings.train_split * dataset_size))
if self.data_settings.shuffle:
np.random.seed(self.global_settings.seed)
np.random.shuffle(indices)
train_indices, valid_indices = indices[:split], indices[split:]
if self.data_settings.shuffle:
train_sampler = torch.utils.data.SubsetRandomSampler(train_indices)
valid_sampler = torch.utils.data.SubsetRandomSampler(valid_indices)
else:
train_sampler = train_indices
valid_sampler = valid_indices
train_loader = torch.utils.data.DataLoader(
dataset,
batch_size=self.pytorch_settings.batchsize,
sampler=train_sampler,
drop_last=True,
pin_memory=True,
num_workers=self.pytorch_settings.dataloader_workers,
prefetch_factor=self.pytorch_settings.dataloader_prefetch,
)
valid_loader = torch.utils.data.DataLoader(
dataset,
batch_size=self.pytorch_settings.batchsize,
sampler=valid_sampler,
drop_last=True,
pin_memory=True,
num_workers=self.pytorch_settings.dataloader_workers,
prefetch_factor=self.pytorch_settings.dataloader_prefetch,
)
return train_loader, valid_loader
def train_model(
self,
trial,
model,
optimizer,
train_loader,
epoch,
writer=None,
enable_progress=False,
):
if enable_progress:
progress = Progress(
TextColumn("[yellow] Training..."),
TextColumn("Error: {task.description}"),
BarColumn(),
TaskProgressColumn(),
TextColumn("[green]Batch"),
MofNCompleteColumn(),
TimeRemainingColumn(),
TimeElapsedColumn(),
# description="Training",
transient=False,
console=self.console,
refresh_per_second=10,
)
task = progress.add_task("-.---e--", total=len(train_loader))
progress.start()
running_loss2 = 0.0
running_loss = 0.0
model.train()
for batch_idx, (x, y) in enumerate(train_loader):
if batch_idx >= self.optuna_settings.n_train_batches:
break
model.zero_grad(set_to_none=True)
x, y = (
x.to(self.pytorch_settings.device),
y.to(self.pytorch_settings.device),
)
y_pred = model(x)
loss = util.complexNN.complex_mse_loss(y_pred, y)
loss_value = loss.item()
loss.backward()
optimizer.step()
running_loss2 += loss_value
running_loss += loss_value
if enable_progress:
progress.update(task, advance=1, description=f"{loss_value:.3e}")
if writer is not None:
if batch_idx % self.pytorch_settings.write_every == 0:
writer.add_scalar(
"training loss",
running_loss2
/ (self.pytorch_settings.write_every if batch_idx > 0 else 1),
epoch
* min(len(train_loader), self.optuna_settings.n_train_batches)
+ batch_idx,
)
running_loss2 = 0.0
if enable_progress:
progress.stop()
return running_loss / min(
len(train_loader), self.optuna_settings.n_train_batches
)
def eval_model(
self, trial, model, valid_loader, epoch, writer=None, enable_progress=True
):
if enable_progress:
progress = Progress(
TextColumn("[green]Evaluating..."),
TextColumn("Error: {task.description}"),
BarColumn(),
TaskProgressColumn(),
TextColumn("[green]Batch"),
MofNCompleteColumn(),
TimeRemainingColumn(),
TimeElapsedColumn(),
# description="Training",
transient=False,
console=self.console,
refresh_per_second=10,
)
progress.start()
task = progress.add_task("-.---e--", total=len(valid_loader))
model.eval()
running_error = 0
running_error_2 = 0
with torch.no_grad():
for batch_idx, (x, y) in enumerate(valid_loader):
if batch_idx >= self.optuna_settings.n_valid_batches:
break
x, y = (
x.to(self.pytorch_settings.device),
y.to(self.pytorch_settings.device),
)
y_pred = model(x)
error = util.complexNN.complex_mse_loss(y_pred, y)
error_value = error.item()
running_error += error_value
running_error_2 += error_value
if enable_progress:
progress.update(task, advance=1, description=f"{error_value:.3e}")
if writer is not None:
if batch_idx % self.pytorch_settings.write_every == 0:
writer.add_scalar(
"eval loss",
running_error_2
/ (
self.pytorch_settings.write_every
if batch_idx > 0
else 1
),
epoch
* min(
len(valid_loader), self.optuna_settings.n_valid_batches
)
+ batch_idx,
)
running_error_2 = 0.0
running_error /= min(len(valid_loader), self.optuna_settings.n_valid_batches)
if writer is not None:
title_append, subtitle = self.build_title(trial)
writer.add_figure(
"fiber response",
self.plot_model_response(
trial,
model=model,
title_append=title_append,
subtitle=subtitle,
show=False,
),
epoch + 1,
)
if enable_progress:
progress.stop()
return running_error
def run_model(self, model, loader):
model.eval()
xs = []
ys = []
y_preds = []
with torch.no_grad():
model = model.to(self.pytorch_settings.device)
for x, y in loader:
x, y = (
x.to(self.pytorch_settings.device),
y.to(self.pytorch_settings.device),
)
y_pred = model(x).cpu()
# x = x.cpu()
# y = y.cpu()
y_pred = y_pred.view(y_pred.shape[0], -1, 2)
y = y.view(y.shape[0], -1, 2)
x = x.view(x.shape[0], -1, 2)
xs.append(x[:, 0, :].squeeze())
ys.append(y.squeeze())
y_preds.append(y_pred.squeeze())
xs = torch.vstack(xs).cpu()
ys = torch.vstack(ys).cpu()
y_preds = torch.vstack(y_preds).cpu()
return ys, xs, y_preds
def objective(self, trial: optuna.Trial, plot_before=False):
model = None
exc = None
try:
# rprint(*list(self.study_name.split("_")))
writer = self.setup_tb_writer(
self.optuna_settings.study_name,
f"{trial.number:0{len(str(self.optuna_settings.n_trials))}}",
)
model = self.define_model(trial, writer)
n_params = sum(p.numel() for p in model.parameters())
# n_nodes = trial.params.get("model_n_layers", self.model_settings.model_n_layers) * trial.params.get("model_hidden_dim", self.model_settings.unit_count)
title_append, subtitle = self.build_title(trial)
writer.add_figure(
"fiber response",
self.plot_model_response(
trial,
model=model,
title_append=title_append,
subtitle=subtitle,
show=plot_before,
),
0,
)
train_loader, valid_loader = self.get_sliced_data(trial)
optimizer_name = force_suggest_categorical(
trial, "optimizer", self.optimizer_settings.optimizer
)
lr = force_suggest_float(
trial, "lr", self.optimizer_settings.learning_rate, log=True
)
optimizer = getattr(optim, optimizer_name)(model.parameters(), lr=lr)
if self.optimizer_settings.scheduler is not None:
scheduler = getattr(optim.lr_scheduler, self.optimizer_settings.scheduler)(
optimizer, **self.optimizer_settings.scheduler_kwargs)
for epoch in range(self.pytorch_settings.epochs):
enable_progress = self.optuna_settings.n_threads == 1
if enable_progress:
self.console.rule(
f"Epoch {epoch + 1}/{self.pytorch_settings.epochs}"
)
self.train_model(
trial,
model,
optimizer,
train_loader,
epoch,
writer,
enable_progress=enable_progress,
)
error = self.eval_model(
trial,
model,
valid_loader,
epoch,
writer,
enable_progress=enable_progress,
)
if self.optimizer_settings.scheduler is not None:
scheduler.step(error)
writer.close()
if self.optuna_settings.multi_objective:
return n_params, error
trial.report(error, epoch)
if trial.should_prune():
raise optuna.exceptions.TrialPruned()
return error
except KeyboardInterrupt:
...
# except Exception as e:
# exc = e
finally:
if model is not None:
save_path = (
Path(self.pytorch_settings.model_dir)
/ f"{self.optuna_settings.study_name}_{trial.number}.pth"
)
save_path.parent.mkdir(parents=True, exist_ok=True)
torch.save(model, save_path)
if exc is not None:
raise exc
def _plot_model_response_eye(
self, *signals, labels=None, sps=None, title_append="", subtitle="", show=True
):
if sps is None:
raise ValueError("sps must be provided")
if not hasattr(labels, "__iter__") or isinstance(labels, (str, type(None))):
labels = [labels]
else:
labels = list(labels)
while len(labels) < len(signals):
labels.append(None)
# check if there are any labels
if not any(labels):
labels = [f"signal {i + 1}" for i in range(len(signals))]
fig, axs = plt.subplots(2, len(signals), sharex=True, sharey=True)
fig.suptitle(
f"Eye diagram{f' {title_append}' if title_append else ''}{f'\n{subtitle}' if subtitle else ''}"
)
xaxis = np.linspace(0, 2, 2 * sps, endpoint=False)
for j, (label, signal) in enumerate(zip(labels, signals)):
# signal = signal.cpu().numpy()
for i in range(len(signal) // sps - 1):
x, y = signal[i * sps : (i + 2) * sps].T
axs[0, j].plot(xaxis, np.abs(x) ** 2, color="C0", alpha=0.02)
axs[1, j].plot(xaxis, np.abs(y) ** 2, color="C0", alpha=0.02)
axs[0, j].set_title(label + " x")
axs[1, j].set_title(label + " y")
axs[0, j].set_xlabel("Symbol")
axs[1, j].set_xlabel("Symbol")
axs[0, j].set_ylabel("normalized power")
axs[1, j].set_ylabel("normalized power")
if show:
plt.show()
def _plot_model_response_head(
self, *signals, labels=None, sps=None, title_append="", subtitle="", show=True
):
if not hasattr(labels, "__iter__") or isinstance(labels, (str, type(None))):
labels = [labels]
else:
labels = list(labels)
while len(labels) < len(signals):
labels.append(None)
# check if there are any labels
if not any(labels):
labels = [f"signal {i + 1}" for i in range(len(signals))]
fig, axs = plt.subplots(1, 2, sharex=True, sharey=True)
fig.set_size_inches(18,6)
fig.suptitle(
f"Fiber response{f' {title_append}' if title_append else ''}{f'\n{subtitle}' if subtitle else ''}"
)
for i, ax in enumerate(axs):
for signal, label in zip(signals, labels):
if sps is not None:
xaxis = np.linspace(
0, len(signal) / sps, len(signal), endpoint=False
)
else:
xaxis = np.arange(len(signal))
ax.plot(xaxis, np.abs(signal[:, i]) ** 2, label=label)
ax.set_xlabel("Sample" if sps is None else "Symbol")
ax.set_ylabel("normalized power")
ax.legend(loc="upper right")
if show:
plt.show()
return fig
def plot_model_response(
self,
trial,
model=None,
title_append="",
subtitle="",
mode: Literal["eye", "head"] = "head",
show=True,
):
data_settings_backup = copy.deepcopy(self.data_settings)
pytorch_settings_backup = copy.deepcopy(self.pytorch_settings)
self.data_settings.drop_first = 100
self.data_settings.shuffle = False
self.data_settings.train_split = 1.0
self.pytorch_settings.batchsize = self.pytorch_settings.eye_symbols if mode == "eye" else self.pytorch_settings.head_symbols
plot_loader, _ = self.get_sliced_data(
trial, override={"num_symbols": self.pytorch_settings.batchsize}
)
self.data_settings = data_settings_backup
self.pytorch_settings = pytorch_settings_backup
fiber_in, fiber_out, regen = self.run_model(model, plot_loader)
fiber_in = fiber_in.view(-1, 2)
fiber_out = fiber_out.view(-1, 2)
regen = regen.view(-1, 2)
fiber_in = fiber_in.numpy()
fiber_out = fiber_out.numpy()
regen = regen.numpy()
# https://github.com/matplotlib/matplotlib/issues/27713#issue-2104110987
# https://github.com/matplotlib/matplotlib/issues/27713#issuecomment-1915497463
import gc
if mode == "head":
fig = self._plot_model_response_head(
fiber_in,
fiber_out,
regen,
labels=("fiber in", "fiber out", "regen"),
sps=plot_loader.dataset.samples_per_symbol,
title_append=title_append,
subtitle=subtitle,
show=show,
)
elif mode == "eye":
# raise NotImplementedError("Eye diagram not implemented")
fig = self._plot_model_response_eye(
fiber_in,
fiber_out,
regen,
labels=("fiber in", "fiber out", "regen"),
sps=plot_loader.dataset.samples_per_symbol,
title_append=title_append,
subtitle=subtitle,
show=show,
)
else:
raise ValueError(f"Unknown mode: {mode}")
gc.collect()
return fig
@staticmethod
def build_title(trial):
title_append = f"for trial {trial.number}"
subtitle = (
f"{trial.params['model_n_layers']} layers, "
f"{', '.join([str(trial.params[f'model_hidden_dim_{i}']) for i in range(trial.params['model_n_layers'])])} units, "
f"{trial.params['model_activation_func']}, "
f"{trial.params['model_dtype']}"
)
return title_append, subtitle

View File

@@ -0,0 +1,77 @@
from dataclasses import dataclass
from datetime import datetime
# global settings
@dataclass(frozen=True)
class GlobalSettings:
seed: int = 42
# data settings
@dataclass
class DataSettings:
config_path: str # = "data/*-128-16384-100000-0-0-17-0-PAM4-0.ini"
dtype: tuple = ("complex64", "float64")
symbols: tuple | float | int = 8
model_input_dim: tuple | float | int = 64
shuffle: bool = True
in_out_delay: float = 0
xy_delay: tuple | float | int = 0
drop_first: int = 1000
train_split: float = 0.8
# pytorch settings
@dataclass
class PytorchSettings:
epochs: int = 1
batchsize: int = 2**10
device: str = "cuda"
dataloader_workers: int = 2
dataloader_prefetch: int = 2
model_dir: str = ".models"
summary_dir: str = ".runs"
write_every: int = 10
head_symbols: int = 40
eye_symbols: int = 1000
# model settings
@dataclass
class ModelSettings:
output_dim: int = 2
model_n_layers: tuple | int = 3
unit_count: tuple | int = 8
# n_units_range: tuple | int = (2, 32)
# activation_func_range: tuple = ("ModReLU", "ZReLU", "CReLU", "Mag", "Identity")
model_activation_func: tuple = ("ModReLU",)
@dataclass
class OptimizerSettings:
optimizer: tuple | str = ("Adam", "RMSprop", "SGD")
learning_rate: tuple | float = (1e-5, 1e-1)
scheduler: str | None = None
scheduler_kwargs: dict | None = None
# optuna settings
@dataclass
class OptunaSettings:
n_trials: int = 128
n_threads: int = 4
timeout: int = 600
directions: tuple = ("minimize",)
metrics_names: tuple = ("mse",)
limit_examples: bool = True
n_train_batches: int = 100
n_valid_batches: int = 100
storage: str = "sqlite:///example.db"
study_name: str = (
f"optuna_study_{datetime.now().strftime('%Y-%m-%d_%H:%M:%S')}"
)

View File

@@ -0,0 +1,107 @@
from datetime import datetime
from hypertraining.hypertraining import HyperTraining
from hypertraining.settings import (
GlobalSettings,
DataSettings,
PytorchSettings,
ModelSettings,
OptimizerSettings,
OptunaSettings,
)
global_settings = GlobalSettings(
seed = 42,
)
data_settings = DataSettings(
config_path = "data/*-128-16384-100000-0-0-17-0-PAM4-0.ini",
dtype = ("complex128", "complex64", "float64", "float32"),
symbols = (1, 16),
model_input_dim = (1, 32),
shuffle = True,
in_out_delay = 0,
xy_delay = 0,
drop_first = 1000,
train_split = 0.8,
)
pytorch_settings = PytorchSettings(
epochs = 25,
batchsize = 2**10,
device = "cuda",
dataloader_workers = 2,
dataloader_prefetch = 2,
summary_dir = ".runs",
write_every = 2**5,
model_dir = ".models",
)
model_settings = ModelSettings(
output_dim = 2,
model_n_layers = (2, 8),
unit_count = (2, 16),
model_activation_func = ("ModReLU")#, "ZReLU", "Mag")#, "CReLU", "Identity"),
)
optimizer_settings = OptimizerSettings(
optimizer = ("Adam", "RMSprop"),#, "SGD"),
# learning_rate = (1e-5, 1e-1),
learning_rate=1e-3,
# scheduler = "ReduceLROnPlateau",
# scheduler_kwargs = {"mode": "min", "factor": 0.5, "patience": 10}
)
optuna_settings = OptunaSettings(
n_trials = 4096,
n_threads = 16,
timeout = 600,
directions = ("minimize","minimize"),
metrics_names = ("n_params","mse"),
limit_examples = True,
n_train_batches = 100,
n_valid_batches = 100,
storage = "sqlite:///data/single_core_regen.db",
study_name = f"single_core_regen_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
)
if __name__ == "__main__":
hyper_training = HyperTraining(
global_settings=global_settings,
data_settings=data_settings,
pytorch_settings=pytorch_settings,
model_settings=model_settings,
optimizer_settings=optimizer_settings,
optuna_settings=optuna_settings,
)
hyper_training.setup_study()
# hyper_training.resume_latest_study()
hyper_training.run_study()
# best_trial = hyper_training.study.best_trial
# best_model = hyper_training.define_model(best_trial).to(
# hyper_training.pytorch_settings.device
# )
# title_append, subtitle = hyper_training.build_title(best_trial)
# hyper_training.plot_model_response(
# best_trial,
# model=best_model,
# title_append=title_append,
# subtitle=subtitle,
# mode="eye",
# show=True,
# )
# print(f"Best model found for trial {best_trial.number}")
# print(f"Best model error: {best_trial.value}")
# print(f"Best model params: {best_trial.params}")
# print()
# print(best_model)
# eye_fig = hyper_training.plot_eye()
...

View File

@@ -0,0 +1,414 @@
import copy
from dataclasses import dataclass
from datetime import datetime
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
# import torch.nn.functional as F # mse_loss doesn't support complex numbers
import torch.optim as optim
import torch.utils.data
from torch.utils.tensorboard import SummaryWriter
from rich.progress import (
Progress,
TextColumn,
BarColumn,
TaskProgressColumn,
TimeRemainingColumn,
MofNCompleteColumn,
TimeElapsedColumn,
)
from rich.console import Console
from rich import print as rprint
# from util.optuna_helpers import optional_suggest_categorical, optional_suggest_float, optional_suggest_int
import util
# global settings
@dataclass
class GlobalSettings:
seed: int = 42
# data settings
@dataclass
class DataSettings:
config_path: str = "data/*-128-16384-100000-0-0-17-0-PAM4-0.ini"
dtype: torch.dtype = torch.complex64
symbols_range: float | int = 8
data_size_range: float | int = 64
shuffle: bool = True
target_delay: float = 0
xy_delay_range: float | int = 0
drop_first: int = 10
train_split: float = 0.8
# pytorch settings
@dataclass
class PytorchSettings:
epochs: int = 1000
batchsize: int = 2**12
device: str = "cuda"
summary_dir: str = ".runs"
model_dir: str = ".models"
# model settings
@dataclass
class ModelSettings:
output_size: int = 2
# n_layer_range: float|int = 2
# n_units_range: float|int = 32
n_layers: int = 3
n_units: int = 32
activation_func: tuple | str = "ModReLU"
@dataclass
class OptimizerSettings:
optimizer_range: str = "Adam"
lr_range: float = 2e-3
class Training:
def __init__(self):
self.global_settings = GlobalSettings()
self.data_settings = DataSettings()
self.pytorch_settings = PytorchSettings()
self.model_settings = ModelSettings()
self.optimizer_settings = OptimizerSettings()
self.study_name = (
f"single_core_regen_{datetime.now().strftime('%Y-%m-%d_%H:%M:%S')}"
)
if not hasattr(self.pytorch_settings, "model_dir"):
self.pytorch_settings.model_dir = ".models"
self.writer = None
self.console = Console()
def setup_tb_writer(self, study_name=None, append=None):
log_dir = (
self.pytorch_settings.summary_dir + "/" + (study_name or self.study_name) + ("_" + str(append)) if append else ""
)
self.writer = SummaryWriter(log_dir)
return self.writer
def plot_eye(self, width=2, symbols=None, alpha=None, complex=False, show=True):
if not hasattr(self, "eye_data"):
data, config = util.datasets.load_data(
self.data_settings.config_path,
skipfirst=10,
symbols=symbols or 1000,
real=not self.data_settings.dtype.is_complex,
normalize=True,
)
self.eye_data = {"data": data, "sps": int(config["glova"]["sps"])}
return util.plot.eye(
**self.eye_data,
width=width,
show=show,
alpha=alpha,
complex=complex,
symbols=symbols or 1000,
skipfirst=0,
)
def define_model(self):
n_layers = self.model_settings.n_layers
in_features = 2 * self.data_settings.data_size_range
layers = []
for i in range(n_layers):
out_features = self.model_settings.n_units
layers.append(util.complexNN.UnitaryLayer(in_features, out_features))
# layers.append(getattr(nn, self.model_settings.activation_func)())
layers.append(
getattr(util.complexNN, self.model_settings.activation_func)()
)
in_features = out_features
layers.append(
util.complexNN.UnitaryLayer(in_features, self.model_settings.output_size)
)
if self.writer is not None:
self.writer.add_graph(
nn.Sequential(*layers),
torch.zeros(1, layers[0].in_features, dtype=self.data_settings.dtype),
)
return nn.Sequential(*layers)
def get_sliced_data(self):
symbols = self.data_settings.symbols_range
xy_delay = self.data_settings.xy_delay_range
data_size = self.data_settings.data_size_range
# get dataset
dataset = util.datasets.FiberRegenerationDataset(
file_path=self.data_settings.config_path,
symbols=symbols,
output_dim=data_size,
target_delay=self.data_settings.target_delay,
xy_delay=xy_delay,
drop_first=self.data_settings.drop_first,
dtype=self.data_settings.dtype,
real=not self.data_settings.dtype.is_complex,
# device=self.pytorch_settings.device,
)
dataset_size = len(dataset)
indices = list(range(dataset_size))
split = int(np.floor(self.data_settings.train_split * dataset_size))
if self.data_settings.shuffle:
np.random.seed(self.global_settings.seed)
np.random.shuffle(indices)
train_indices, valid_indices = indices[:split], indices[split:]
if self.data_settings.shuffle:
train_sampler = torch.utils.data.SubsetRandomSampler(train_indices)
valid_sampler = torch.utils.data.SubsetRandomSampler(valid_indices)
else:
train_sampler = train_indices
valid_sampler = valid_indices
train_loader = torch.utils.data.DataLoader(
dataset,
batch_size=self.pytorch_settings.batchsize,
sampler=train_sampler,
drop_last=True,
pin_memory=True,
num_workers=24,
prefetch_factor=4,
# persistent_workers=True
)
valid_loader = torch.utils.data.DataLoader(
dataset,
batch_size=self.pytorch_settings.batchsize,
sampler=valid_sampler,
drop_last=True,
pin_memory=True,
num_workers=24,
prefetch_factor=4,
# persistent_workers=True
)
return train_loader, valid_loader
def train_model(self, model, optimizer, train_loader, epoch):
with Progress(
TextColumn("[yellow] Training..."),
TextColumn("Error: {task.description}"),
BarColumn(),
TaskProgressColumn(),
TextColumn("[green]Batch"),
MofNCompleteColumn(),
TimeRemainingColumn(),
TimeElapsedColumn(),
# description="Training",
transient=False,
console=self.console,
refresh_per_second=10,
) as progress:
task = progress.add_task("-.---e--", total=len(train_loader))
running_loss = 0.0
model.train()
for batch_idx, (x, y) in enumerate(train_loader):
model.zero_grad(set_to_none=True)
x, y = (
x.to(self.pytorch_settings.device),
y.to(self.pytorch_settings.device),
)
y_pred = model(x)
loss = util.complexNN.complex_mse_loss(y_pred, y)
loss.backward()
optimizer.step()
progress.update(task, advance=1, description=f"{loss.item():.3e}")
running_loss += loss.item()
if self.writer is not None:
if (batch_idx + 1) % 10 == 0:
self.writer.add_scalar(
"training loss",
running_loss / 10,
epoch * len(train_loader) + batch_idx,
)
running_loss = 0.0
return running_loss
def eval_model(self, model, valid_loader, epoch):
with Progress(
TextColumn("[green]Evaluating..."),
TextColumn("Error: {task.description}"),
BarColumn(),
TaskProgressColumn(),
TextColumn("[green]Batch"),
MofNCompleteColumn(),
TimeRemainingColumn(),
TimeElapsedColumn(),
# description="Training",
transient=False,
console=self.console,
refresh_per_second=10,
) as progress:
task = progress.add_task("-.---e--", total=len(valid_loader))
model.eval()
running_loss = 0
running_loss2 = 0
with torch.no_grad():
for batch_idx, (x, y) in enumerate(valid_loader):
x, y = (
x.to(self.pytorch_settings.device),
y.to(self.pytorch_settings.device),
)
y_pred = model(x)
loss = util.complexNN.complex_mse_loss(y_pred, y)
running_loss += loss.item()
running_loss2 += loss.item()
progress.update(task, advance=1, description=f"{loss.item():.3e}")
if self.writer is not None:
if (batch_idx + 1) % 10 == 0:
self.writer.add_scalar(
"loss",
running_loss / 10,
epoch * len(valid_loader) + batch_idx,
)
running_loss = 0.0
if self.writer is not None:
self.writer.add_figure("fiber response", self.plot_model_response(model, plot=False), epoch+1)
return running_loss2 / len(valid_loader)
def run_model(self, model, loader):
model.eval()
xs = []
ys = []
y_preds = []
with torch.no_grad():
model = model.to(self.pytorch_settings.device)
for x, y in loader:
x, y = (
x.to(self.pytorch_settings.device),
y.to(self.pytorch_settings.device),
)
y_pred = model(x).cpu()
# x = x.cpu()
# y = y.cpu()
y_pred = y_pred.view(y_pred.shape[0], -1, 2)
y = y.view(y.shape[0], -1, 2)
x = x.view(x.shape[0], -1, 2)
xs.append(x[:, 0, :].squeeze())
ys.append(y.squeeze())
y_preds.append(y_pred.squeeze())
xs = torch.vstack(xs).cpu()
ys = torch.vstack(ys).cpu()
y_preds = torch.vstack(y_preds).cpu()
return ys, xs, y_preds
def objective(self, save=False, plot_before=False):
try:
rprint(*list(self.study_name.split("_")))
self.model = self.define_model().to(self.pytorch_settings.device)
if self.writer is not None:
self.writer.add_figure("fiber response", self.plot_model_response(plot=plot_before), 0)
train_loader, valid_loader = self.get_sliced_data()
optimizer_name = self.optimizer_settings.optimizer_range
lr = self.optimizer_settings.lr_range
optimizer = getattr(optim, optimizer_name)(self.model.parameters(), lr=lr)
for epoch in range(self.pytorch_settings.epochs):
self.console.rule(f"Epoch {epoch + 1}/{self.pytorch_settings.epochs}")
self.train_model(self.model, optimizer, train_loader, epoch)
eval_loss = self.eval_model(self.model, valid_loader, epoch)
return eval_loss
except KeyboardInterrupt:
...
finally:
if hasattr(self, "model"):
save_path = (
Path(self.pytorch_settings.model_dir) / f"{self.study_name}.pth"
)
save_path.parent.mkdir(parents=True, exist_ok=True)
torch.save(self.model, save_path)
def _plot_model_response_plotter(self, fiber_in, fiber_out, regen, plot=True):
fig, axs = plt.subplots(2)
for i, ax in enumerate(axs):
ax.plot(np.abs(fiber_in[:, i]) ** 2, label="fiber in")
ax.plot(np.abs(fiber_out[:, i]) ** 2, label="fiber out")
ax.plot(np.abs(regen[:, i]) ** 2, label="regenerated")
ax.legend()
if plot:
plt.show()
return fig
def plot_model_response(self, model=None, plot=True):
data_settings_backup = copy.copy(self.data_settings)
self.data_settings.shuffle = False
self.data_settings.train_split = 0.01
self.data_settings.drop_first = 100
plot_loader, _ = self.get_sliced_data()
self.data_settings = data_settings_backup
fiber_in, fiber_out, regen = self.run_model(model or self.model, plot_loader)
fiber_in = fiber_in.view(-1, 2)
fiber_out = fiber_out.view(-1, 2)
regen = regen.view(-1, 2)
fiber_in = fiber_in.numpy()
fiber_out = fiber_out.numpy()
regen = regen.numpy()
# https://github.com/matplotlib/matplotlib/issues/27713#issue-2104110987
# https://github.com/matplotlib/matplotlib/issues/27713#issuecomment-1915497463
import gc
fig = self._plot_model_response_plotter(fiber_in, fiber_out, regen, plot=plot)
gc.collect()
return fig
if __name__ == "__main__":
trainer = Training()
# trainer.plot_eye()
trainer.setup_tb_writer()
trainer.objective(save=True)
best_model = trainer.model
# best_model = trainer.define_model(trainer.study.best_trial).to(trainer.pytorch_settings.device)
trainer.plot_model_response(best_model)
# print(f"Best model: {best_model}")
...

View File

@@ -0,0 +1,194 @@
from datetime import datetime
from pathlib import Path
import optuna
import warnings
from util.optuna_vis import show_figures
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data
from torchvision import datasets
from torchvision import transforms
import multiprocessing
# from util.dataset import SlicedDataset
DEVICE = torch.device("cuda")
BATCHSIZE = 128
CLASSES = 10
DIR = Path(__file__).parent
EPOCHS = 100
N_TRAIN_EXAMPLES = BATCHSIZE * 30
N_VALID_EXAMPLES = BATCHSIZE * 10
n_trials = 128
n_threads = 16
def define_model(trial):
n_layers = trial.suggest_int("n_layers", 1, 3)
layers = []
in_features = 28 * 28
for i in range(n_layers):
out_features = trial.suggest_int(f"n_units_l{i}", 4, 128)
layers.append(nn.Linear(in_features, out_features))
layers.append(nn.ReLU())
p = trial.suggest_float(f"dropout_l{i}", 0.2, 0.5)
layers.append(nn.Dropout(p))
in_features = out_features
layers.append(nn.Linear(in_features, CLASSES))
layers.append(nn.LogSoftmax(dim=1))
return nn.Sequential(*layers)
def get_mnist():
# Load FashionMNIST dataset.
train_loader = torch.utils.data.DataLoader(
datasets.FashionMNIST(
DIR / ".data", train=True, download=True, transform=transforms.ToTensor()
),
batch_size=BATCHSIZE,
shuffle=True,
)
valid_loader = torch.utils.data.DataLoader(
datasets.FashionMNIST(
DIR / ".data", train=False, transform=transforms.ToTensor()
),
batch_size=BATCHSIZE,
shuffle=True,
)
return train_loader, valid_loader
def objective(trial):
model = define_model(trial).to(DEVICE)
optimizer_name = trial.suggest_categorical("optimizer", ["Adam", "RMSprop", "SGD"])
lr = trial.suggest_float("lr", 1e-5, 1e-1, log=True)
optimizer = getattr(optim, optimizer_name)(model.parameters(), lr=lr)
train_loader, valid_loader = get_mnist()
for epoch in range(EPOCHS):
train_model(model, optimizer, train_loader)
accuracy, num_params = eval_model(model, valid_loader)
return accuracy, num_params
def eval_model(model, valid_loader):
model.eval()
correct = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(valid_loader):
if batch_idx * BATCHSIZE >= N_VALID_EXAMPLES:
break
data, target = data.view(data.size(0), -1).to(DEVICE), target.to(DEVICE)
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
accuracy = correct / min(len(valid_loader.dataset), N_VALID_EXAMPLES)
num_params = sum(p.numel() for p in model.parameters())
return accuracy, num_params
def train_model(model, optimizer, train_loader):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if batch_idx * BATCHSIZE >= N_TRAIN_EXAMPLES:
break
data, target = data.view(data.size(0), -1).to(DEVICE), target.to(DEVICE)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
def run_optimize(n_trials, study):
study.optimize(objective, n_trials=n_trials, timeout=600)
if __name__ == "__main__":
study_name = f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')} mnist example"
storage = "sqlite:///db.sqlite3"
directions = ["maximize", "minimize"]
study = optuna.create_study(
directions=directions,
storage=storage,
study_name=study_name,
)
with warnings.catch_warnings(action="ignore"):
study.set_metric_names(["accuracy", "num params"])
n_threads = min(n_trials, n_threads)
processes = []
for _ in range(n_threads):
p = multiprocessing.Process(
target=run_optimize, args=(n_trials // n_threads, study)
)
p.start()
processes.append(p)
for p in processes:
p.join()
remaining_trials = n_trials - ((n_trials // n_threads) * n_threads)
if remaining_trials:
print(
f"\nRunning last {remaining_trials} trial{'s' if remaining_trials > 1 else ''}:"
)
run_optimize(directions, remaining_trials, study_name, storage)
print(f"Number of trials on the Pareto front: {len(study.best_trials)}")
trial_with_highest_accuracy = max(study.best_trials, key=lambda t: t.values[1])
print("Trial with highest accuracy: ")
print(f"\tnumber: {trial_with_highest_accuracy.number}")
print(f"\tparams: {trial_with_highest_accuracy.params}")
print(f"\tvalues: {trial_with_highest_accuracy.values}")
# for trial in trials:
# print(f"Trial {trial.number}")
# print(f" Accuracy: {trial.values[0]}")
# print(f" n_params: {int(trial.values[1])}")
# print( " Params: ")
# for key, value in trial.params.items():
# print(" {}: {}".format(key, value))
# print()
# print(" Value: ", trial.value)
# print(" Params: ")
# for key, value in trial.params.items():
# print(" {}: {}".format(key, value))
figures = []
figures.append(
optuna.visualization.plot_pareto_front(
study, target_names=["accuracy", "num_params"]
)
)
figures.append(optuna.visualization.plot_timeline(study))
plt = show_figures(*figures)
print()
# plt.show()

View File

@@ -0,0 +1,51 @@
# move into dir single-core-regen before running
from util.dataset import SlicedDataset
from torch.utils.data import DataLoader
from matplotlib import pyplot as plt
import numpy as np
def eye_dataset(dataset, no_symbols=None, offset=False, show=True):
if no_symbols is None:
no_symbols = len(dataset)
_, axs = plt.subplots(2,2, sharex=True, sharey=True)
xaxis = np.linspace(0,dataset.symbols_per_slice,dataset.samples_per_slice)
roll = dataset.samples_per_symbol//2 if offset else 0
for E_out, E_in in dataset[roll:dataset.samples_per_symbol*no_symbols+roll:dataset.samples_per_symbol]:
E_in_x, E_in_y, E_out_x, E_out_y = E_in[0], E_in[1], E_out[0], E_out[1]
axs[0,0].plot(xaxis, np.abs( E_in_x.numpy())**2, alpha=0.05, color='C0')
axs[1,0].plot(xaxis, np.abs( E_in_y.numpy())**2, alpha=0.05, color='C0')
axs[0,1].plot(xaxis, np.abs(E_out_x.numpy())**2, alpha=0.05, color='C0')
axs[1,1].plot(xaxis, np.abs(E_out_y.numpy())**2, alpha=0.05, color='C0')
if show:
plt.show()
# def plt_dataloader(dataloader, show=True):
# _, axs = plt.subplots(2,2, sharex=True, sharey=True)
# E_outs, E_ins = next(iter(dataloader))
# for i, (E_out, E_in) in enumerate(zip(E_outs, E_ins)):
# xaxis = np.linspace(dataset.symbols_per_slice*i,dataset.symbols_per_slice+dataset.symbols_per_slice*i,dataset.samples_per_slice)
# E_in_x, E_in_y, E_out_x, E_out_y = E_in[0], E_in[1], E_out[0], E_out[1]
# axs[0,0].plot(xaxis, np.abs(E_in_x.numpy())**2)
# axs[1,0].plot(xaxis, np.abs(E_in_y.numpy())**2)
# axs[0,1].plot(xaxis, np.abs(E_out_x.numpy())**2)
# axs[1,1].plot(xaxis, np.abs(E_out_y.numpy())**2)
# if show:
# plt.show()
if __name__ == "__main__":
dataset = SlicedDataset("data/20241115-175517-128-16384-10000-0-0-17-0-PAM4-0.ini", symbols=1, drop_first=100)
print(dataset[0][0].shape)
eye_dataset(dataset, 1000, offset=True, show=False)
train_loader = DataLoader(dataset, batch_size=10, shuffle=False)
# plt_dataloader(train_loader, show=False)
plt.show()

View File

@@ -0,0 +1,68 @@
import torch
import time
def print_torch_env():
print("Torch version: ", torch.__version__)
print("CUDA available: ", torch.cuda.is_available())
print("CUDA version: ", torch.version.cuda)
print("CUDNN version: ", torch.backends.cudnn.version())
print("Device count: ", torch.cuda.device_count())
print("Current device: ", torch.cuda.current_device())
print("Device name: ", torch.cuda.get_device_name(0))
print("Device capability: ", torch.cuda.get_device_capability(0))
print("Device memory: ", torch.cuda.get_device_properties(0).total_memory)
def measure_runtime(func):
"""
Measure the runtime of a function.
:param func: Function to measure
:type func: function
:return: Wrapped function with runtime measurement
:rtype: function
"""
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"Runtime: {end_time - start_time:.6f} seconds")
return result, end_time - start_time
return wrapper
@measure_runtime
def tensor_addition(a, b):
"""
Perform tensor addition.
:param a: First tensor
:type a: torch.Tensor
:param b: Second tensor
:type b: torch.Tensor
:return: Sum of tensors
:rtype: torch.Tensor
"""
return a + b
def runtime_test():
x = torch.rand(2**18, 2**10)
y = torch.rand(2**18, 2**10)
print("Tensor addition on CPU")
_, cpu_time = tensor_addition(x, y)
print()
print("Tensor addition on GPU")
if not torch.cuda.is_available():
print("CUDA is not available")
return
_, gpu_time = tensor_addition(x.cuda(), y.cuda())
print()
print(f"Speedup: {cpu_time / gpu_time *100:.2f}%")
if __name__ == "__main__":
print_torch_env()
print()
runtime_test()

View File

@@ -0,0 +1,19 @@
from . import datasets # noqa: F401
# from .datasets import FiberRegenerationDataset # noqa: F401
# from .datasets import load_data # noqa: F401
from . import plot # noqa: F401
# from .plot import eye # noqa: F401
from . import optuna_helpers # noqa: F401
# from .optuna_helpers import optional_suggest_categorical # noqa: F401
# from .optuna_helpers import optional_suggest_float # noqa: F401
# from .optuna_helpers import optional_suggest_int # noqa: F401
from . import complexNN # noqa: F401
# from .complexNN import UnitaryLayer # noqa: F401
# from .complexNN import complex_mse_loss # noqa: F401
# from .complexNN import complex_sse_loss # noqa: F401
from . import misc # noqa: F401

View File

@@ -0,0 +1,173 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
def complex_mse_loss(input, target):
"""
Compute the mean squared error between two complex tensors.
"""
if input.is_complex():
return torch.mean(
torch.square(input.real - target.real)
+ torch.square(input.imag - target.imag)
)
else:
return F.mse_loss(input, target)
def complex_sse_loss(input, target):
"""
Compute the sum squared error between two complex tensors.
"""
if input.is_complex():
return torch.sum(
torch.square(input.real - target.real)
+ torch.square(input.imag - target.imag)
)
else:
return torch.sum(torch.square(input - target))
class UnitaryLayer(nn.Module):
def __init__(self, in_features, out_features, dtype=None):
assert in_features >= out_features
super(UnitaryLayer, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.randn(in_features, out_features, dtype=dtype))
self.reset_parameters()
def reset_parameters(self):
q, _ = torch.linalg.qr(self.weight)
self.weight.data = q
def forward(self, x):
return torch.matmul(x, self.weight)
def __repr__(self):
return f"UnitaryLayer({self.in_features}, {self.out_features})"
class SemiUnitaryLayer(nn.Module):
def __init__(self, input_dim, output_dim, dtype=None):
super(SemiUnitaryLayer, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
# Create a larger square matrix for QR decomposition
self.weight = nn.Parameter(torch.randn(max(input_dim, output_dim), max(input_dim, output_dim), dtype=dtype))
self.reset_parameters()
def reset_parameters(self):
# Ensure the weights are semi-unitary by QR decomposition
q, _ = torch.linalg.qr(self.weight)
if self.input_dim > self.output_dim:
self.weight.data = q[:self.input_dim, :self.output_dim]
else:
self.weight.data = q[:self.output_dim, :self.input_dim].t()
def forward(self, x):
out = torch.matmul(x, self.weight)
return out
def __repr__(self):
return f"SemiUnitaryLayer({self.input_dim}, {self.output_dim})"
# class SpreadLayer(nn.Module):
# def __init__(self, in_features, out_features, dtype=None):
# super(SpreadLayer, self).__init__()
# self.in_features = in_features
# self.out_features = out_features
# self.mat = torch.ones(in_features, out_features, dtype=dtype)*torch.sqrt(torch.tensor(in_features/out_features))
# def forward(self, x):
# # N in_features -> M out_features, Enery is preserved (P = abs(x)^2)
# out = torch.matmul(x, self.mat)
# return out
#### as defined by zhang et al
class Identity(nn.Module):
"""
implements the "activation" function
M(z) = z
"""
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
class Mag(nn.Module):
"""
implements the activation function
M(z) = ||z||
"""
def __init__(self):
super(Mag, self).__init__()
def forward(self, x):
return torch.abs(x).to(dtype=x.dtype)
class ModReLU(nn.Module):
"""
implements the activation function
M(z) = ReLU(||z|| + b)*exp(j*theta_z)
= ReLU(||z|| + b)*z/||z||
"""
def __init__(self, b=0):
super(ModReLU, self).__init__()
self.b = torch.tensor(b)
def forward(self, x):
if x.is_complex():
mod = torch.abs(x.real**2 + x.imag**2)
return torch.relu(mod + self.b) * x / mod
else:
return torch.relu(x + self.b)
def __repr__(self):
return f"ModReLU(b={self.b})"
class CReLU(nn.Module):
"""
implements the activation function
M(z) = ReLU(Re(z)) + j*ReLU(Im(z))
"""
def __init__(self):
super(CReLU, self).__init__()
def forward(self, x):
if x.is_complex():
return torch.relu(x.real) + 1j * torch.relu(x.imag)
else:
return torch.relu(x)
class ZReLU(nn.Module):
"""
implements the activation function
M(z) = z if 0 <= angle(z) <= pi/2
= 0 otherwise
"""
def __init__(self):
super(ZReLU, self).__init__()
def forward(self, x):
if x.is_complex():
return x * (torch.angle(x) >= 0) * (torch.angle(x) <= torch.pi / 2)
else:
return torch.relu(x)

View File

@@ -0,0 +1,282 @@
from pathlib import Path
import torch
from torch.utils.data import Dataset
# from torch.utils.data import Sampler
import numpy as np
import configparser
# class SubsetSampler(Sampler[int]):
# """
# Samples elements from a given list of indices.
# :param indices: List of indices to sample from.
# :type indices: list[int]
# """
# def __init__(self, indices):
# self.indices = indices
# def __iter__(self):
# return iter(self.indices)
# def __len__(self):
# return len(self.indices)
def load_data(config_path, skipfirst=0, symbols=None, real=False, normalize=False, device=None, dtype=None):
filepath = Path(config_path)
filepath = filepath.parent.glob(filepath.name)
config = configparser.ConfigParser()
config.read(filepath)
path_elements = (
config["data"]["dir"],
config["data"]["npy_dir"],
config["data"]["file"],
)
datapath = Path("/".join(path_elements).replace('"', ""))
sps = int(config["glova"]["sps"])
if symbols is None:
symbols = int(config["glova"]["nos"]) - skipfirst
data = np.load(datapath)[skipfirst * sps : symbols * sps + skipfirst * sps]
if normalize:
# square gets normalized to 1, as the power is (proportional to) the square of the amplitude
a, b, c, d = np.square(data.T)
a, b, c, d = a/np.max(np.abs(a)), b/np.max(np.abs(b)), c/np.max(np.abs(c)), d/np.max(np.abs(d))
data = np.sqrt(np.array([a, b, c, d]).T)
if real:
data = np.abs(data)
config["glova"]["nos"] = str(symbols)
data = torch.tensor(data, device=device, dtype=dtype)
return data, config
def roll_along(arr, shifts, dim):
# https://stackoverflow.com/a/76920720
# (c) Mateen Ulhaq, 2023
# CC BY-SA 4.0
shifts = torch.tensor(shifts)
assert arr.ndim - 1 == shifts.ndim
dim %= arr.ndim
shape = (1,) * dim + (-1,) + (1,) * (arr.ndim - dim - 1)
dim_indices = torch.arange(arr.shape[dim]).reshape(shape)
indices = (dim_indices - shifts.unsqueeze(dim)) % arr.shape[dim]
return torch.gather(arr, dim, indices)
class FiberRegenerationDataset(Dataset):
"""
Dataset for fiber regeneration training.
The dataset is loaded from a configuration file, which must contain (at least) the following sections:
```
[data]
dir = <data_dir>
npy_dir = <npy_dir>
file = <data_file>
[glova]
sps = <samples per symbol>
```
The data is loaded from the file `<data_dir>/<npy_dir>/<data_file>` and is assumed to be in the following format:
```
[ E_in_x,
E_in_y,
E_out_x,
E_out_y ]
```
The dataset is sliced into slices, where each slice consists of a (fractional) number of symbols.
The target can be delayed relative to the input data by a (fractional) number of symbols.
The x and y channels can be delayed relative to each other by a (fractional) number of symbols.
"""
def __init__(
self,
file_path: str | Path,
symbols: int | float,
*,
output_dim: int = None,
target_delay: float | int = 0,
xy_delay: float | int = 0,
drop_first: float | int = 0,
dtype: torch.dtype = None,
real: bool = False,
device = None,
**kwargs,
):
"""
Initialize the dataset.
:param file_path: Path to the data file. Can contain wildcards (*). The first
:type file_path: str | pathlib.Path
:param symbols: Number of symbols in each slice. Can be a float to specify a fraction of a symbol.
:type symbols: float | int
:param data_size: Number of samples in each slice. The data is reduced by taking equally spaced samples. If unset, each slice will contain symbols*samples_per_symbol samples.
:type data_size: int, optional
:param target_delay: Delay (in fractional symbols) between data and target. A positive delay means the target is delayed relative to the data. Default is 0.
:type target_delay: float | int, optional
:param xy_delay: Delay (in fractional symbols) between the x and y channels. A positive delay means the y channel is delayed relative to the x channel. Default is 0.
:type xy_delay: float | int, optional
:param drop_first: Number of (fractional) symbols to drop from the beginning
:type drop_first: float | int
"""
# check types
assert isinstance(file_path, str), "file_path must be a string"
assert isinstance(symbols, (float, int)), (
"symbols must be a float or an integer"
)
assert output_dim is None or isinstance(output_dim, int), (
"output_len must be an integer"
)
assert isinstance(target_delay, (float, int)), (
"target_delay must be a float or an integer"
)
assert isinstance(xy_delay, (float, int)), (
"xy_delay must be a float or an integer"
)
assert isinstance(drop_first, int), "drop_first must be an integer"
# check values
assert symbols > 0, "symbols must be positive"
assert output_dim is None or output_dim > 0, "output_len must be positive or None"
assert drop_first >= 0, "drop_first must be non-negative"
faux = kwargs.pop("faux", False)
if faux:
data_raw = np.array(
[[i + 0.1j, i + 0.2j, i + 1.1j, i + 1.2j] for i in range(12800)],
dtype=np.complex128,
)
data_raw = torch.tensor(data_raw, device=device, dtype=dtype)
self.config = {
"data": {"dir": '"."', "npy_dir": '"."', "file": "faux"},
"glova": {"sps": 128},
}
else:
data_raw, self.config = load_data(file_path, skipfirst=drop_first, symbols=kwargs.pop("num_symbols", None), real=real, normalize=True, device=device, dtype=dtype)
self.device = data_raw.device
self.samples_per_symbol = int(self.config["glova"]["sps"])
self.samples_per_slice = int(symbols * self.samples_per_symbol)
self.symbols_per_slice = self.samples_per_slice / self.samples_per_symbol
self.output_dim = output_dim or self.samples_per_slice
self.target_delay = target_delay or 0
self.xy_delay = xy_delay or 0
ovrd_target_delay_samples = kwargs.pop("ovrd_target_delay_samples", None)
ovrd_xy_delay_samples = kwargs.pop("ovrd_xy_delay_samples", None)
self.target_delay_samples = (
ovrd_target_delay_samples
if ovrd_target_delay_samples is not None
else int(self.target_delay * self.samples_per_symbol)
)
self.xy_delay_samples = (
ovrd_xy_delay_samples
if ovrd_xy_delay_samples is not None
else int(self.xy_delay * self.samples_per_symbol)
)
# data_raw = torch.tensor(data_raw, dtype=dtype)
# data layout
# [ [E_in_x0, E_in_y0, E_out_x0, E_out_y0],
# [E_in_x1, E_in_y1, E_out_x1, E_out_y1],
# ...
# [E_in_xN, E_in_yN, E_out_xN, E_out_yN] ]
data_raw = data_raw.transpose(0, 1)
# data layout
# [ E_in_x[0:N],
# E_in_y[0:N],
# E_out_x[0:N],
# E_out_y[0:N] ]
# shift x data by xy_delay_samples relative to the y data (example value: 3)
# [ E_in_x [0:N], [ E_in_x [ 0:N ], [ E_in_x [3:N ],
# E_in_y [0:N], -> E_in_y [-3:N-3], -> E_in_y [0:N-3],
# E_out_x[0:N], E_out_x[ 0:N ], E_out_x[3:N ],
# E_out_y[0:N] ] E_out_y[-3:N-3] ] E_out_y[0:N-3] ]
if self.xy_delay_samples != 0:
data_raw = roll_along(
data_raw, [0, self.xy_delay_samples, 0, self.xy_delay_samples], dim=1
)
if self.xy_delay_samples > 0:
data_raw = data_raw[:, self.xy_delay_samples :]
elif self.xy_delay_samples < 0:
data_raw = data_raw[:, : self.xy_delay_samples]
# shift fiber input data (target) by target_delay_samples relative to the fiber output data (input)
# (example value: 5)
# [ E_in_x [0:N], [ E_in_x [-5:N-5], [ E_in_x [0:N-5],
# E_in_y [0:N], -> E_in_y [-5:N-5], -> E_in_y [0:N-5],
# E_out_x[0:N], E_out_x[ 0:N ], E_out_x[5:N ],
# E_out_y[0:N] ] E_out_y[ 0:N ] ] E_out_y[5:N ] ]
if self.target_delay_samples != 0:
data_raw = roll_along(
data_raw,
[self.target_delay_samples, self.target_delay_samples, 0, 0],
dim=1,
)
if self.target_delay_samples > 0:
data_raw = data_raw[:, self.target_delay_samples :]
elif self.target_delay_samples < 0:
data_raw = data_raw[:, : self.target_delay_samples]
data_raw = data_raw.view(2, 2, -1)
# data layout
# [ [E_in_x, E_in_y],
# [E_out_x, E_out_y] ]
self.data = data_raw.unfold(dimension=-1, size=self.samples_per_slice, step=1)
self.data = self.data.movedim(-2, 0)
# -> [no_slices, 2, 2, samples_per_slice]
# data layout
# [
# [ [E_in_x[0:N+0], E_in_y[0:N+0] ], [ E_out_x[0:N+0], E_out_y[0:N+0] ] ],
# [ [E_in_x[1:N+1], E_in_y[1:N+1] ], [ E_out_x[1:N+1], E_out_y[1:N+1] ] ],
# ...
# ] -> [no_slices, 2, 2, samples_per_slice]
...
def __len__(self):
return self.data.shape[0]
def __getitem__(self, idx):
if isinstance(idx, slice):
return [self.__getitem__(i) for i in range(*idx.indices(len(self)))]
else:
data, target = self.data[idx, 1].squeeze(), self.data[idx, 0].squeeze()
# reduce by by taking self.output_dim equally spaced samples
data = data[:, : data.shape[1] // self.output_dim * self.output_dim]
data = data.view(data.shape[0], self.output_dim, -1)
data = data[:, :, 0]
# target is corresponding to the middle of the data as the output sample is influenced by the data before and after it
target = target[:, : target.shape[1] // self.output_dim * self.output_dim]
target = target.view(target.shape[0], self.output_dim, -1)
target = target[:, 0, target.shape[2] // 2]
data = data.transpose(0, 1).flatten().squeeze()
target = target.flatten().squeeze()
# data layout:
# [sample_x0, sample_y0, sample_x1, sample_y1, ...]
# target layout:
# [sample_x0, sample_y0]
return data, target

View File

@@ -0,0 +1,21 @@
def multi_getattr(objs, attr, fallback=None):
"""
tries to get the attribute from a list of objects, returning the first hit
if no object has the attribute, it returns the fallback value if provided, otherwise raises AttributeError
"""
try:
return _multi_getattr(objs, attr)
except AttributeError as e:
if fallback is not None:
return fallback
raise e
def _multi_getattr(objs, attr):
if not isinstance(objs, (list, tuple)):
objs = [objs]
for obj in objs:
try:
return getattr(obj, attr)
except AttributeError:
pass
raise AttributeError(f"None of the objects has attribute {attr}")

View File

@@ -0,0 +1,45 @@
def _optional_suggest(trial, name, range_or_value, log=False, step=None, type='int'):
# not a range
if not hasattr(range_or_value, '__iter__') or isinstance(range_or_value, str):
return range_or_value
# range with only one value
if len(range_or_value) == 1:
return range_or_value[0]
if type == 'int':
step = step or 1
return trial.suggest_int(name, *range_or_value, step=step, log=log)
if type == 'float':
return trial.suggest_float(name, *range_or_value, step=step, log=log)
if type == 'categorical':
return trial.suggest_categorical(name, range_or_value)
raise ValueError(f"Unknown type: {type}")
def optional_suggest_categorical(trial, name, choices_or_value):
return _optional_suggest(trial, name, choices_or_value, type='categorical')
def optional_suggest_int(trial, name, range_or_value, step=None, log=False):
return _optional_suggest(trial, name, range_or_value, step=step, log=log, type='int')
def optional_suggest_float(trial, name, range_or_value, step=None, log=False):
return _optional_suggest(trial, name, range_or_value, step=step, log=log, type='float')
def force_suggest_int(trial, name, range_or_value, step=1, log=False):
if not hasattr(range_or_value, '__iter__') or isinstance(range_or_value, str):
return trial.suggest_int(name, range_or_value, range_or_value, step=step, log=log)
return trial.suggest_int(name, *range_or_value, step=step, log=log)
def force_suggest_float(trial, name, range_or_value, step=None, log=False):
if not hasattr(range_or_value, '__iter__') or isinstance(range_or_value, str):
return trial.suggest_float(name, range_or_value, range_or_value, step=step, log=log)
return trial.suggest_float(name, *range_or_value, step=step, log=log)
def force_suggest_categorical(trial, name, range_or_value):
if not hasattr(range_or_value, '__iter__') or isinstance(range_or_value, str):
return trial.suggest_categorical(name, [range_or_value])
return trial.suggest_categorical(name, range_or_value)

View File

@@ -0,0 +1,18 @@
from dash import Dash, dcc, html
import logging
import dash_bootstrap_components as dbc
def show_figures(*figures):
for figure in figures:
figure.layout.template = 'plotly_dark'
app = Dash(external_stylesheets=[dbc.themes.DARKLY])
app.layout = html.Div([
dcc.Graph(figure=figure) for figure in figures
])
log = logging.getLogger('werkzeug')
log.setLevel(logging.ERROR)
app.show = lambda *args, **kwargs: app.run_server(*args, **kwargs, debug=False)
return app

View File

@@ -0,0 +1,73 @@
import matplotlib.pyplot as plt
import numpy as np
from .datasets import load_data
def eye(*, path=None, data=None, sps=None, title=None, symbols=1000, skipfirst=0, width=2, alpha=None, complex=False, show=True):
"""Plot an eye diagram for the data given by filepath.
Either path or data and sps must be given.
Args:
path (str): Path to the data description file.
data (np.ndarray): Data to plot.
sps (int): Samples per symbol.
title (str): Title of the plot.
head (int): Number of symbols to plot.
skipfirst (int): Number of symbols to skip.
show (bool): Whether to call plt.show().
"""
if path is None and data is None:
raise ValueError("Either path or data and sps must be given.")
if path is not None:
data, config = load_data(path, skipfirst, symbols)
sps = int(config["glova"]["sps"])
if sps is None:
raise ValueError("sps not set.")
xaxis = np.linspace(0, width, width*sps, endpoint=False)
fig, axs = plt.subplots(2, 2, figsize=(10, 10), sharex=True, sharey=True)
if complex:
# create secondary axis for phase
axs2 = axs[0, 0].twinx(), axs[0, 1].twinx(), axs[1, 0].twinx(), axs[1, 1].twinx()
axs2 = np.reshape(axs2, (2, 2))
for i in range(symbols-(width-1)):
inx, iny, outx, outy = data[i*sps:(i+width)*sps].T
if complex:
axs[0, 0].plot(xaxis, np.abs(inx), color="C0", alpha=alpha or 0.1)
axs[0, 1].plot(xaxis, np.abs(outx), color="C0", alpha=alpha or 0.1)
axs[1, 0].plot(xaxis, np.abs(iny), color="C0", alpha=alpha or 0.1)
axs[1, 1].plot(xaxis, np.abs(outy), color="C0", alpha=alpha or 0.1)
axs[0, 0].set_ylim(0, 1.1*np.max(np.abs(data)))
axs2[0, 0].plot(xaxis, np.angle(inx), color="C1", alpha=alpha or 0.1)
axs2[0, 1].plot(xaxis, np.angle(outx), color="C1", alpha=alpha or 0.1)
axs2[1, 0].plot(xaxis, np.angle(iny), color="C1", alpha=alpha or 0.1)
axs2[1, 1].plot(xaxis, np.angle(outy), color="C1", alpha=alpha or 0.1)
else:
axs[0, 0].plot(xaxis, np.abs(inx)**2, color="C0", alpha=alpha or 0.1)
axs[0, 1].plot(xaxis, np.abs(outx)**2, color="C0", alpha=alpha or 0.1)
axs[1, 0].plot(xaxis, np.abs(iny)**2, color="C0", alpha=alpha or 0.1)
axs[1, 1].plot(xaxis, np.abs(outy)**2, color="C0", alpha=alpha or 0.1)
if complex:
axs2[0, 0].sharey(axs2[0, 1])
axs2[0, 1].sharey(axs2[1, 0])
axs2[1, 0].sharey(axs2[1, 1])
# make y axis symmetric
ylim = np.max(np.abs(np.angle(data)))*1.1
if ylim != 0:
axs2[0, 0].set_ylim(-ylim, ylim)
else:
axs[0,0].set_ylim(0, 1.1*np.max(np.abs(data))**2)
axs[0, 0].set_title("Input x")
axs[0, 1].set_title("Output x")
axs[1, 0].set_title("Input y")
axs[1, 1].set_title("Output y")
fig.suptitle(title or "Eye diagram")
if show:
plt.show()
return fig