move sliced dataset testing script
This commit is contained in:
88
src/single-core-regen/sliced_dataset_test.py
Normal file
88
src/single-core-regen/sliced_dataset_test.py
Normal file
@@ -0,0 +1,88 @@
|
||||
# move into dir single-core-regen before running
|
||||
|
||||
from util.datasets import FiberRegenerationDataset
|
||||
from torch.utils.data import DataLoader
|
||||
from matplotlib import pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
# def eye_dataset(dataset, no_symbols=None, offset=False, show=True):
|
||||
# if no_symbols is None:
|
||||
# no_symbols = len(dataset)
|
||||
# _, axs = plt.subplots(2,2, sharex=True, sharey=True)
|
||||
|
||||
# xaxis = np.linspace(0,dataset.symbols_per_slice,dataset.samples_per_slice)
|
||||
# roll = dataset.samples_per_symbol//2 if offset else 0
|
||||
# for E_out, E_in in dataset[roll:dataset.samples_per_symbol*no_symbols+roll:dataset.samples_per_symbol]:
|
||||
# E_in_x, E_in_y, E_out_x, E_out_y = E_in[0], E_in[1], E_out[0], E_out[1]
|
||||
# axs[0,0].plot(xaxis, np.abs( E_in_x.numpy())**2, alpha=0.05, color='C0')
|
||||
# axs[1,0].plot(xaxis, np.abs( E_in_y.numpy())**2, alpha=0.05, color='C0')
|
||||
# axs[0,1].plot(xaxis, np.abs(E_out_x.numpy())**2, alpha=0.05, color='C0')
|
||||
# axs[1,1].plot(xaxis, np.abs(E_out_y.numpy())**2, alpha=0.05, color='C0')
|
||||
|
||||
# if show:
|
||||
# plt.show()
|
||||
|
||||
# # def plt_dataloader(dataloader, show=True):
|
||||
# # _, axs = plt.subplots(2,2, sharex=True, sharey=True)
|
||||
|
||||
# # E_outs, E_ins = next(iter(dataloader))
|
||||
# # for i, (E_out, E_in) in enumerate(zip(E_outs, E_ins)):
|
||||
# # xaxis = np.linspace(dataset.symbols_per_slice*i,dataset.symbols_per_slice+dataset.symbols_per_slice*i,dataset.samples_per_slice)
|
||||
# # E_in_x, E_in_y, E_out_x, E_out_y = E_in[0], E_in[1], E_out[0], E_out[1]
|
||||
# # axs[0,0].plot(xaxis, np.abs(E_in_x.numpy())**2)
|
||||
# # axs[1,0].plot(xaxis, np.abs(E_in_y.numpy())**2)
|
||||
# # axs[0,1].plot(xaxis, np.abs(E_out_x.numpy())**2)
|
||||
# # axs[1,1].plot(xaxis, np.abs(E_out_y.numpy())**2)
|
||||
|
||||
# # if show:
|
||||
# # plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
dataset = FiberRegenerationDataset("data/20241115-175517-128-16384-10000-0-0-17-0-PAM4-0.ini", symbols=13, drop_first=100, output_dim=26, num_symbols=100)
|
||||
|
||||
loader = DataLoader(dataset, batch_size=10, shuffle=True)
|
||||
|
||||
x = []
|
||||
y_fiber_in = []
|
||||
y_fiber_out = []
|
||||
|
||||
for i, batch in enumerate(loader):
|
||||
# if i > 128:
|
||||
# break
|
||||
|
||||
fiber_in, fiber_out, timestamp = batch
|
||||
|
||||
fiber_out = fiber_out.reshape(fiber_out.shape[0], -1, 2)
|
||||
fiber_out = fiber_out[:,fiber_out.shape[1]//2, :]
|
||||
|
||||
# input_data = input_data.reshape(-1,2)
|
||||
# target = target.reshape(-1,2).squeeze()
|
||||
# timestamp = timestamp.reshape(-1,1).squeeze()
|
||||
|
||||
x.append(timestamp.detach().numpy())
|
||||
y_fiber_in.append(fiber_in.abs().square().detach().numpy())
|
||||
y_fiber_out.append(fiber_out.abs().square().detach().numpy())
|
||||
|
||||
x = np.concat(x)
|
||||
y_fiber_in = np.concat(y_fiber_in)
|
||||
y_fiber_out = np.concat(y_fiber_out)
|
||||
|
||||
# order = np.argsort(x)
|
||||
# x = x[order]
|
||||
# y = y[order]
|
||||
|
||||
fig, axs = plt.subplots(2,2, sharex=True, sharey=True)
|
||||
axs[0,0].scatter((x/dataset.samples_per_symbol)%2, y_fiber_in[:,0], s=1, alpha=0.1)
|
||||
axs[1,0].scatter((x/dataset.samples_per_symbol)%2, y_fiber_in[:,1], s=1, alpha=0.1)
|
||||
axs[0,1].scatter((x/dataset.samples_per_symbol)%2, y_fiber_out[:,0], s=1, alpha=0.1)
|
||||
axs[1,1].scatter((x/dataset.samples_per_symbol)%2, y_fiber_out[:,1], s=1, alpha=0.1)
|
||||
plt.show()
|
||||
|
||||
# eye_dataset(dataset, 1000, offset=True, show=False)
|
||||
|
||||
# train_loader = DataLoader(dataset, batch_size=10, shuffle=False)
|
||||
|
||||
# plt_dataloader(train_loader, show=False)
|
||||
|
||||
# plt.show()
|
||||
@@ -1,51 +0,0 @@
|
||||
# move into dir single-core-regen before running
|
||||
|
||||
from util.dataset import SlicedDataset
|
||||
from torch.utils.data import DataLoader
|
||||
from matplotlib import pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
def eye_dataset(dataset, no_symbols=None, offset=False, show=True):
|
||||
if no_symbols is None:
|
||||
no_symbols = len(dataset)
|
||||
_, axs = plt.subplots(2,2, sharex=True, sharey=True)
|
||||
|
||||
xaxis = np.linspace(0,dataset.symbols_per_slice,dataset.samples_per_slice)
|
||||
roll = dataset.samples_per_symbol//2 if offset else 0
|
||||
for E_out, E_in in dataset[roll:dataset.samples_per_symbol*no_symbols+roll:dataset.samples_per_symbol]:
|
||||
E_in_x, E_in_y, E_out_x, E_out_y = E_in[0], E_in[1], E_out[0], E_out[1]
|
||||
axs[0,0].plot(xaxis, np.abs( E_in_x.numpy())**2, alpha=0.05, color='C0')
|
||||
axs[1,0].plot(xaxis, np.abs( E_in_y.numpy())**2, alpha=0.05, color='C0')
|
||||
axs[0,1].plot(xaxis, np.abs(E_out_x.numpy())**2, alpha=0.05, color='C0')
|
||||
axs[1,1].plot(xaxis, np.abs(E_out_y.numpy())**2, alpha=0.05, color='C0')
|
||||
|
||||
if show:
|
||||
plt.show()
|
||||
|
||||
# def plt_dataloader(dataloader, show=True):
|
||||
# _, axs = plt.subplots(2,2, sharex=True, sharey=True)
|
||||
|
||||
# E_outs, E_ins = next(iter(dataloader))
|
||||
# for i, (E_out, E_in) in enumerate(zip(E_outs, E_ins)):
|
||||
# xaxis = np.linspace(dataset.symbols_per_slice*i,dataset.symbols_per_slice+dataset.symbols_per_slice*i,dataset.samples_per_slice)
|
||||
# E_in_x, E_in_y, E_out_x, E_out_y = E_in[0], E_in[1], E_out[0], E_out[1]
|
||||
# axs[0,0].plot(xaxis, np.abs(E_in_x.numpy())**2)
|
||||
# axs[1,0].plot(xaxis, np.abs(E_in_y.numpy())**2)
|
||||
# axs[0,1].plot(xaxis, np.abs(E_out_x.numpy())**2)
|
||||
# axs[1,1].plot(xaxis, np.abs(E_out_y.numpy())**2)
|
||||
|
||||
# if show:
|
||||
# plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
dataset = SlicedDataset("data/20241115-175517-128-16384-10000-0-0-17-0-PAM4-0.ini", symbols=1, drop_first=100)
|
||||
print(dataset[0][0].shape)
|
||||
|
||||
eye_dataset(dataset, 1000, offset=True, show=False)
|
||||
|
||||
train_loader = DataLoader(dataset, batch_size=10, shuffle=False)
|
||||
|
||||
# plt_dataloader(train_loader, show=False)
|
||||
|
||||
plt.show()
|
||||
Reference in New Issue
Block a user