pam4 signal modulation
This commit is contained in:
@@ -2,7 +2,9 @@ import configparser
|
||||
from datetime import datetime
|
||||
import hashlib
|
||||
from pathlib import Path
|
||||
import time
|
||||
from matplotlib import pyplot as plt
|
||||
import scipy
|
||||
import numpy as np
|
||||
|
||||
from rich import inspect
|
||||
@@ -29,14 +31,17 @@ alpha = 0.2
|
||||
D = 17
|
||||
S = 0
|
||||
birefsteps = 1
|
||||
birefseed = 0xC0FFEE
|
||||
; birefseed = 0xC0FFEE
|
||||
|
||||
[signal]
|
||||
modulation = "pam"
|
||||
mod_order = 4
|
||||
seed = 0xC0FFEE
|
||||
mod_depth = 0.5
|
||||
laser_power = 0
|
||||
; seed = 0xC0FFEE
|
||||
pulse_shape = "gauss_rz"
|
||||
fwhm = 0.33
|
||||
; jitter_seed = 0xC0FFEE
|
||||
|
||||
[script]
|
||||
data_dir = "{str((Path.home()/".pypho"/"data"))}"
|
||||
@@ -67,6 +72,73 @@ def get_config(config_file=None):
|
||||
# conf[section][key] = config[section][key].strip('"')
|
||||
return conf
|
||||
|
||||
class pam_generator:
|
||||
def __init__(self, glova, mod_order=None, mod_depth=0.5, pulse_shape='gauss', fwhm=0.33, seed=None) -> None:
|
||||
self.glova = glova
|
||||
self.pulse_shape = pulse_shape
|
||||
self.modulation_depth = mod_depth
|
||||
self.mod_order = mod_order
|
||||
self.fwhm = fwhm
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, E, symbols, max_jitter=0):
|
||||
symbols_x = symbols[0]/(self.mod_order or np.max(symbols[0]))
|
||||
symbols_y = symbols[1]/(self.mod_order or np.max(symbols[1]))
|
||||
|
||||
|
||||
diffs_x = np.diff(symbols_x, prepend=symbols_x[0])
|
||||
diffs_y = np.diff(symbols_y, prepend=symbols_y[0])
|
||||
|
||||
max_jitter = int(round(max_jitter*self.glova.sps))
|
||||
digital_x = self.generate_digital_signal(diffs_x, max_jitter)
|
||||
digital_y = self.generate_digital_signal(diffs_y, max_jitter)
|
||||
|
||||
digital_x = np.pad(digital_x, (0, self.glova.sps//2), 'constant', constant_values=(0,0))
|
||||
digital_y = np.pad(digital_y, (0, self.glova.sps//2), 'constant', constant_values=(0,0))
|
||||
|
||||
if self.pulse_shape == 'gauss':
|
||||
wavelet = self.gauss(oversampling=6)
|
||||
else:
|
||||
raise ValueError(f"Unknown pulse shape: {self.pulse_shape}")
|
||||
|
||||
# create analog signal of diff of symbols
|
||||
E_x = np.convolve(digital_x, wavelet)
|
||||
E_y = np.convolve(digital_y, wavelet)
|
||||
|
||||
# convert to pam and set modulation depth (scale and move up such that 1 stays at 1)
|
||||
E_x = np.cumsum(E_x)*self.modulation_depth + (1-self.modulation_depth)
|
||||
E_y = np.cumsum(E_y)*self.modulation_depth + (1-self.modulation_depth)
|
||||
|
||||
# cut off the wavelet tails
|
||||
E_x = E_x[self.glova.sps//2+len(wavelet)//2-1:-len(wavelet)//2]
|
||||
E_y = E_y[self.glova.sps//2+len(wavelet)//2-1:-len(wavelet)//2]
|
||||
|
||||
# modulate the laser
|
||||
np.multiply(E[0]['E'][0],E_x, out=E[0]['E'][0])
|
||||
np.multiply(E[0]['E'][1],E_y, out=E[0]['E'][1])
|
||||
|
||||
return E
|
||||
|
||||
def generate_digital_signal(self, symbols, max_jitter=0):
|
||||
rs = np.random.RandomState(self.seed)
|
||||
signal = np.zeros(self.glova.nos*self.glova.sps)
|
||||
for index in range(self.glova.nos):
|
||||
jitter = max_jitter != 0 and rs.randint(-max_jitter, max_jitter)
|
||||
signal_index = index*self.glova.sps + jitter
|
||||
if signal_index < 0:
|
||||
continue
|
||||
if signal_index >= len(signal):
|
||||
continue
|
||||
signal[signal_index] = symbols[index]
|
||||
return signal
|
||||
|
||||
def gauss(self, oversampling=1):
|
||||
sample_points = np.linspace(-oversampling*self.glova.sps, oversampling*self.glova.sps, oversampling*2*self.glova.sps, endpoint=True)
|
||||
sigma = self.fwhm/(1*np.sqrt(2*np.log(2)))*self.glova.sps
|
||||
pulse = 1/(sigma*np.sqrt(2*np.pi))*np.exp(-np.square(sample_points)/(2*np.square(sigma)))
|
||||
return pulse
|
||||
|
||||
|
||||
def initialize_fiber_and_data(config, input_data_override=None):
|
||||
py_glova = pypho.setup(
|
||||
nos = config['glova']['nos'],
|
||||
@@ -84,23 +156,21 @@ def initialize_fiber_and_data(config, input_data_override=None):
|
||||
if input_data_override is not None:
|
||||
c_data.E_in = input_data_override
|
||||
else:
|
||||
config['signal']['seed'] = config['signal'].get('seed',(int(time.time()*1000))%2**32)
|
||||
config['signal']['jitter_seed'] = config['signal'].get('jitter_seed', (int(time.time()*1000))%2**32)
|
||||
symbolsrc = pypho.symbols(py_glova, py_glova.nos, pattern='ones', seed=config['signal']['seed'])
|
||||
esigsrc = pypho.signalsrc(py_glova, pulseshape=config['signal']['pulse_shape'], fwhm=config['signal']['fwhm'])
|
||||
sig = pypho.lasmod(py_glova, power=0, Df=0, theta=np.pi/4)
|
||||
modulator = pypho.arbmod(py_glova)
|
||||
laser = pypho.lasmod(py_glova, power=config['signal']['laser_power'], Df=0, theta=np.pi/4)
|
||||
modulator = pam_generator(py_glova, mod_depth=config['signal']['mod_depth'], pulse_shape=config['signal']['pulse_shape'], fwhm=config['signal']['fwhm'], seed=config['signal']['jitter_seed'])
|
||||
|
||||
symbols_x = symbolsrc(pattern='random', p1=config['signal']['mod_order'])
|
||||
symbols_y = symbolsrc(pattern='random', p1=config['signal']['mod_order'])
|
||||
symbols_x[:3] = 0
|
||||
symbols_y[:3] = 0
|
||||
|
||||
ones = symbolsrc(pattern='ones')
|
||||
esig = esigsrc(bitsequence=ones)*np.sqrt(2)
|
||||
cw = laser()
|
||||
cw[0]['E']*=np.sqrt(2)
|
||||
|
||||
source_signal = sig(esig)
|
||||
|
||||
constpts_x = [np.linspace(1/config['signal']['mod_order'], 1, config['signal']['mod_order'], endpoint=True, dtype=np.complex128)]
|
||||
constpts_y = [np.linspace(1/config['signal']['mod_order'], 1, config['signal']['mod_order'], endpoint=True, dtype=np.complex128)]
|
||||
|
||||
source_signal = modulator(E=source_signal, symbols = (symbols_x, symbols_y), constpoints= (constpts_x, constpts_y))
|
||||
source_signal = modulator(E=cw, symbols=(symbols_x, symbols_y))
|
||||
|
||||
c_data.E_in = source_signal[0]['E']
|
||||
|
||||
@@ -112,8 +182,10 @@ def initialize_fiber_and_data(config, input_data_override=None):
|
||||
D=config['fiber']['d'],
|
||||
S=config['fiber']['s'],
|
||||
)
|
||||
py_fiber.birefarray = pypho.birefringence_segment.create_pmd_fibre(py_fiber.l, py_fiber.l/config['fiber']['birefsteps'], 0, config['fiber']['birefseed'])
|
||||
c_params = pypho.cfiber.ParamsWrapper.from_fiber(py_fiber)
|
||||
if config['fiber']['birefsteps'] > 0:
|
||||
config['fiber']['birefseed'] = config['fiber'].get('birefseed', (int(time.time()*1000))%2**32)
|
||||
py_fiber.birefarray = pypho.birefringence_segment.create_pmd_fibre(py_fiber.l, py_fiber.l/config['fiber']['birefsteps'], 0, config['fiber']['birefseed'])
|
||||
c_params = pypho.cfiber.ParamsWrapper.from_fiber(py_fiber, max_step=1e3)
|
||||
c_fiber = pypho.cfiber.FiberWrapper(c_data, c_params, c_glova)
|
||||
|
||||
return c_fiber, c_data
|
||||
@@ -143,14 +215,17 @@ def save_data(data, config):
|
||||
f"D = {config['fiber']['d']}",
|
||||
f"S = {config['fiber']['s']}",
|
||||
f"birefsteps = {config['fiber']['birefsteps']}",
|
||||
f"birefseed = {config['fiber']['birefseed']}",
|
||||
f"birefseed = {config['fiber'].get('birefseed', 'not set')}",
|
||||
"",
|
||||
"[signal]",
|
||||
f'modulation = "{config['signal']['modulation']}"',
|
||||
f"mod_order = {config['signal']['mod_order']}",
|
||||
f"seed = {config['signal']['seed']}",
|
||||
f"mod_depth = {config['signal']['mod_depth']}",
|
||||
f"seed = {config['signal'].get('seed', 'not set')}",
|
||||
f'pulse_shape = "{config["signal"]["pulse_shape"]}"',
|
||||
f"fwhm = {config['signal']['fwhm']}",
|
||||
f"max_jitter = {config['signal']['max_jitter']}",
|
||||
f"jitter_seed = {config['signal'].get('jitter_seed', 'not set')}",
|
||||
"",
|
||||
"[script]",
|
||||
f'data_dir = "{config["script"]["data_dir"]}"',
|
||||
@@ -180,37 +255,65 @@ def save_data(data, config):
|
||||
print("Saved config to", data_dir / lookup_file)
|
||||
print("Saved data to", save_dir / f"{config_hash}.npy")
|
||||
|
||||
|
||||
def length_loop(config):
|
||||
# loop over lengths
|
||||
# lengths = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000]
|
||||
ranges = [1, 10, 100, 1000, 10000, 100000]
|
||||
lengths = [list(range(length_range,10*length_range, length_range)) for length_range in ranges]
|
||||
lengths = [length for length_range in lengths for length in length_range]
|
||||
|
||||
lengths = sorted(lengths)
|
||||
input_override = None
|
||||
for lind, length in enumerate(lengths):
|
||||
# print(f"\nGenerating data for fiber length {length}")
|
||||
if lind > 0:
|
||||
# set the length to the difference between the current and previous length -> incremental
|
||||
length = lengths[lind] - lengths[lind-1]
|
||||
print(f"\nGenerating data for fiber length {lengths[lind]}m -> {length}m")
|
||||
config['fiber']['length'] = length
|
||||
# set the input data to the output data of the previous run
|
||||
cfiber, cdata = initialize_fiber_and_data(config, input_data_override=input_override)
|
||||
|
||||
if lind == 0:
|
||||
cdata_orig = cdata
|
||||
|
||||
energy_in = np.sum(np.abs(cdata.E_in[0])**2 + np.abs(cdata.E_in[1])**2)/(cfiber.glova.symbolrate*cfiber.glova.sps)
|
||||
print(f"Energy in: {energy_in} J")
|
||||
|
||||
cfiber()
|
||||
|
||||
energy_out = np.sum(np.abs(cdata.E_out[0])**2 + np.abs(cdata.E_out[1])**2)/(cfiber.glova.symbolrate*cfiber.glova.sps)
|
||||
print(f"Energy out: {energy_out} J")
|
||||
|
||||
input_override = cdata.E_out
|
||||
cdata.E_in = cdata_orig.E_in
|
||||
config['fiber']['length'] = lengths[lind]
|
||||
save_data(cdata, config)
|
||||
|
||||
if __name__ == "__main__":
|
||||
config = get_config()
|
||||
|
||||
# loop over lengths
|
||||
# lengths = [1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000]
|
||||
lengths = [1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000]
|
||||
lengths = sorted(lengths)
|
||||
input_override = None
|
||||
for lind, length in enumerate(lengths):
|
||||
print(f"\nGenerating data for fiber length {length}")
|
||||
# if lind > 0:
|
||||
# # set the length to the difference between the current and previous length -> incremental
|
||||
# length = lengths[lind] - lengths[lind-1]
|
||||
# print(f"\nGenerating data for fiber length {lengths[lind]}m -> {length}m")
|
||||
config['fiber']['length'] = length
|
||||
# set the input data to the output data of the previous run
|
||||
cfiber, cdata = initialize_fiber_and_data(config, input_data_override=input_override)
|
||||
cfiber()
|
||||
# input_override = cdata.E_out
|
||||
save_data(cdata, config)
|
||||
length_loop(config)
|
||||
|
||||
# cfiber, cdata = initialize_fiber_and_data(config)
|
||||
# cfiber()
|
||||
|
||||
# energy_in = np.sum(np.abs(cdata.E_in[0])**2 + np.abs(cdata.E_in[1])**2)/(cfiber.glova.symbolrate*cfiber.glova.sps)
|
||||
# energy_out = np.sum(np.abs(cdata.E_out[0])**2 + np.abs(cdata.E_out[1])**2)/(cfiber.glova.symbolrate*cfiber.glova.sps)
|
||||
# print(f"Energy in: {energy_in} J")
|
||||
# print(f"Energy out: {energy_out} J")
|
||||
# save_data(cdata, config)
|
||||
|
||||
# fig, axs = plt.subplots(2, 2, sharex=True, sharey=True)
|
||||
# fig, axs = plt.subplots(2, 1, sharex=True, sharey=True)
|
||||
# xax = np.linspace(0, cfiber.glova.nos, cfiber.glova.nos*cfiber.glova.sps)-0.5
|
||||
# axs[0,0].plot(xax,np.abs(cdata.E_in[0]))
|
||||
# axs[1,0].plot(xax,np.abs(cdata.E_in[1]))
|
||||
# axs[0,1].plot(xax,np.abs(cdata.E_out[0]))
|
||||
# axs[1,1].plot(xax,np.abs(cdata.E_out[1]))
|
||||
# axs[0].plot(xax,np.abs(cdata.E_in[0])**2)
|
||||
# axs[0].plot(xax,np.abs(cdata.E_out[0])**2)
|
||||
# axs[0].set_title("x")
|
||||
# axs[0].grid()
|
||||
|
||||
# axs[1].plot(xax,np.abs(cdata.E_in[1])**2)
|
||||
# axs[1].plot(xax,np.abs(cdata.E_out[1])**2)
|
||||
# axs[1].set_title("y")
|
||||
# axs[1].grid()
|
||||
|
||||
# plt.show()
|
||||
|
||||
@@ -11,8 +11,8 @@ flags = "FFTW_PATIENT"
|
||||
nthreads = 32
|
||||
|
||||
[fiber]
|
||||
length = 1000
|
||||
gamma = 1.14
|
||||
length = 100000
|
||||
gamma = 0
|
||||
alpha = 0.2
|
||||
D = 17
|
||||
; 1700 ps/nm/km @ 1 km length is equivalent to 17 ps/nm/km @ 100 km length but the simulation is way faster
|
||||
@@ -23,9 +23,13 @@ birefsteps = 0
|
||||
[signal]
|
||||
modulation = "pam"
|
||||
mod_order = 4
|
||||
; seed = 0xC0FFEE
|
||||
pulse_shape = "gauss_rz"
|
||||
mod_depth = 1
|
||||
laser_power = 0
|
||||
seed = 0xC0FFEE
|
||||
pulse_shape = "gauss"
|
||||
fwhm = 0.33
|
||||
max_jitter=0.02
|
||||
; jitter_seed = 0xC0FFEE
|
||||
|
||||
[script]
|
||||
data_dir = "/home/suppl/.pypho/data"
|
||||
Reference in New Issue
Block a user