add regenerator class and update dataset configurations for model training

This commit is contained in:
Joseph Hopfmüller
2024-12-05 23:55:03 +01:00
parent 884d9f73c9
commit 0e29b87395
7 changed files with 82705 additions and 353 deletions

View File

@@ -1,7 +1,16 @@
import copy
from datetime import datetime
from pathlib import Path
import random
from typing import Literal
import matplotlib
from matplotlib.colors import LinearSegmentedColormap
import torch.nn.utils.parametrize
try:
matplotlib.use("cairo")
except ImportError:
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import numpy as np
@@ -11,7 +20,7 @@ import optuna
import warnings
import torch
import torch.nn as nn
# import torch.nn as nn
# import torch.nn.functional as F # mse_loss doesn't support complex numbers
import torch.optim as optim
@@ -19,27 +28,9 @@ import torch.utils.data
from torch.utils.tensorboard import SummaryWriter
# from rich.progress import (
# Progress,
# TextColumn,
# BarColumn,
# TaskProgressColumn,
# TimeRemainingColumn,
# MofNCompleteColumn,
# TimeElapsedColumn,
# )
# from rich.console import Console
# from rich import print as rprint
import multiprocessing
from util.datasets import FiberRegenerationDataset
# from util.optuna_helpers import (
# suggest_categorical_optional, # noqa: F401
# suggest_float_optional, # noqa: F401
# suggest_int_optional, # noqa: F401
# )
from util.optuna_helpers import install_optional_suggests
import util
@@ -65,7 +56,6 @@ class HyperTraining:
model_settings,
optimizer_settings,
optuna_settings,
# console=None,
):
self.global_settings: GlobalSettings = global_settings
self.data_settings: DataSettings = data_settings
@@ -75,11 +65,8 @@ class HyperTraining:
self.optuna_settings: OptunaSettings = optuna_settings
self.processes = None
# self.console = console or Console()
# set some extra settings to make the code more readable
self._extra_optuna_settings()
self.stop_study = True
self.stop_study = False
def setup_tb_writer(self, study_name=None, append=None):
log_dir = self.pytorch_settings.summary_dir + "/" + (study_name or self.optuna_settings.study_name)
@@ -229,7 +216,7 @@ class HyperTraining:
self.optuna_settings._parallel = self.optuna_settings._n_threads > 1
def define_model(self, trial: optuna.Trial, writer=None):
n_layers = trial.suggest_int_optional("model_n_hidden_layers", self.model_settings.n_hidden_layers)
n_hidden_layers = trial.suggest_int_optional("model_n_hidden_layers", self.model_settings.n_hidden_layers)
input_dim = trial.suggest_int_optional(
"model_input_dim",
@@ -245,32 +232,41 @@ class HyperTraining:
dtype = getattr(torch, dtype)
afunc = trial.suggest_categorical_optional("model_activation_func", self.model_settings.model_activation_func)
# T0 = trial.suggest_float_optional("T0", self.model_settings.satabsT0 , log=True)
afunc = getattr(util.complexNN, afunc)
layer_func = trial.suggest_categorical_optional("model_layer_function", self.model_settings.model_layer_function)
layer_func = getattr(util.complexNN, layer_func)
layer_parametrizations = self.model_settings.model_layer_parametrizations
layers = []
last_dim = input_dim
n_nodes = last_dim
for i in range(n_layers):
scale_layers = trial.suggest_categorical_optional("model_enable_scale_layers", self.model_settings.scale)
hidden_dims = []
for i in range(n_hidden_layers):
if hidden_dim_override := self.model_settings.overrides.get(f"n_hidden_nodes_{i}", False):
hidden_dim = trial.suggest_int_optional(f"model_hidden_dim_{i}", hidden_dim_override)
hidden_dims.append(trial.suggest_int_optional(f"model_hidden_dim_{i}", hidden_dim_override))
else:
hidden_dim = trial.suggest_int_optional(
hidden_dims.append(trial.suggest_int_optional(
f"model_hidden_dim_{i}",
self.model_settings.n_hidden_nodes,
)
layers.append(util.complexNN.ONNRect(last_dim, hidden_dim, dtype=dtype))
last_dim = hidden_dim
layers.append(getattr(util.complexNN, afunc)())
n_nodes += last_dim
layers.append(util.complexNN.ONNRect(last_dim, self.model_settings.output_dim, dtype=dtype))
model = nn.Sequential(*layers)
))
model_kwargs = {
"dims": (input_dim, *hidden_dims, self.model_settings.output_dim),
"layer_function": layer_func,
"layer_parametrizations": layer_parametrizations,
"activation_function": afunc,
"dtype": dtype,
"droupout_prob": self.model_settings.dropout_prob,
"scale": scale_layers,
}
model = util.complexNN.regenerator(**model_kwargs)
n_nodes = sum(hidden_dims)
if writer is not None:
writer.add_graph(model, torch.zeros(1, input_dim, dtype=dtype), use_strict_trace=False)
n_params = sum(p.numel() for p in model.parameters())
n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
trial.set_user_attr("model_n_params", n_params)
trial.set_user_attr("model_n_nodes", n_nodes)
@@ -384,7 +380,8 @@ class HyperTraining:
running_loss2 = 0.0
running_loss = 0.0
model.train()
for batch_idx, (x, y) in enumerate(train_loader):
loader_len = len(train_loader)
for batch_idx, (x, y, _) in enumerate(train_loader):
if batch_idx >= self.optuna_settings._n_train_batches:
break
model.zero_grad(set_to_none=True)
@@ -408,14 +405,14 @@ class HyperTraining:
writer.add_scalar(
"training loss",
running_loss2 / (self.pytorch_settings.write_every if batch_idx > 0 else 1),
epoch * min(len(train_loader), self.optuna_settings._n_train_batches) + batch_idx,
epoch * min(loader_len, self.optuna_settings._n_train_batches) + batch_idx,
)
running_loss2 = 0.0
# if enable_progress:
# progress.stop()
return running_loss / min(len(train_loader), self.optuna_settings._n_train_batches)
return running_loss / min(loader_len, self.optuna_settings._n_train_batches)
def eval_model(
self,
@@ -446,9 +443,8 @@ class HyperTraining:
model.eval()
running_error = 0
running_error_2 = 0
with torch.no_grad():
for batch_idx, (x, y) in enumerate(valid_loader):
for batch_idx, (x, y, _) in enumerate(valid_loader):
if batch_idx >= self.optuna_settings._n_valid_batches:
break
x, y = (
@@ -459,19 +455,6 @@ class HyperTraining:
error = util.complexNN.complex_mse_loss(y_pred, y)
error_value = error.item()
running_error += error_value
running_error_2 += error_value
# if enable_progress:
# progress.update(task, advance=1, description=f"{error_value:.3e}")
if writer is not None:
if batch_idx % self.pytorch_settings.write_every == 0:
writer.add_scalar(
"eval loss",
running_error_2 / (self.pytorch_settings.write_every if batch_idx > 0 else 1),
epoch * min(len(valid_loader), self.optuna_settings._n_valid_batches) + batch_idx,
)
running_error_2 = 0.0
running_error /= min(len(valid_loader), self.optuna_settings._n_valid_batches)
@@ -488,38 +471,73 @@ class HyperTraining:
),
epoch + 1,
)
writer.add_figure(
"eye diagram",
self.plot_model_response(
trial,
model=self.model,
title_append=title_append,
subtitle=subtitle,
show=False,
mode="eye",
),
epoch + 1,
)
writer.add_figure(
"powers",
self.plot_model_response(
trial,
model=self.model,
title_append=title_append,
subtitle=subtitle,
mode="powers",
show=False,
),
epoch + 1,
)
# if enable_progress:
# progress.stop()
return running_error
def run_model(self, model, loader):
def run_model(self, model, loader, trace_powers=False):
model.eval()
xs = []
ys = []
y_preds = []
fiber_out = []
fiber_in = []
regen = []
timestamps = []
with torch.no_grad():
model = model.to(self.pytorch_settings.device)
for x, y in loader:
for x, y, timestamp in loader:
x, y = (
x.to(self.pytorch_settings.device),
y.to(self.pytorch_settings.device),
)
y_pred = model(x).cpu()
if trace_powers:
y_pred, powers = model(x, trace_powers).cpu()
else:
y_pred = model(x, trace_powers).cpu()
# x = x.cpu()
# y = y.cpu()
y_pred = y_pred.view(y_pred.shape[0], -1, 2)
y = y.view(y.shape[0], -1, 2)
x = x.view(x.shape[0], -1, 2)
xs.append(x[:, 0, :].squeeze())
ys.append(y.squeeze())
y_preds.append(y_pred.squeeze())
# timestamp = timestamp.view(-1, 1)
fiber_out.append(x[:, x.shape[1] // 2, :].squeeze())
fiber_in.append(y.squeeze())
regen.append(y_pred.squeeze())
timestamps.append(timestamp.squeeze())
xs = torch.vstack(xs).cpu()
ys = torch.vstack(ys).cpu()
y_preds = torch.vstack(y_preds).cpu()
return ys, xs, y_preds
fiber_out = torch.vstack(fiber_out).cpu()
fiber_in = torch.vstack(fiber_in).cpu()
regen = torch.vstack(regen).cpu()
timestamps = torch.concat(timestamps).cpu()
if trace_powers:
return fiber_in, fiber_out, regen, timestamps, powers
return fiber_in, fiber_out, regen, timestamps
def objective(self, trial: optuna.Trial, plot_before=False):
if self.stop_study:
@@ -544,7 +562,32 @@ class HyperTraining:
model=model,
title_append=title_append,
subtitle=subtitle,
show=plot_before,
show=False,
),
0,
)
writer.add_figure(
"eye diagram",
self.plot_model_response(
trial,
model=self.model,
title_append=title_append,
subtitle=subtitle,
mode="eye",
show=False,
),
0,
)
writer.add_figure(
"powers",
self.plot_model_response(
trial,
model=self.model,
title_append=title_append,
subtitle=subtitle,
mode="powers",
show=False,
),
0,
)
@@ -609,7 +652,9 @@ class HyperTraining:
return error
def _plot_model_response_eye(self, *signals, labels=None, sps=None, title_append="", subtitle="", show=True):
def _plot_model_response_eye(
self, *signals, timestamps, labels=None, sps=None, title_append="", subtitle="", show=True
):
if sps is None:
raise ValueError("sps must be provided")
if not hasattr(labels, "__iter__") or isinstance(labels, (str, type(None))):
@@ -624,27 +669,84 @@ class HyperTraining:
if not any(labels):
labels = [f"signal {i + 1}" for i in range(len(signals))]
fig, axs = plt.subplots(2, len(signals), sharex=True, sharey=True)
x_bins = np.linspace(0, 2, 2 * sps, endpoint=False)
y_bins = np.zeros((2 * len(signals), 1000))
eye_data = np.zeros((2 * len(signals), 1000, 2 * sps))
# signals = [signal.cpu().numpy() for signal in signals]
for i in range(len(signals) * 2):
eye_signal = signals[i // 2][:, i % 2] # x, y, x, y, ...
eye_signal = np.real(np.square(np.abs(eye_signal)))
data_min = np.min(eye_signal)
data_max = np.max(eye_signal)
y_bins[i] = np.linspace(data_min, data_max, 1000, endpoint=False)
for j in range(len(timestamps)):
t = timestamps[j] / sps
val = eye_signal[j]
x = np.digitize(t % 2, x_bins) - 1
y = np.digitize(val, y_bins[i]) - 1
eye_data[i][y][x] += 1
cmap = LinearSegmentedColormap.from_list(
"eyemap",
[
(0, "white"),
(0.001, "dodgerblue"),
(0.1, "blue"),
(0.2, "cyan"),
(0.5, "lime"),
(0.8, "gold"),
(1, "red"),
],
)
# ordering = np.argsort(timestamps)
# signals = [signal[ordering] for signal in signals]
# timestamps = timestamps[ordering]
fig, axs = plt.subplots(1, 2 * len(signals), sharex=True, sharey=True)
fig.set_figwidth(18)
fig.suptitle(f"Eye diagram{f' {title_append}' if title_append else ''}{f'\n{subtitle}' if subtitle else ''}")
xaxis = np.linspace(0, 2, 2 * sps, endpoint=False)
for j, (label, signal) in enumerate(zip(labels, signals)):
# xaxis = timestamps / sps
# xaxis = np.arange(2 * sps) / sps
for j, label in enumerate(labels):
x = eye_data[2 * j]
y = eye_data[2 * j + 1]
# x, y = signal.T
# signal = signal.cpu().numpy()
for i in range(len(signal) // sps - 1):
x, y = signal[i * sps : (i + 2) * sps].T
axs[0, j].plot(xaxis, np.abs(x) ** 2, color="C0", alpha=0.02)
axs[1, j].plot(xaxis, np.abs(y) ** 2, color="C0", alpha=0.02)
axs[0, j].set_title(label + " x")
axs[1, j].set_title(label + " y")
axs[0, j].set_xlabel("Symbol")
axs[1, j].set_xlabel("Symbol")
axs[0, j].set_ylabel("normalized power")
axs[1, j].set_ylabel("normalized power")
# for i in range(len(signal) // sps - 1):
# x, y = signal[i * sps : (i + 2) * sps].T
# axs[0 + 2 * j].scatter((timestamps/sps) % 2, np.abs(x) ** 2, color=f"C{j}", alpha=1 / (len(signal) // sps) * 10, s=1)
# axs[1 + 2 * j].scatter((timestamps/sps) % 2, np.abs(y) ** 2, color=f"C{j}", alpha=1 / (len(signal) // sps) * 10, s=1)
axs[0 + 2 * j].imshow(
x, aspect="auto", cmap=cmap, origin="lower", extent=[0, 2, y_bins[2 * j][0], y_bins[2 * j][-1]]
)
axs[1 + 2 * j].imshow(
y, aspect="auto", cmap=cmap, origin="lower", extent=[0, 2, y_bins[2 * j + 1][0], y_bins[2 * j + 1][-1]]
)
axs[0 + 2 * j].set_xlim((x_bins[0], x_bins[-1]))
axs[1 + 2 * j].set_xlim((x_bins[0], x_bins[-1]))
ymin = np.min(y_bins[:, 0])
ymax = np.max(y_bins[:, -1])
ydiff = ymax - ymin
axs[0 + 2 * j].set_ylim((ymin - 0.05 * ydiff, ymax + 0.05 * ydiff))
axs[1 + 2 * j].set_ylim((ymin - 0.05 * ydiff, ymax + 0.05 * ydiff))
axs[0 + 2 * j].set_title(label + " x")
axs[1 + 2 * j].set_title(label + " y")
axs[0 + 2 * j].set_xlabel("Symbol")
axs[1 + 2 * j].set_xlabel("Symbol")
axs[0 + 2 * j].set_box_aspect(1)
axs[1 + 2 * j].set_box_aspect(1)
axs[0].set_ylabel("normalized power")
fig.tight_layout()
# axs[1+2*len(labels)-1].set_ylabel("normalized power")
if show:
plt.show()
return fig
def _plot_model_response_head(self, *signals, labels=None, sps=None, title_append="", subtitle="", show=True):
def _plot_model_response_head(
self, *signals, timestamps, labels=None, sps=None, title_append="", subtitle="", show=True
):
if not hasattr(labels, "__iter__") or isinstance(labels, (str, type(None))):
labels = [labels]
else:
@@ -657,19 +759,31 @@ class HyperTraining:
if not any(labels):
labels = [f"signal {i + 1}" for i in range(len(signals))]
ordering = np.argsort(timestamps)
signals = [signal[ordering] for signal in signals]
timestamps = timestamps[ordering]
fig, axs = plt.subplots(1, 2, sharex=True, sharey=True)
fig.set_size_inches(18, 6)
fig.set_figwidth(18)
fig.set_figheight(4)
fig.suptitle(f"Fiber response{f' {title_append}' if title_append else ''}{f'\n{subtitle}' if subtitle else ''}")
for i, ax in enumerate(axs):
ax: plt.Axes
for signal, label in zip(signals, labels):
if sps is not None:
xaxis = np.linspace(0, len(signal) / sps, len(signal), endpoint=False)
xaxis = timestamps / sps
else:
xaxis = np.arange(len(signal))
xaxis = timestamps
ax.plot(xaxis, np.abs(signal[:, i]) ** 2, label=label)
ax.set_xlabel("Sample" if sps is None else "Symbol")
ax.set_ylabel("normalized power")
ax.minorticks_on()
ax.tick_params(axis="y", which="minor", left=False, right=False)
ax.grid(which="major", axis="x")
ax.grid(which="minor", axis="x", linestyle=":")
ax.grid(which="major", axis="y")
ax.legend(loc="upper right")
fig.tight_layout()
if show:
plt.show()
return fig
@@ -680,22 +794,52 @@ class HyperTraining:
model=None,
title_append="",
subtitle="",
mode: Literal["eye", "head"] = "head",
show=True,
mode: Literal["eye", "head", "powers"] = "head",
show=False,
):
if mode == "powers":
input_data = torch.ones(
1, 2 * self.data_settings.output_size, dtype=getattr(torch, self.data_settings.dtype)
).to(self.pytorch_settings.device)
model = model.to(self.pytorch_settings.device)
model.eval()
with torch.no_grad():
_, powers = model(input_data, trace_powers=True)
powers = [power.item() for power in powers]
layer_names = ["input", *[str(x).split("(")[0] for x in model._layers._modules.values()]]
# remove dropout layers
mask = [1 if "Dropout" not in layer_name else 0 for layer_name in layer_names]
layer_names = [layer_name for layer_name, m in zip(layer_names, mask) if m]
powers = [power for power, m in zip(powers, mask) if m]
fig = self._plot_model_response_powers(
powers, layer_names, title_append=title_append, subtitle=subtitle, show=show
)
return fig
data_settings_backup = copy.deepcopy(self.data_settings)
pytorch_settings_backup = copy.deepcopy(self.pytorch_settings)
self.data_settings.drop_first = 100*128
self.data_settings.drop_first = 99.5 + random.randint(0, 1000)
self.data_settings.shuffle = False
self.data_settings.train_split = 1.0
self.pytorch_settings.batchsize = (
self.pytorch_settings.eye_symbols if mode == "eye" else self.pytorch_settings.head_symbols
)
plot_loader, _ = self.get_sliced_data(trial, override={"num_symbols": self.pytorch_settings.batchsize})
config_path = random.choice(self.data_settings.config_path) if isinstance(self.data_settings.config_path, (list, tuple)) else self.data_settings.config_path
fiber_length = int(float(str(config_path).split('-')[-7])/1000)
plot_loader, _ = self.get_sliced_data(
trial,
override={
"num_symbols": self.pytorch_settings.batchsize,
"config_path": config_path,
}
)
self.data_settings = data_settings_backup
self.pytorch_settings = pytorch_settings_backup
fiber_in, fiber_out, regen = self.run_model(model, plot_loader)
fiber_in, fiber_out, regen, timestamps = self.run_model(model, plot_loader)
fiber_in = fiber_in.view(-1, 2)
fiber_out = fiber_out.view(-1, 2)
regen = regen.view(-1, 2)
@@ -703,6 +847,7 @@ class HyperTraining:
fiber_in = fiber_in.numpy()
fiber_out = fiber_out.numpy()
regen = regen.numpy()
timestamps = timestamps.numpy()
# https://github.com/matplotlib/matplotlib/issues/27713#issue-2104110987
# https://github.com/matplotlib/matplotlib/issues/27713#issuecomment-1915497463
@@ -713,9 +858,10 @@ class HyperTraining:
fiber_in,
fiber_out,
regen,
timestamps=timestamps,
labels=("fiber in", "fiber out", "regen"),
sps=plot_loader.dataset.samples_per_symbol,
title_append=title_append,
title_append=title_append + f" ({fiber_length} km)",
subtitle=subtitle,
show=show,
)
@@ -725,9 +871,10 @@ class HyperTraining:
fiber_in,
fiber_out,
regen,
timestamps=timestamps,
labels=("fiber in", "fiber out", "regen"),
sps=plot_loader.dataset.samples_per_symbol,
title_append=title_append,
title_append=title_append + f" ({fiber_length} km)",
subtitle=subtitle,
show=show,
)
@@ -739,7 +886,7 @@ class HyperTraining:
@staticmethod
def build_title(trial: optuna.trial.Trial):
title_append = f"for trial {trial.number}"
title_append = f"at epoch {trial.user_attrs.get("epoch", -1)} for trial {trial.number}"
model_n_hidden_layers = util.misc.multi_getattr((trial.params, trial.user_attrs), "model_n_hidden_layers", 0)
input_dim = util.misc.multi_getattr((trial.params, trial.user_attrs), "model_input_dim", 0)
model_dims = [

View File

@@ -16,7 +16,7 @@ import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
# import torch.nn as nn
# import torch.nn.functional as F # mse_loss doesn't support complex numbers
import torch.optim as optim
@@ -47,88 +47,6 @@ from .settings import (
)
class regenerator(nn.Module):
def __init__(
self,
*dims,
layer_function=util.complexNN.ONN,
layer_kwargs: dict | None = None,
layer_parametrizations: list[dict] = None,
# [
# {
# "tensor_name": "weight",
# "parametrization": util.complexNN.Unitary,
# },
# {
# "tensor_name": "scale",
# "parametrization": util.complexNN.Clamp,
# },
# ],
activation_function=util.complexNN.Pow,
dtype=torch.float64,
dropout_prob=0.01,
scale=False,
**kwargs,
):
super(regenerator, self).__init__()
if len(dims) == 0:
try:
dims = kwargs["dims"]
except KeyError:
raise ValueError("dims must be provided")
self._n_hidden_layers = len(dims) - 2
self._layers = nn.Sequential()
if layer_kwargs is None:
layer_kwargs = {}
# self.powers = []
for i in range(self._n_hidden_layers + 1):
if scale:
self._layers.append(util.complexNN.Scale(dims[i]))
self._layers.append(layer_function(dims[i], dims[i + 1], dtype=dtype, **layer_kwargs))
if i < self._n_hidden_layers:
if dropout_prob is not None:
self._layers.append(util.complexNN.DropoutComplex(p=dropout_prob))
self._layers.append(activation_function(bias=True, size=dims[i + 1]))
self._layers.append(util.complexNN.Scale(dims[-1]))
# add parametrizations
if layer_parametrizations is not None:
for layer in self._layers:
for layer_parametrization in layer_parametrizations:
tensor_name = layer_parametrization.get("tensor_name", None)
parametrization = layer_parametrization.get("parametrization", None)
param_kwargs = layer_parametrization.get("kwargs", {})
if tensor_name is not None and tensor_name in layer._parameters and parametrization is not None:
parametrization(layer, tensor_name, **param_kwargs)
# def __call__(self, input_x, **kwargs):
# return self.forward(input_x, **kwargs)
def forward(self, input_x, trace_powers=False):
x = input_x
if trace_powers:
powers = [x.abs().square().sum()]
# check if tracing
if torch.jit.is_tracing():
for layer in self._layers:
x = layer(x)
if trace_powers:
powers.append(x.abs().square().sum())
else:
# with torch.nn.utils.parametrize.cached():
for layer in self._layers:
x = layer(x)
if trace_powers:
powers.append(x.abs().square().sum())
if trace_powers:
return x, powers
return x
def traverse_dict_update(target, source):
for k, v in source.items():
if isinstance(v, dict):
@@ -164,7 +82,7 @@ class Trainer:
ModelSettings,
OptimizerSettings,
PytorchSettings,
regenerator,
util.complexNN.regenerator,
torch.nn.utils.parametrizations.orthogonal,
])
if self.resume:
@@ -264,7 +182,7 @@ class Trainer:
dtype = self.model_kwargs["dtype"]
# dims = self.model_kwargs.pop("dims")
self.model = regenerator(**self.model_kwargs)
self.model = util.complexNN.regenerator(**self.model_kwargs)
if self.writer is not None:
self.writer.add_graph(self.model, torch.zeros(1, input_dim, dtype=dtype))
@@ -364,7 +282,7 @@ class Trainer:
task = progress.add_task("-.---e--", total=len(train_loader))
progress.start()
# running_loss2 = 0.0
running_loss2 = 0.0
running_loss = 0.0
self.model.train()
loader_len = len(train_loader)
@@ -379,23 +297,24 @@ class Trainer:
loss_value = loss.item()
loss.backward()
optimizer.step()
# running_loss2 += loss_value
running_loss2 += loss_value
running_loss += loss_value
if enable_progress:
progress.update(task, advance=1, description=f"{running_loss/(batch_idx+1):.3e}")
progress.update(task, advance=1, description=f"{loss_value:.3e}")
if batch_idx % self.pytorch_settings.write_every == 0:
self.writer.add_scalar(
"training loss",
running_loss / (batch_idx + 1),
epoch * loader_len + batch_idx,
running_loss2 / (self.pytorch_settings.write_every if batch_idx > 0 else 1),
epoch + batch_idx/loader_len,
)
running_loss2 = 0.0
if enable_progress:
progress.stop()
return running_loss / (batch_idx + 1)
return running_loss / len(train_loader)
def eval_model(self, valid_loader, epoch, enable_progress=True):
if enable_progress:
@@ -418,7 +337,7 @@ class Trainer:
self.model.eval()
running_error = 0
with torch.no_grad():
for batch_idx, (x, y, _) in enumerate(valid_loader):
for _, (x, y, _) in enumerate(valid_loader):
x, y = (
x.to(self.pytorch_settings.device),
y.to(self.pytorch_settings.device),
@@ -429,9 +348,9 @@ class Trainer:
running_error += error_value
if enable_progress:
progress.update(task, advance=1, description=f"{error_value/(batch_idx+1):.3e}")
progress.update(task, advance=1, description=f"{error_value:.3e}")
running_error /= (batch_idx+1)
running_error = running_error/len(valid_loader)
self.writer.add_scalar(
"eval loss",
@@ -858,7 +777,7 @@ class Trainer:
self.pytorch_settings.batchsize = (
self.pytorch_settings.eye_symbols if mode == "eye" else self.pytorch_settings.head_symbols
)
config_path = random.choice(self.data_settings.config_path)
config_path = random.choice(self.data_settings.config_path) if isinstance(self.data_settings.config_path, (list, tuple)) else self.data_settings.config_path
fiber_length = int(float(str(config_path).split('-')[-7])/1000)
plot_loader, _ = self.get_sliced_data(
override={

View File

@@ -1,3 +1,4 @@
from pathlib import Path
import matplotlib
import numpy as np
import torch
@@ -22,8 +23,8 @@ global_settings = GlobalSettings(
)
data_settings = DataSettings(
# config_path="data/*-128-16384-50000-0-0-17-0-PAM4-0.ini",
config_path=[f"data/*-128-16384-{length}-0-0-17-0-PAM4-0.ini" for length in (40000, 50000, 60000)],
config_path="data/20241204-13*-128-16384-100000-0-0-17-0-PAM4-0.ini",
# config_path=[f"data/20241202-*-128-16384-{length}-0-0-17-0-PAM4-0.ini" for length in range(48000, 53000, 1000)],
dtype="complex64",
# symbols = (9, 20), # 13 symbol @ 10GBd <-> 1.3ns <-> 0.26m of fiber
symbols=13, # study: single_core_regen_20241123_011232
@@ -52,8 +53,8 @@ model_settings = ModelSettings(
output_dim=2,
n_hidden_layers=4,
overrides={
"n_hidden_nodes_0": 4,
"n_hidden_nodes_1": 4,
"n_hidden_nodes_0": 8,
"n_hidden_nodes_1": 8,
"n_hidden_nodes_2": 4,
"n_hidden_nodes_3": 4,
},
@@ -61,7 +62,7 @@ model_settings = ModelSettings(
dropout_prob=0.01,
model_layer_function="ONNRect",
model_layer_kwargs={"square": True},
scale=True,
scale=False,
model_layer_parametrizations=[
{
"tensor_name": "weight",
@@ -113,7 +114,7 @@ model_settings = ModelSettings(
optimizer_settings = OptimizerSettings(
optimizer="AdamW",
optimizer_kwargs={
"lr": 0.05,
"lr": 0.01,
"amsgrad": True,
# "weight_decay": 1e-7,
},
@@ -142,8 +143,9 @@ def save_dict_to_file(dictionary, filename):
json.dump(dictionary, f, indent=4)
def sweep_lengths(*lengths, model=None):
def sweep_lengths(*lengths, model=None, data_glob:str=None, strategy="newest"):
assert model is not None, "Model must be provided."
assert data_glob is not None, "Data glob must be provided."
model = model
fiber_ins = {}
@@ -151,19 +153,31 @@ def sweep_lengths(*lengths, model=None):
regens = {}
timestampss = {}
for length in lengths:
trainer = Trainer(
trainer = Trainer(
checkpoint_path=model,
settings_override={
"data_settings": {
"config_path": f"data/*-128-16384-{length}-0-0-17-0-PAM4-0.ini",
"train_split": 1,
"shuffle": True,
}
},
)
trainer.define_model()
loader, _ = trainer.get_sliced_data()
trainer.define_model()
for length in lengths:
data_glob_length = data_glob.replace("{length}", str(length))
files = list(Path.cwd().glob(data_glob_length))
if len(files) == 0:
continue
if strategy == "newest":
sorted_kwargs = {
'key': lambda x: x.stat().st_mtime,
'reverse': True,
}
elif strategy == "oldest":
sorted_kwargs = {
'key': lambda x: x.stat().st_mtime,
'reverse': False,
}
else:
raise ValueError(f"Unknown strategy {strategy}.")
file = sorted(files, **sorted_kwargs)[0]
loader, _ = trainer.get_sliced_data(override={"config_path": file})
fiber_in, fiber_out, regen, timestamps = trainer.run_model(trainer.model, loader=loader)
fiber_ins[length] = fiber_in
@@ -171,17 +185,23 @@ def sweep_lengths(*lengths, model=None):
regens[length] = regen
timestampss[length] = timestamps
data = torch.zeros(2 * len(lengths), 2, fiber_out.shape[0])
channel_names = ["" for _ in range(2 * len(lengths))]
data = torch.zeros(2 * len(timestampss.keys()) + 2, 2, tuple(fiber_outs.values())[-1].shape[0])
channel_names = ["" for _ in range(2 * len(timestampss.keys())+2)]
for li, length in enumerate(lengths):
data[2 * li, 0, :] = timestampss[length] / 128
data[2 * li, 1, :] = regens[length][:, 0].abs().square()
data[2 * li + 1, 0, :] = timestampss[length] / 128
data[2 * li + 1, 1, :] = regens[length][:, 1].abs().square()
data[1, 0, :] = timestampss[tuple(timestampss.keys())[-1]] / 128
data[1, 1, :] = fiber_ins[tuple(timestampss.keys())[-1]][:, 0].abs().square()
channel_names[2 * li] = f"regen x {length}"
channel_names[2 * li + 1] = f"regen y {length}"
channel_names[1] = "fiber in x"
for li, length in enumerate(timestampss.keys()):
data[2+2 * li, 0, :] = timestampss[length] / 128
data[2+2 * li, 1, :] = fiber_outs[length][:, 0].abs().square()
data[2+2 * li + 1, 0, :] = timestampss[length] / 128
data[2+2 * li + 1, 1, :] = regens[length][:, 0].abs().square()
channel_names[2+2 * li+1] = f"regen x {length}"
channel_names[2+2 * li] = f"fiber out x {length}"
# get current backend
backend = matplotlib.get_backend()
@@ -189,28 +209,30 @@ def sweep_lengths(*lengths, model=None):
matplotlib.use("TkCairo")
eye = util.eye_diagram.eye_diagram(data.to(dtype=torch.float32).detach().cpu().numpy(), channel_names=channel_names)
print_attrs = ("channel", "success", "min_area")
print_attrs = ("channel_name", "success", "min_area")
with np.printoptions(precision=3, suppress=True, formatter={'float': '{:0.3e}'.format}):
for result in eye.eye_stats:
print_dict = {attr: result[attr] for attr in print_attrs}
rprint(print_dict)
rprint()
eye.plot()
eye.plot(all_stats=False)
matplotlib.use(backend)
if __name__ == "__main__":
# sweep_lengths(30000, 40000, 50000, 60000, 70000, model=".models/best_20241202_143149.tar")
lengths = range(90000, 100000+10000, 10000)
# lengths = [100000]
sweep_lengths(*lengths, model=".models/best_20241204_132605.tar", data_glob="data/202412*-{length}-*-0.ini", strategy="newest")
trainer = Trainer(
global_settings=global_settings,
data_settings=data_settings,
pytorch_settings=pytorch_settings,
model_settings=model_settings,
optimizer_settings=optimizer_settings,
# checkpoint_path=".models/best_20241202_143149.tar",
# 20241202_143149
)
trainer.train()
# trainer = Trainer(
# global_settings=global_settings,
# data_settings=data_settings,
# pytorch_settings=pytorch_settings,
# model_settings=model_settings,
# optimizer_settings=optimizer_settings,
# # checkpoint_path=".models/best_20241202_143149.tar",
# # 20241202_143149
# )
# trainer.train()

View File

@@ -39,7 +39,7 @@ import numpy as np
if __name__ == "__main__":
dataset = FiberRegenerationDataset("data/20241115-175517-128-16384-10000-0-0-17-0-PAM4-0.ini", symbols=13, drop_first=100, output_dim=26, num_symbols=100)
dataset = FiberRegenerationDataset("data/202412*-128-16384-50000-0-0-17-0-PAM4-0.ini", symbols=13, drop_first=100, output_dim=26, num_symbols=100)
loader = DataLoader(dataset, batch_size=10, shuffle=True)

View File

@@ -569,6 +569,78 @@ class ZReLU(nn.Module):
return x * (torch.angle(x) >= 0) * (torch.angle(x) <= torch.pi / 2)
else:
return torch.relu(x)
class regenerator(nn.Module):
def __init__(
self,
*dims,
layer_function=ONN,
layer_kwargs: dict | None = None,
layer_parametrizations: list[dict] = None,
activation_function=Pow,
dtype=torch.float64,
dropout_prob=0.01,
scale=False,
**kwargs,
):
super(regenerator, self).__init__()
if len(dims) == 0:
try:
dims = kwargs["dims"]
except KeyError:
raise ValueError("dims must be provided")
self._n_hidden_layers = len(dims) - 2
self._layers = nn.Sequential()
if layer_kwargs is None:
layer_kwargs = {}
# self.powers = []
for i in range(self._n_hidden_layers + 1):
if scale:
self._layers.append(Scale(dims[i]))
self._layers.append(layer_function(dims[i], dims[i + 1], dtype=dtype, **layer_kwargs))
if i < self._n_hidden_layers:
if dropout_prob is not None:
self._layers.append(DropoutComplex(p=dropout_prob))
self._layers.append(activation_function(bias=True, size=dims[i + 1]))
self._layers.append(Scale(dims[-1]))
# add parametrizations
if layer_parametrizations is not None:
for layer in self._layers:
for layer_parametrization in layer_parametrizations:
tensor_name = layer_parametrization.get("tensor_name", None)
parametrization = layer_parametrization.get("parametrization", None)
param_kwargs = layer_parametrization.get("kwargs", {})
if tensor_name is not None and tensor_name in layer._parameters and parametrization is not None:
parametrization(layer, tensor_name, **param_kwargs)
# def __call__(self, input_x, **kwargs):
# return self.forward(input_x, **kwargs)
def forward(self, input_x, trace_powers=False):
x = input_x
if trace_powers:
powers = [x.abs().square().sum()]
# check if tracing
if torch.jit.is_tracing():
for layer in self._layers:
x = layer(x)
if trace_powers:
powers.append(x.abs().square().sum())
else:
# with torch.nn.utils.parametrize.cached():
for layer in self._layers:
x = layer(x)
if trace_powers:
powers.append(x.abs().square().sum())
if trace_powers:
return x, powers
return x
__all__ = [

View File

@@ -3,6 +3,7 @@ from matplotlib.colors import LinearSegmentedColormap
import numpy as np
from scipy.cluster.vq import kmeans2
import warnings
import multiprocessing
from rich.traceback import install
from rich import pretty
@@ -67,7 +68,7 @@ def generate_wavelet(sps, oversample=3):
class eye_diagram:
def __init__(self, data, *, channel_names=None, horizontal_bins=256, vertical_bins=1000, n_levels=4):
def __init__(self, data, *, channel_names=None, horizontal_bins=256, vertical_bins=1000, n_levels=4, multithreaded=True):
# data has shape [channels, 2, samples]
# each sample has a timestamp and a value
if data.ndim == 2:
@@ -79,28 +80,38 @@ class eye_diagram:
self.eye_stats = [{"success": False} for _ in range(self.channels)]
self.horizontal_bins = horizontal_bins
self.vertical_bins = vertical_bins
self.multi_threaded = multithreaded
self.eye_built = False
self.analyse(self.n_levels)
self.analyse()
def generate_eye_data(self):
self.x_bins = np.linspace(0, 2, self.horizontal_bins, endpoint=False)
self.y_bins = np.zeros((self.channels, self.vertical_bins))
self.eye_data = np.zeros((self.channels, self.vertical_bins, self.horizontal_bins))
for i in range(self.channels):
data_min = np.min(self.raw_data[i, 1, :])
data_max = np.max(self.raw_data[i, 1, :])
self.y_bins[i] = np.linspace(data_min, data_max, self.vertical_bins, endpoint=False)
t_vals = self.raw_data[i, 0, :] % 2
val_vals = self.raw_data[i, 1, :]
x_indices = np.digitize(t_vals, self.x_bins) - 1
y_indices = np.digitize(val_vals, self.y_bins[i]) - 1
np.add.at(self.eye_data[i], (y_indices, x_indices), 1)
datas = [self.raw_data[i] for i in range(self.channels)]
if self.multi_threaded:
with multiprocessing.Pool() as pool:
results = pool.map(self.generate_eye_data_single, datas)
for i, result in enumerate(results):
self.eye_data[i], self.y_bins[i] = result
else:
for i, data in enumerate(datas):
self.eye_data[i], self.y_bins[i] = self.generate_eye_data_single(data)
self.eye_built = True
def generate_eye_data_single(self, data):
eye_data = np.zeros((self.vertical_bins, self.horizontal_bins))
data_min = np.min(data[1, :])
data_max = np.max(data[1, :])
y_bins = np.linspace(data_min, data_max, self.vertical_bins, endpoint=False)
t_vals = data[0, :] % 2
val_vals = data[1, :]
x_indices = np.digitize(t_vals, self.x_bins) - 1
y_indices = np.digitize(val_vals, y_bins) - 1
np.add.at(eye_data, (y_indices, x_indices), 1)
return eye_data, y_bins
def plot(self, title="Eye Diagram", stats=True, show=True):
def plot(self, title="Eye Diagram", stats=True, all_stats=True, show=True):
if not self.eye_built:
self.generate_eye_data()
cmap = LinearSegmentedColormap.from_list(
@@ -118,8 +129,10 @@ class eye_diagram:
ax = np.atleast_1d(ax).transpose().flatten()
for i in range(self.channels):
ax[i].set_title(self.channel_names[i] if self.channel_names is not None else f"Channel {i+1}")
ax[i].set_xlabel("Symbol")
ax[i].set_ylabel("Amplitude")
if (i+1) % rows == 0:
ax[i].set_xlabel("Symbol")
if i < rows:
ax[i].set_ylabel("Amplitude")
ax[i].grid()
ax[i].imshow(
self.eye_data[i],
@@ -134,67 +147,6 @@ class eye_diagram:
yspan = ymax - ymin
ax[i].set_ylim((ymin - 0.1 * yspan, ymax + 0.1 * yspan))
if stats and self.eye_stats[i]["success"]:
ax[i].plot([0, 2], [self.eye_stats[i]["levels"], self.eye_stats[i]["levels"]], "k--")
ax[i].set_yticks(self.eye_stats[i]["levels"])
# add arrows for amplitudes
for j in range(len(self.eye_stats[i]["amplitudes"])):
ax[i].annotate(
"",
xy=(0.05, self.eye_stats[i]["levels"][j]),
xytext=(0.05, self.eye_stats[i]["levels"][j + 1]),
arrowprops=dict(arrowstyle="<->", facecolor="black"),
)
ax[i].annotate(
f"{self.eye_stats[i]['amplitudes'][j]:.2e}",
xy=(0.06, (self.eye_stats[i]["levels"][j] + self.eye_stats[i]["levels"][j + 1]) / 2),
)
# add arrows for eye heights
for j in range(len(self.eye_stats[i]["heights"])):
try:
bot = np.max(self.eye_stats[i]["amplitude_clusters"][j])
top = np.min(self.eye_stats[i]["amplitude_clusters"][j + 1])
ax[i].annotate(
"",
xy=(self.eye_stats[i]["time_midpoint"], bot),
xytext=(self.eye_stats[i]["time_midpoint"], top),
arrowprops=dict(arrowstyle="<->", facecolor="black"),
)
ax[i].annotate(
f"{self.eye_stats[i]['heights'][j]:.2e}",
xy=(self.eye_stats[i]["time_midpoint"] + 0.015, (bot + top) / 2 + 0.04),
)
except (ValueError, IndexError):
pass
# add arrows for eye widths
for j in range(len(self.eye_stats[i]["widths"])):
try:
left = np.max(self.eye_stats[i]["time_clusters"][j][0])
right = np.min(self.eye_stats[i]["time_clusters"][j][1])
vertical = (self.eye_stats[i]["levels"][j] + self.eye_stats[i]["levels"][j + 1]) / 2
ax[i].annotate(
"",
xy=(left, vertical),
xytext=(right, vertical),
arrowprops=dict(arrowstyle="<->", facecolor="black"),
)
ax[i].annotate(
f"{self.eye_stats[i]['widths'][j]:.2e}",
xy=((left + right) / 2 - 0.15, vertical + 0.01),
)
except (ValueError, IndexError):
pass
# add area
for j in range(len(self.eye_stats[i]["areas"])):
horizontal = self.eye_stats[i]["time_midpoint"]
vertical = (self.eye_stats[i]["levels"][j] + self.eye_stats[i]["levels"][j + 1]) / 2
ax[i].annotate(
f"{self.eye_stats[i]['areas'][j]:.2e}",
xy=(horizontal + 0.035, vertical - 0.07),
)
# add min_area above the plot
ax[i].annotate(
f"Min Area: {self.eye_stats[i]['min_area']:.2e}",
@@ -202,62 +154,142 @@ class eye_diagram:
# xycoords="axes fraction",
ha="left",
va="center",
bbox=dict(facecolor="white", alpha=0.5, edgecolor="none"),
)
if all_stats:
ax[i].plot([0, 2], [self.eye_stats[i]["levels"], self.eye_stats[i]["levels"]], "k--")
ax[i].set_yticks(self.eye_stats[i]["levels"])
# add arrows for amplitudes
for j in range(len(self.eye_stats[i]["amplitudes"])):
ax[i].annotate(
"",
xy=(0.05, self.eye_stats[i]["levels"][j]),
xytext=(0.05, self.eye_stats[i]["levels"][j + 1]),
arrowprops=dict(arrowstyle="<->", facecolor="black"),
)
ax[i].annotate(
f"{self.eye_stats[i]['amplitudes'][j]:.2e}",
xy=(0.06, (self.eye_stats[i]["levels"][j] + self.eye_stats[i]["levels"][j + 1]) / 2),
bbox=dict(facecolor="white", alpha=0.5, edgecolor="none"),
)
# add arrows for eye heights
for j in range(len(self.eye_stats[i]["heights"])):
try:
bot = np.max(self.eye_stats[i]["amplitude_clusters"][j])
top = np.min(self.eye_stats[i]["amplitude_clusters"][j + 1])
ax[i].annotate(
"",
xy=(self.eye_stats[i]["time_midpoint"], bot),
xytext=(self.eye_stats[i]["time_midpoint"], top),
arrowprops=dict(arrowstyle="<->", facecolor="black"),
)
ax[i].annotate(
f"{self.eye_stats[i]['heights'][j]:.2e}",
xy=(self.eye_stats[i]["time_midpoint"] + 0.015, (bot + top) / 2 + 0.04),
bbox=dict(facecolor="white", alpha=0.5, edgecolor="none"),
)
except (ValueError, IndexError):
pass
# add arrows for eye widths
for j in range(len(self.eye_stats[i]["widths"])):
try:
left = np.max(self.eye_stats[i]["time_clusters"][j][0])
right = np.min(self.eye_stats[i]["time_clusters"][j][1])
vertical = (self.eye_stats[i]["levels"][j] + self.eye_stats[i]["levels"][j + 1]) / 2
ax[i].annotate(
"",
xy=(left, vertical),
xytext=(right, vertical),
arrowprops=dict(arrowstyle="<->", facecolor="black"),
)
ax[i].annotate(
f"{self.eye_stats[i]['widths'][j]:.2e}",
xy=((left + right) / 2 - 0.15, vertical + 0.01),
bbox=dict(facecolor="white", alpha=0.5, edgecolor="none"),
)
except (ValueError, IndexError):
pass
# add area
for j in range(len(self.eye_stats[i]["areas"])):
horizontal = self.eye_stats[i]["time_midpoint"]
vertical = (self.eye_stats[i]["levels"][j] + self.eye_stats[i]["levels"][j + 1]) / 2
ax[i].annotate(
f"{self.eye_stats[i]['areas'][j]:.2e}",
xy=(horizontal + 0.035, vertical - 0.07),
bbox=dict(facecolor="white", alpha=0.5, edgecolor="none"),
)
fig.tight_layout()
if show:
plt.show()
return fig
def analyse(self, n_levels=4):
def analyse_single(self, data, index):
warnings.filterwarnings("error")
for i in range(self.channels):
self.eye_stats[i]["channel"] = str(i+1) if self.channel_names is None else self.channel_names[i]
try:
approx_levels = eye_diagram.approximate_levels(self.raw_data[i], n_levels)
eye_stats = {}
eye_stats["channel_name"] = str(index+1) if self.channel_names is None else self.channel_names[index]
try:
approx_levels = eye_diagram.approximate_levels(data, self.n_levels)
time_bounds = eye_diagram.calculate_time_bounds(self.raw_data[i], approx_levels)
time_bounds = eye_diagram.calculate_time_bounds(data, approx_levels)
self.eye_stats[i]["time_midpoint"] = (time_bounds[0] + time_bounds[1]) / 2
eye_stats["time_midpoint"] = (time_bounds[0] + time_bounds[1]) / 2
self.eye_stats[i]["levels"], self.eye_stats[i]["amplitude_clusters"] = eye_diagram.calculate_levels(
self.raw_data[i], approx_levels, time_bounds
)
eye_stats["levels"], eye_stats["amplitude_clusters"] = eye_diagram.calculate_levels(
data, approx_levels, time_bounds
)
self.eye_stats[i]["amplitudes"] = np.diff(self.eye_stats[i]["levels"])
eye_stats["amplitudes"] = np.diff(eye_stats["levels"])
self.eye_stats[i]["heights"] = eye_diagram.calculate_eye_heights(
self.eye_stats[i]["amplitude_clusters"]
)
eye_stats["heights"] = eye_diagram.calculate_eye_heights(
eye_stats["amplitude_clusters"]
)
self.eye_stats[i]["widths"], self.eye_stats[i]["time_clusters"] = eye_diagram.calculate_eye_widths(
self.raw_data[i], self.eye_stats[i]["levels"]
)
eye_stats["widths"], eye_stats["time_clusters"] = eye_diagram.calculate_eye_widths(
data, eye_stats["levels"]
)
# # check if time clusters are valid (upper bound > time_midpoint > lower bound)
# # if not: raise ValueError
# for j in range(len(self.eye_stats[i]['time_clusters'])):
# if not (np.max(self.eye_stats[i]['time_clusters'][j][0]) < self.eye_stats[i]["time_midpoint"] < np.min(self.eye_stats[i]['time_clusters'][j][1])):
# raise ValueError
# # check if time clusters are valid (upper bound > time_midpoint > lower bound)
# # if not: raise ValueError
# for j in range(len(eye_stats['time_clusters'])):
# if not (np.max(eye_stats['time_clusters'][j][0]) < eye_stats["time_midpoint"] < np.min(eye_stats['time_clusters'][j][1])):
# raise ValueError
self.eye_stats[i]["areas"] = self.eye_stats[i]["heights"] * self.eye_stats[i]["widths"]
self.eye_stats[i]["mean_area"] = np.mean(self.eye_stats[i]["areas"])
self.eye_stats[i]["min_area"] = np.min(self.eye_stats[i]["areas"])
self.eye_stats[i]["success"] = True
except (RuntimeWarning, UserWarning, ValueError):
self.eye_stats[i]["success"] = False
self.eye_stats[i]["time_midpoint"] = 0
self.eye_stats[i]["levels"] = np.zeros(n_levels)
self.eye_stats[i]["amplitude_clusters"] = []
self.eye_stats[i]["amplitudes"] = np.zeros(n_levels - 1)
self.eye_stats[i]["heights"] = np.zeros(n_levels - 1)
self.eye_stats[i]["widths"] = np.zeros(n_levels - 1)
self.eye_stats[i]["areas"] = np.zeros(n_levels - 1)
self.eye_stats[i]["mean_area"] = 0
self.eye_stats[i]["min_area"] = 0
eye_stats["areas"] = eye_stats["heights"] * eye_stats["widths"]
eye_stats["mean_area"] = np.mean(eye_stats["areas"])
eye_stats["min_area"] = np.min(eye_stats["areas"])
eye_stats["success"] = True
except (RuntimeWarning, UserWarning, ValueError):
eye_stats["success"] = False
eye_stats["time_midpoint"] = 0
eye_stats["levels"] = np.zeros(self.n_levels)
eye_stats["amplitude_clusters"] = []
eye_stats["amplitudes"] = np.zeros(self.n_levels - 1)
eye_stats["heights"] = np.zeros(self.n_levels - 1)
eye_stats["widths"] = np.zeros(self.n_levels - 1)
eye_stats["areas"] = np.zeros(self.n_levels - 1)
eye_stats["mean_area"] = 0
eye_stats["min_area"] = 0
warnings.resetwarnings()
return eye_stats
def analyse(self):
self.eye_stats = []
if self.multi_threaded:
with multiprocessing.Pool() as pool:
results = pool.starmap(self.analyse_single, [(self.raw_data[i], i) for i in range(self.channels)])
for i, result in enumerate(results):
self.eye_stats.append(result)
else:
for i in range(self.channels):
self.eye_stats.append(self.analyse_single(self.raw_data[i], i))
@staticmethod
def approximate_levels(data, levels):

82160
src/visualization/viz.ipynb Normal file

File diff suppressed because it is too large Load Diff