signal generation working
This commit is contained in:
@@ -3,24 +3,20 @@ from datetime import datetime
|
||||
import hashlib
|
||||
from pathlib import Path
|
||||
import time
|
||||
from matplotlib import pyplot as plt
|
||||
import scipy
|
||||
from matplotlib import pyplot as plt # noqa: F401
|
||||
import numpy as np
|
||||
|
||||
from rich import inspect
|
||||
|
||||
import _path_fix # noqa: F401
|
||||
import pypho
|
||||
import io
|
||||
# import inspect
|
||||
|
||||
default_config = f"""
|
||||
[glova]
|
||||
sps = 256
|
||||
nos = 256
|
||||
sps = 256
|
||||
f0 = 193414489032258.06
|
||||
symbolrate = 10e9
|
||||
wisdom_dir = "{str((Path.home()/".pypho"))}"
|
||||
wisdom_dir = "{str((Path.home() / ".pypho"))}"
|
||||
flags = "FFTW_PATIENT"
|
||||
nthreads = 32
|
||||
|
||||
@@ -34,19 +30,26 @@ birefsteps = 1
|
||||
; birefseed = 0xC0FFEE
|
||||
|
||||
[signal]
|
||||
; seed = 0xC0FFEE
|
||||
|
||||
modulation = "pam"
|
||||
mod_order = 4
|
||||
mod_depth = 0.5
|
||||
laser_power = 0
|
||||
; seed = 0xC0FFEE
|
||||
pulse_shape = "gauss_rz"
|
||||
fwhm = 0.33
|
||||
mod_depth = 0.8
|
||||
|
||||
max_jitter = 0.02
|
||||
; jitter_seed = 0xC0FFEE
|
||||
|
||||
[script]
|
||||
data_dir = "{str((Path.home()/".pypho"/"data"))}"
|
||||
"""
|
||||
laser_power = 0
|
||||
edfa_power = 3
|
||||
edfa_nf = 5
|
||||
|
||||
pulse_shape = "gauss"
|
||||
fwhm = 0.33
|
||||
|
||||
[data]
|
||||
dir = "data"
|
||||
npy_dir = "npys"
|
||||
"""
|
||||
|
||||
|
||||
def get_config(config_file=None):
|
||||
@@ -72,8 +75,17 @@ def get_config(config_file=None):
|
||||
# conf[section][key] = config[section][key].strip('"')
|
||||
return conf
|
||||
|
||||
|
||||
class pam_generator:
|
||||
def __init__(self, glova, mod_order=None, mod_depth=0.5, pulse_shape='gauss', fwhm=0.33, seed=None) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
glova,
|
||||
mod_order=None,
|
||||
mod_depth=0.5,
|
||||
pulse_shape="gauss",
|
||||
fwhm=0.33,
|
||||
seed=None,
|
||||
) -> None:
|
||||
self.glova = glova
|
||||
self.pulse_shape = pulse_shape
|
||||
self.modulation_depth = mod_depth
|
||||
@@ -82,21 +94,24 @@ class pam_generator:
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, E, symbols, max_jitter=0):
|
||||
symbols_x = symbols[0]/(self.mod_order or np.max(symbols[0]))
|
||||
symbols_y = symbols[1]/(self.mod_order or np.max(symbols[1]))
|
||||
symbols_x = symbols[0] / (self.mod_order or np.max(symbols[0]))
|
||||
symbols_y = symbols[1] / (self.mod_order or np.max(symbols[1]))
|
||||
|
||||
|
||||
diffs_x = np.diff(symbols_x, prepend=symbols_x[0])
|
||||
diffs_y = np.diff(symbols_y, prepend=symbols_y[0])
|
||||
|
||||
max_jitter = int(round(max_jitter*self.glova.sps))
|
||||
max_jitter = int(round(max_jitter * self.glova.sps))
|
||||
digital_x = self.generate_digital_signal(diffs_x, max_jitter)
|
||||
digital_y = self.generate_digital_signal(diffs_y, max_jitter)
|
||||
|
||||
digital_x = np.pad(digital_x, (0, self.glova.sps//2), 'constant', constant_values=(0,0))
|
||||
digital_y = np.pad(digital_y, (0, self.glova.sps//2), 'constant', constant_values=(0,0))
|
||||
digital_x = np.pad(
|
||||
digital_x, (0, self.glova.sps // 2), "constant", constant_values=(0, 0)
|
||||
)
|
||||
digital_y = np.pad(
|
||||
digital_y, (0, self.glova.sps // 2), "constant", constant_values=(0, 0)
|
||||
)
|
||||
|
||||
if self.pulse_shape == 'gauss':
|
||||
if self.pulse_shape == "gauss":
|
||||
wavelet = self.gauss(oversampling=6)
|
||||
else:
|
||||
raise ValueError(f"Unknown pulse shape: {self.pulse_shape}")
|
||||
@@ -106,108 +121,154 @@ class pam_generator:
|
||||
E_y = np.convolve(digital_y, wavelet)
|
||||
|
||||
# convert to pam and set modulation depth (scale and move up such that 1 stays at 1)
|
||||
E_x = np.cumsum(E_x)*self.modulation_depth + (1-self.modulation_depth)
|
||||
E_y = np.cumsum(E_y)*self.modulation_depth + (1-self.modulation_depth)
|
||||
E_x = np.cumsum(E_x) * self.modulation_depth + (1 - self.modulation_depth)
|
||||
E_y = np.cumsum(E_y) * self.modulation_depth + (1 - self.modulation_depth)
|
||||
|
||||
# cut off the wavelet tails
|
||||
E_x = E_x[self.glova.sps//2+len(wavelet)//2-1:-len(wavelet)//2]
|
||||
E_y = E_y[self.glova.sps//2+len(wavelet)//2-1:-len(wavelet)//2]
|
||||
E_x = E_x[self.glova.sps // 2 + len(wavelet) // 2 - 1 : -len(wavelet) // 2]
|
||||
E_y = E_y[self.glova.sps // 2 + len(wavelet) // 2 - 1 : -len(wavelet) // 2]
|
||||
|
||||
# modulate the laser
|
||||
np.multiply(E[0]['E'][0],E_x, out=E[0]['E'][0])
|
||||
np.multiply(E[0]['E'][1],E_y, out=E[0]['E'][1])
|
||||
E[0]["E"][0] = np.sqrt(np.multiply(np.square(E[0]["E"][0]), E_x))
|
||||
E[0]["E"][1] = np.sqrt(np.multiply(np.square(E[0]["E"][1]), E_y))
|
||||
|
||||
return E
|
||||
|
||||
|
||||
def generate_digital_signal(self, symbols, max_jitter=0):
|
||||
rs = np.random.RandomState(self.seed)
|
||||
signal = np.zeros(self.glova.nos*self.glova.sps)
|
||||
signal = np.zeros(self.glova.nos * self.glova.sps)
|
||||
for index in range(self.glova.nos):
|
||||
jitter = max_jitter != 0 and rs.randint(-max_jitter, max_jitter)
|
||||
signal_index = index*self.glova.sps + jitter
|
||||
signal_index = index * self.glova.sps + jitter
|
||||
if signal_index < 0:
|
||||
continue
|
||||
if signal_index >= len(signal):
|
||||
continue
|
||||
signal[signal_index] = symbols[index]
|
||||
return signal
|
||||
|
||||
|
||||
def gauss(self, oversampling=1):
|
||||
sample_points = np.linspace(-oversampling*self.glova.sps, oversampling*self.glova.sps, oversampling*2*self.glova.sps, endpoint=True)
|
||||
sigma = self.fwhm/(1*np.sqrt(2*np.log(2)))*self.glova.sps
|
||||
pulse = 1/(sigma*np.sqrt(2*np.pi))*np.exp(-np.square(sample_points)/(2*np.square(sigma)))
|
||||
sample_points = np.linspace(
|
||||
-oversampling * self.glova.sps,
|
||||
oversampling * self.glova.sps,
|
||||
oversampling * 2 * self.glova.sps,
|
||||
endpoint=True,
|
||||
)
|
||||
sigma = self.fwhm / (1 * np.sqrt(2 * np.log(2))) * self.glova.sps
|
||||
pulse = (
|
||||
1
|
||||
/ (sigma * np.sqrt(2 * np.pi))
|
||||
* np.exp(-np.square(sample_points) / (2 * np.square(sigma)))
|
||||
)
|
||||
return pulse
|
||||
|
||||
|
||||
def initialize_fiber_and_data(config, input_data_override=None):
|
||||
py_glova = pypho.setup(
|
||||
nos = config['glova']['nos'],
|
||||
sps = config['glova']['sps'],
|
||||
f0 = config['glova']['f0'],
|
||||
symbolrate=config['glova']['symbolrate'],
|
||||
wisdom_dir = config['glova']['wisdom_dir'],
|
||||
flags = config['glova']['flags'],
|
||||
nthreads = config['glova']['nthreads'],
|
||||
nos=config["glova"]["nos"],
|
||||
sps=config["glova"]["sps"],
|
||||
f0=config["glova"]["f0"],
|
||||
symbolrate=config["glova"]["symbolrate"],
|
||||
wisdom_dir=config["glova"]["wisdom_dir"],
|
||||
flags=config["glova"]["flags"],
|
||||
nthreads=config["glova"]["nthreads"],
|
||||
)
|
||||
|
||||
c_glova = pypho.cfiber.GlovaWrapper.from_setup(py_glova)
|
||||
c_data = pypho.cfiber.DataWrapper(py_glova.sps * py_glova.nos)
|
||||
py_edfa = pypho.oamp(py_glova, Pmean=config["signal"]["edfa_power"], NF=config["signal"]["edfa_nf"])
|
||||
|
||||
if input_data_override is not None:
|
||||
c_data.E_in = input_data_override
|
||||
c_data.E_in = input_data_override[0]
|
||||
noise = input_data_override[1]
|
||||
else:
|
||||
config['signal']['seed'] = config['signal'].get('seed',(int(time.time()*1000))%2**32)
|
||||
config['signal']['jitter_seed'] = config['signal'].get('jitter_seed', (int(time.time()*1000))%2**32)
|
||||
symbolsrc = pypho.symbols(py_glova, py_glova.nos, pattern='ones', seed=config['signal']['seed'])
|
||||
laser = pypho.lasmod(py_glova, power=config['signal']['laser_power'], Df=0, theta=np.pi/4)
|
||||
modulator = pam_generator(py_glova, mod_depth=config['signal']['mod_depth'], pulse_shape=config['signal']['pulse_shape'], fwhm=config['signal']['fwhm'], seed=config['signal']['jitter_seed'])
|
||||
config["signal"]["seed"] = config["signal"].get(
|
||||
"seed", (int(time.time() * 1000)) % 2**32
|
||||
)
|
||||
config["signal"]["jitter_seed"] = config["signal"].get(
|
||||
"jitter_seed", (int(time.time() * 1000)) % 2**32
|
||||
)
|
||||
symbolsrc = pypho.symbols(
|
||||
py_glova, py_glova.nos, pattern="ones", seed=config["signal"]["seed"]
|
||||
)
|
||||
laser = pypho.lasmod(
|
||||
py_glova, power=config["signal"]["laser_power"]+1.5, Df=0, theta=np.pi / 4
|
||||
)
|
||||
modulator = pam_generator(
|
||||
py_glova,
|
||||
mod_depth=config["signal"]["mod_depth"],
|
||||
pulse_shape=config["signal"]["pulse_shape"],
|
||||
fwhm=config["signal"]["fwhm"],
|
||||
seed=config["signal"]["jitter_seed"],
|
||||
)
|
||||
|
||||
symbols_x = symbolsrc(pattern='random', p1=config['signal']['mod_order'])
|
||||
symbols_y = symbolsrc(pattern='random', p1=config['signal']['mod_order'])
|
||||
symbols_x = symbolsrc(pattern="random", p1=config["signal"]["mod_order"])
|
||||
symbols_y = symbolsrc(pattern="random", p1=config["signal"]["mod_order"])
|
||||
symbols_x[:3] = 0
|
||||
symbols_y[:3] = 0
|
||||
|
||||
cw = laser()
|
||||
cw[0]['E']*=np.sqrt(2)
|
||||
|
||||
source_signal = modulator(E=cw, symbols=(symbols_x, symbols_y))
|
||||
|
||||
source_signal = py_edfa(E=source_signal)
|
||||
|
||||
c_data.E_in = source_signal[0]['E']
|
||||
c_data.E_in = source_signal[0]["E"]
|
||||
noise = source_signal[0]["noise"]
|
||||
|
||||
py_fiber = pypho.fiber(
|
||||
glova = py_glova,
|
||||
l=config['fiber']['length'],
|
||||
alpha=pypho.functions.dB_to_Neper(config['fiber']['alpha'])/1000,
|
||||
gamma=config['fiber']['gamma'],
|
||||
D=config['fiber']['d'],
|
||||
S=config['fiber']['s'],
|
||||
glova=py_glova,
|
||||
l=config["fiber"]["length"],
|
||||
alpha=pypho.functions.dB_to_Neper(config["fiber"]["alpha"]) / 1000,
|
||||
gamma=config["fiber"]["gamma"],
|
||||
D=config["fiber"]["d"],
|
||||
S=config["fiber"]["s"],
|
||||
)
|
||||
if config["fiber"]["birefsteps"] > 0:
|
||||
config["fiber"]["birefseed"] = config["fiber"].get(
|
||||
"birefseed", (int(time.time() * 1000)) % 2**32
|
||||
)
|
||||
py_fiber.birefarray = pypho.birefringence_segment.create_pmd_fibre(
|
||||
py_fiber.l,
|
||||
py_fiber.l / config["fiber"]["birefsteps"],
|
||||
0,
|
||||
config["fiber"]["birefseed"],
|
||||
)
|
||||
c_params = pypho.cfiber.ParamsWrapper.from_fiber(
|
||||
py_fiber, max_step=1e3 if py_fiber.gamma == 0 else 200
|
||||
)
|
||||
if config['fiber']['birefsteps'] > 0:
|
||||
config['fiber']['birefseed'] = config['fiber'].get('birefseed', (int(time.time()*1000))%2**32)
|
||||
py_fiber.birefarray = pypho.birefringence_segment.create_pmd_fibre(py_fiber.l, py_fiber.l/config['fiber']['birefsteps'], 0, config['fiber']['birefseed'])
|
||||
c_params = pypho.cfiber.ParamsWrapper.from_fiber(py_fiber, max_step=1e3)
|
||||
c_fiber = pypho.cfiber.FiberWrapper(c_data, c_params, c_glova)
|
||||
|
||||
return c_fiber, c_data
|
||||
return c_fiber, c_data, noise, py_edfa
|
||||
|
||||
|
||||
def save_data(data, config):
|
||||
data_dir = Path(config['script']['data_dir'])
|
||||
save_dir = data_dir
|
||||
data_dir = Path(config["data"]["dir"])
|
||||
npy_dir = config["data"].get("npy_dir", "")
|
||||
save_dir = data_dir / npy_dir if len(npy_dir) else data_dir
|
||||
save_dir.mkdir(parents=True, exist_ok=True)
|
||||
save_data = np.column_stack([data.E_in[0], data.E_in[1], data.E_out[0], data.E_out[1]])
|
||||
save_data = np.column_stack([
|
||||
data.E_in[0],
|
||||
data.E_in[1],
|
||||
data.E_out[0],
|
||||
data.E_out[1],
|
||||
])
|
||||
timestamp = datetime.now()
|
||||
config_content = '\n'.join((
|
||||
f"; Generated by {str(Path(__file__).name)} @ {timestamp.strftime("%Y-%m-%d %H:%M:%S")}",
|
||||
seed = config["signal"].get("seed", False)
|
||||
jitter_seed = config["signal"].get("jitter_seed", False)
|
||||
birefseed = config["fiber"].get("birefseed", False)
|
||||
|
||||
config_content = "\n".join((
|
||||
f"; Generated by {str(Path(__file__).name)} @ {timestamp.strftime('%Y-%m-%d %H:%M:%S')}",
|
||||
"[glova]",
|
||||
f"sps = {config['glova']['sps']}",
|
||||
f"nos = {config['glova']['nos']}",
|
||||
f"f0 = {config['glova']['f0']}",
|
||||
f"symbolrate = {config['glova']['symbolrate']}",
|
||||
f'wisdom_dir = "{config['glova']['wisdom_dir']}"',
|
||||
f'wisdom_dir = "{config["glova"]["wisdom_dir"]}"',
|
||||
f'flags = "{config["glova"]["flags"]}"',
|
||||
f"nthreads = {config['glova']['nthreads']}",
|
||||
"",
|
||||
" ",
|
||||
"[fiber]",
|
||||
f"length = {config['fiber']['length']}",
|
||||
f"gamma = {config['fiber']['gamma']}",
|
||||
@@ -215,34 +276,43 @@ def save_data(data, config):
|
||||
f"D = {config['fiber']['d']}",
|
||||
f"S = {config['fiber']['s']}",
|
||||
f"birefsteps = {config['fiber']['birefsteps']}",
|
||||
f"birefseed = {config['fiber'].get('birefseed', 'not set')}",
|
||||
f"birefseed = {hex(birefseed)}" if birefseed else "; birefseed = not set",
|
||||
"",
|
||||
"[signal]",
|
||||
f'modulation = "{config['signal']['modulation']}"',
|
||||
f"seed = {hex(seed)}" if seed else "; seed = not set",
|
||||
"",
|
||||
f'modulation = "{config["signal"]["modulation"]}"',
|
||||
f"mod_order = {config['signal']['mod_order']}",
|
||||
f"mod_depth = {config['signal']['mod_depth']}",
|
||||
f"seed = {config['signal'].get('seed', 'not set')}",
|
||||
""
|
||||
f"max_jitter = {config['signal']['max_jitter']}",
|
||||
f"jitter_seed = {hex(jitter_seed)}" if jitter_seed else "; jitter_seed = not set",
|
||||
""
|
||||
f"laser_power = {config['signal']['laser_power']}",
|
||||
f"edfa_power = {config['signal']['edfa_power']}",
|
||||
f"edfa_nf = {config['signal']['edfa_nf']}",
|
||||
""
|
||||
f'pulse_shape = "{config["signal"]["pulse_shape"]}"',
|
||||
f"fwhm = {config['signal']['fwhm']}",
|
||||
f"max_jitter = {config['signal']['max_jitter']}",
|
||||
f"jitter_seed = {config['signal'].get('jitter_seed', 'not set')}",
|
||||
"",
|
||||
"[script]",
|
||||
f'data_dir = "{config["script"]["data_dir"]}"',
|
||||
"[data]",
|
||||
f'dir = "{str(data_dir)}"',
|
||||
f'npy_dir = "{npy_dir}"',
|
||||
"file = "
|
||||
))
|
||||
config_hash = hashlib.md5(config_content.encode()).hexdigest()
|
||||
save_file = f"npys/{config_hash}.npy"
|
||||
config_content += f'\n\n[DATA]\nfile = "{str(save_file)}\n"'
|
||||
save_file = f"{config_hash}.npy"
|
||||
config_content += f'"{str(save_file)}"\n'
|
||||
|
||||
filename_components = (
|
||||
timestamp.strftime("%Y%m%d-%H%M%S"),
|
||||
config['glova']['sps'],
|
||||
config['glova']['nos'],
|
||||
config['fiber']['length'],
|
||||
config['fiber']['gamma'],
|
||||
config['fiber']['alpha'],
|
||||
config['fiber']['d'],
|
||||
config['fiber']['s'],
|
||||
config["glova"]["sps"],
|
||||
config["glova"]["nos"],
|
||||
config["fiber"]["length"],
|
||||
config["fiber"]["gamma"],
|
||||
config["fiber"]["alpha"],
|
||||
config["fiber"]["d"],
|
||||
config["fiber"]["s"],
|
||||
f"{config['signal']['modulation'].upper()}{config['signal']['mod_order']}",
|
||||
)
|
||||
|
||||
@@ -255,65 +325,174 @@ def save_data(data, config):
|
||||
print("Saved config to", data_dir / lookup_file)
|
||||
print("Saved data to", save_dir / f"{config_hash}.npy")
|
||||
|
||||
def length_loop(config):
|
||||
# loop over lengths
|
||||
# lengths = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000]
|
||||
ranges = [1, 10, 100, 1000, 10000, 100000]
|
||||
lengths = [list(range(length_range,10*length_range, length_range)) for length_range in ranges]
|
||||
lengths = [length for length_range in lengths for length in length_range]
|
||||
|
||||
def length_loop(config, lengths):
|
||||
lengths = sorted(lengths)
|
||||
input_override = None
|
||||
for lind, length in enumerate(lengths):
|
||||
# print(f"\nGenerating data for fiber length {length}")
|
||||
if lind > 0:
|
||||
# set the length to the difference between the current and previous length -> incremental
|
||||
length = lengths[lind] - lengths[lind-1]
|
||||
print(f"\nGenerating data for fiber length {lengths[lind]}m -> {length}m")
|
||||
config['fiber']['length'] = length
|
||||
length = lengths[lind] - lengths[lind - 1]
|
||||
print(
|
||||
f"\nGenerating data for fiber length {lengths[lind]}m [using {length}m increment]"
|
||||
)
|
||||
config["fiber"]["length"] = length
|
||||
# set the input data to the output data of the previous run
|
||||
cfiber, cdata = initialize_fiber_and_data(config, input_data_override=input_override)
|
||||
|
||||
cfiber, cdata, noise, edfa = initialize_fiber_and_data(
|
||||
config, input_data_override=input_override
|
||||
)
|
||||
|
||||
if lind == 0:
|
||||
cdata_orig = cdata
|
||||
|
||||
energy_in = np.sum(np.abs(cdata.E_in[0])**2 + np.abs(cdata.E_in[1])**2)/(cfiber.glova.symbolrate*cfiber.glova.sps)
|
||||
print(f"Energy in: {energy_in} J")
|
||||
|
||||
|
||||
mean_power_in = np.sum(pypho.functions.getpower_W(cdata.E_in))
|
||||
print(
|
||||
f"Mean power in: {mean_power_in:.3e} W ({pypho.functions.W_to_dBm(mean_power_in):.3e} dBm)"
|
||||
)
|
||||
|
||||
cfiber()
|
||||
|
||||
energy_out = np.sum(np.abs(cdata.E_out[0])**2 + np.abs(cdata.E_out[1])**2)/(cfiber.glova.symbolrate*cfiber.glova.sps)
|
||||
print(f"Energy out: {energy_out} J")
|
||||
|
||||
input_override = cdata.E_out
|
||||
mean_power_out = np.sum(pypho.functions.getpower_W(cdata.E_out))
|
||||
print(
|
||||
f"Mean power out: {mean_power_out:.3e} W ({pypho.functions.W_to_dBm(mean_power_out):.3e} dBm)"
|
||||
)
|
||||
|
||||
input_override = (cdata.E_out, noise)
|
||||
cdata.E_in = cdata_orig.E_in
|
||||
config['fiber']['length'] = lengths[lind]
|
||||
config["fiber"]["length"] = lengths[lind]
|
||||
E_tmp = [{'E': cdata.E_out, 'noise': noise*(-cfiber.params.l*cfiber.params.alpha)}]
|
||||
E_tmp = edfa(E=E_tmp)
|
||||
cdata.E_out = E_tmp[0]['E']
|
||||
save_data(cdata, config)
|
||||
|
||||
in_out_eyes(cfiber, cdata)
|
||||
|
||||
|
||||
def single_run_with_plot(config):
|
||||
cfiber, cdata, noise, edfa = initialize_fiber_and_data(config)
|
||||
|
||||
mean_power_in = np.sum(pypho.functions.getpower_W(cdata.E_in))
|
||||
print(
|
||||
f"Mean power in: {mean_power_in:.3e} W ({pypho.functions.W_to_dBm(mean_power_in):.3e} dBm)"
|
||||
)
|
||||
|
||||
cfiber()
|
||||
|
||||
mean_power_out = np.sum(pypho.functions.getpower_W(cdata.E_out))
|
||||
print(
|
||||
f"Mean power out: {mean_power_out:.3e} W ({pypho.functions.W_to_dBm(mean_power_out):.3e} dBm)"
|
||||
)
|
||||
|
||||
E_tmp = [{'E': cdata.E_out, 'noise': noise*(-cfiber.params.l*cfiber.params.alpha)}]
|
||||
E_tmp = edfa(E=E_tmp)
|
||||
cdata.E_out = E_tmp[0]['E']
|
||||
save_data(cdata, config)
|
||||
|
||||
in_out_eyes(cfiber, cdata)
|
||||
|
||||
def in_out_eyes(cfiber, cdata):
|
||||
fig, axs = plt.subplots(2, 2, sharex=True, sharey=True)
|
||||
eye_head = min(cfiber.glova.nos, 2000)
|
||||
symbolrate_scale = 1e12
|
||||
amplitude_scale = 1e3
|
||||
plot_eye_diagram(
|
||||
amplitude_scale * np.abs(cdata.E_in[0]) ** 2,
|
||||
2 * cfiber.glova.sps,
|
||||
normalize=False,
|
||||
samplerate=cfiber.glova.symbolrate * cfiber.glova.sps / symbolrate_scale,
|
||||
head=eye_head,
|
||||
ax=axs[0][0],
|
||||
show=False,
|
||||
)
|
||||
plot_eye_diagram(
|
||||
amplitude_scale * np.abs(cdata.E_out[0]) ** 2,
|
||||
2 * cfiber.glova.sps,
|
||||
normalize=False,
|
||||
samplerate=cfiber.glova.symbolrate * cfiber.glova.sps / symbolrate_scale,
|
||||
head=eye_head,
|
||||
ax=axs[0][1],
|
||||
color="C1",
|
||||
show=False,
|
||||
)
|
||||
plot_eye_diagram(
|
||||
amplitude_scale * np.abs(cdata.E_in[1]) ** 2,
|
||||
2 * cfiber.glova.sps,
|
||||
normalize=False,
|
||||
samplerate=cfiber.glova.symbolrate * cfiber.glova.sps / symbolrate_scale,
|
||||
head=eye_head,
|
||||
ax=axs[1][0],
|
||||
show=False,
|
||||
)
|
||||
plot_eye_diagram(
|
||||
amplitude_scale * np.abs(cdata.E_out[1]) ** 2,
|
||||
2 * cfiber.glova.sps,
|
||||
normalize=False,
|
||||
samplerate=cfiber.glova.symbolrate * cfiber.glova.sps / symbolrate_scale,
|
||||
head=eye_head,
|
||||
ax=axs[1][1],
|
||||
color="C1",
|
||||
show=False,
|
||||
)
|
||||
|
||||
title_map = [
|
||||
["Input x", "Output x"],
|
||||
["Input y", "Output y"],
|
||||
]
|
||||
title_map = np.array(title_map)
|
||||
for ax, title in zip(axs.flatten(), title_map.flatten()):
|
||||
ax.grid(True)
|
||||
ax.set_xlabel("Time [ps]")
|
||||
ax.set_ylabel("Power [mW]")
|
||||
ax.set_title(title)
|
||||
fig.tight_layout()
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def plot_eye_diagram(
|
||||
signal: np.ndarray,
|
||||
eye_width,
|
||||
offset=0,
|
||||
*,
|
||||
head=None,
|
||||
samplerate=1,
|
||||
normalize=True,
|
||||
ax=None,
|
||||
color="C0",
|
||||
show=True,
|
||||
):
|
||||
ax = ax or plt.gca()
|
||||
if head is not None:
|
||||
signal = signal[: head * eye_width]
|
||||
if normalize:
|
||||
signal = signal / np.max(signal)
|
||||
slices = np.lib.stride_tricks.sliding_window_view(signal, eye_width + 1)[
|
||||
offset % (eye_width + 1) :: eye_width
|
||||
]
|
||||
plt_ax = np.arange(-eye_width // 2, eye_width // 2 + 1) / samplerate
|
||||
for slice in slices:
|
||||
ax.plot(plt_ax, slice, color=color, alpha=0.1)
|
||||
ax.grid()
|
||||
if show:
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
config = get_config()
|
||||
|
||||
length_loop(config)
|
||||
length_ranges = [1, 10, 100, 1000, 10000]
|
||||
length_ranges = [1000, 10000]
|
||||
length_scales = [1, 2, 5]
|
||||
|
||||
# cfiber, cdata = initialize_fiber_and_data(config)
|
||||
# cfiber()
|
||||
lengths = [
|
||||
length_scale * length_range
|
||||
for length_range in length_ranges
|
||||
for length_scale in length_scales
|
||||
]
|
||||
lengths.append(max(length_ranges))
|
||||
|
||||
# energy_in = np.sum(np.abs(cdata.E_in[0])**2 + np.abs(cdata.E_in[1])**2)/(cfiber.glova.symbolrate*cfiber.glova.sps)
|
||||
# energy_out = np.sum(np.abs(cdata.E_out[0])**2 + np.abs(cdata.E_out[1])**2)/(cfiber.glova.symbolrate*cfiber.glova.sps)
|
||||
# print(f"Energy in: {energy_in} J")
|
||||
# print(f"Energy out: {energy_out} J")
|
||||
# save_data(cdata, config)
|
||||
# length_loop(config, lengths)
|
||||
|
||||
# fig, axs = plt.subplots(2, 1, sharex=True, sharey=True)
|
||||
# xax = np.linspace(0, cfiber.glova.nos, cfiber.glova.nos*cfiber.glova.sps)-0.5
|
||||
# axs[0].plot(xax,np.abs(cdata.E_in[0])**2)
|
||||
# axs[0].plot(xax,np.abs(cdata.E_out[0])**2)
|
||||
# axs[0].set_title("x")
|
||||
# axs[0].grid()
|
||||
|
||||
# axs[1].plot(xax,np.abs(cdata.E_in[1])**2)
|
||||
# axs[1].plot(xax,np.abs(cdata.E_out[1])**2)
|
||||
# axs[1].set_title("y")
|
||||
# axs[1].grid()
|
||||
|
||||
# plt.show()
|
||||
single_run_with_plot(config)
|
||||
|
||||
Reference in New Issue
Block a user