Files
sudoku_collapse/sudoku.py

250 lines
8.9 KiB
Python

# import colorama
# from termcolor import colored
class cell():
def __init__(self, row, col):
self.possible = set([i for i in range(1,10)])
self.solved = False
self.solution = 0
self.prefilled = False
self.row = row
self.col = col
def __str__(self):
retstr = 'solved ' if self.solved else 'unsolved '
retstr += f'sudoku_cell @ ({self.row},{self.col}) '
if self.solved:
retstr += f'with value {self.solution}'
else:
retstr += f'with possible values {self.possible}'
return retstr
def set_value(self, value):
self.possible = {value}
self.solution = value
self.solved = True
self.prefilled = True
def remove_value(self, value):
if not self.solved:
self.possible.discard(value)
if len(self.possible) == 1:
self.solution = list(self.possible)[0]
self.solved = True
pass # for debugging
def collapse(self, values):
if not self.possible:
return False
a = self.possible - self.possible.intersection(values)
if not a:
return False
self.possible = a
if len(self.possible) == 1:
self.solution = list(self.possible)[0]
self.solved = True
return True
def __len__(self):
return len(self.possible)
@property
def values(self):
return list(self.possible)
class sudoku_grid():
def __init__(self, prefilled_cells):
self.grid = [[cell(i,j) for j in range(9)] for i in range(9)]
# prefilled_cells is a nested list (9x9) of values (1-9), 0 specifies an empty cell
try:
ctr = 0
if len(prefilled_cells) != 9:
raise ValueError.add_note(f'wrong number of rows')
for i in range(9):
if len(prefilled_cells[i]) != 9:
raise ValueError.add_note(f'wrong number of cells in row {i}')
for j in range(9):
# if prefilled_cell in valid range: fill in matching cell an mark as solved
if 1 <= prefilled_cells[i][j] <= 9:
self.grid[i][j].set_value(prefilled_cells[i][j])
ctr += 1
if ctr == 0:
raise ValueError.add_note(f'prefilled_cells is empty')
except ValueError as e:
print(f'{e}')
def __str__(self):
# retstr = ' Sudoku\n'
retstr = ''
retstr += ' 0 1 2 3 4 5 6 7 8\n'
retstr += ' ╔═══╤═══╤═══╦═══╤═══╤═══╦═══╤═══╤═══╗\n'
for i in range(9):
for j in range(9):
if j == 0:
retstr += f'{i}'
if self.grid[i][j].solved:
current_val = self.grid[i][j].solution
if self.grid[i][j].prefilled:
retstr += f'{current_val}'
else:
retstr += f'\033[92m{current_val}\033[00m'
else:
retstr += ' '
if j == 2 or j == 5 or j == 8:
retstr += ''
else:
retstr += ''
if i == 2 or i == 5:
retstr += '\n ╠═══╪═══╪═══╬═══╪═══╪═══╬═══╪═══╪═══╣\n'
elif i == 8:
pass
else:
retstr += '\n ╟───┼───┼───╫───┼───┼───╫───┼───┼───╢\n'
retstr += '\n ╚═══╧═══╧═══╩═══╧═══╧═══╩═══╧═══╧═══╝'
return retstr
def iterate1(self):
# iterate over all cells
for i in range(9):
for j in range(9):
# # remove posibble values based on solved cells
current_value = self.grid[i][j].solution
if current_value:
for k in range(9):
current_cell = self.grid[i][k]
current_cell.remove_value(current_value) # remove value from current row
current_cell = self.grid[k][j]
current_cell.remove_value(current_value) # remove value from current column
for k in range(3):
for l in range(3):
current_cell = self.grid[(i//3)*3+(i+k)%3][(j//3)*3+(j+l)%3]
current_cell.remove_value(current_value) # remove value from current 3x3 box
def iterate2(self):
for i in range(9):
for j in range(9):
current_cell = self.grid[i][j]
if current_cell.solved:
continue
current_set = set()
for k in range(8):
if len(current_set) == 9:
continue
current_cell2 = self.grid[i][(j+k+1)%9]
current_set = current_set.union(current_cell2.possible)
current_cell.collapse(current_set)
current_set = set()
for k in range(8):
if len(current_set) == 9:
continue
current_cell2 = self.grid[(i+k+1)%9][j]
current_set = current_set.union(current_cell2.possible)
current_cell.collapse(current_set)
add = 0
current_set = set()
for k in range(8):
if len(current_set) == 9:
continue
if (i//3)*3+k//3 == i and (j//3)*3+k%3 == j:
add = 1
l = k + add
row = (i//3)*3+l//3
col = (j//3)*3+l%3
current_cell2 = self.grid[row][col]
current_set = current_set.union(current_cell2.possible)
current_cell.collapse(current_set)
def find_lowest_entropy(self):
lowest_i = -1
lowest_j = -1
sols = None
lowest_e = 10
for i in range(9):
for j in range(9):
current_cell = self.grid[i][j]
if current_cell.solved:
continue
e = len(current_cell)
if e < lowest_e:
sols = current_cell.values
lowest_i = i
lowest_j = j
lowest_e = e
if lowest_e == 0:
lowest_i = -1
lowest_j = -1
sols = None
lowest_e = 10
return (lowest_i, lowest_j, lowest_e, sols)
return (lowest_i, lowest_j, lowest_e, sols)
def collapse_cell(self, row, col):
if self.grid[row][col].solved:
return None
possible = self.grid[row][col].possible
if len(possible) == 1:
self.grid[row][col].solved = list(possible)[0]
def single_solutions_exist(self):
for i in range(9):
for j in range(9):
if self.grid[i][j].possible:
if len(self.grid[i][j].possible) == 1:
return True
return False
def is_solved(self):
for i in range(9):
for j in range(9):
if not self.grid[i][j].solved:
return False
return True
iteration = 1
if __name__ == '__main__':
# colorama.init()
# prefilled = [ [0,4,9, 7,0,5, 0,0,0],
# [0,0,0, 0,0,4, 0,0,3],
# [6,0,1, 2,0,0, 0,7,0],
# [0,0,0, 0,9,1, 0,0,5],
# [0,2,4, 0,6,8, 7,3,1],
# [1,5,8, 0,2,7, 4,9,0],
# [0,0,0, 0,0,2, 6,4,0],
# [0,6,0, 1,0,0, 0,0,0],
# [4,0,5, 0,0,0, 3,0,2]]
prefilled = [ [0,0,7, 0,0,5, 0,0,3],
[0,0,9, 0,6,0, 0,0,0],
[3,6,0, 0,0,8, 2,0,0],
[0,0,6, 0,0,0, 0,0,0],
[5,1,0, 0,8,0, 0,0,9],
[0,0,0, 0,0,2, 0,4,0],
[0,0,0, 5,0,0, 9,0,0],
[8,3,0, 0,1,0, 0,0,5],
[7,0,0, 0,0,0, 0,0,0]]
sudoku = sudoku_grid(prefilled)
print(sudoku)
while not sudoku.is_solved():
sudoku.iterate1()
print(f'Iteration {iteration}a')
print(sudoku)
sudoku.iterate2()
print(f'Iteration {iteration}b')
print(sudoku)
iteration += 1
print(sudoku)