first commit

This commit is contained in:
Joseph Hopfmüller
2024-09-10 19:00:27 +02:00
commit 31d2314573
2 changed files with 245 additions and 0 deletions

167
.gitignore vendored Normal file
View File

@@ -0,0 +1,167 @@
.vscode
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
!speedfiber.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
.pdm.toml
.pdm-python
.pdm-build/
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
.python-version
config/wisdom_pyfftw_4096.npy

78
run2.py Normal file
View File

@@ -0,0 +1,78 @@
import pypho
from pypho import functions as pf
# from pypho_functions import *
# from pypho import functions as pf
import numpy as np
import copy
import matplotlib.pyplot as plt
from scipy.interpolate import UnivariateSpline
# Define network elements
gp = pypho.setup(nos =2**4, sps = 256, symbolrate = 10.0e9)
symbolsrc = pypho.symbols(glova = gp, nos = gp.nos, pattern = 'debruijn')
esigsrc = pypho.signalsrc(glova = gp, pulseshape = 'rect' , fwhm = 0.85)
sig_1550 = pypho.lasmod(glova = gp, power = 0, Df = 0, theta = 0)
SSMF = pypho.fiber(glova = gp, l = 60.0e3, D = 17.0, S = 0, alpha = 0.2e-12, gamma = 1.4e-12, phi_max = 10.0)
# Simulation
bits = symbolsrc()
esig = esigsrc(bitsequence = bits)
E_Tx = sig_1550(esig = esig)
# Define your parameters here
T_0 = 25.0e-12
z = SSMF.l
D = 17.0
beta_2, beta_3 = pf.DS_to_beta(17.0, 0, gp.lambda0)
# Create a single pulse with gaussian shape (not power!)
E_Tx[0]['E'][0] = E_Tx[0]['E'][0]*0 + np.exp(-(gp.timeax()-gp.timeax()[-1]/2)**2 / (2.0*T_0**2) )
E = copy.deepcopy(E_Tx)
# Fiber transmission
E = SSMF(E = E, D = D, l = z)
#sys.exit()
# Get FWHM of the input signal E_Tx
spline_0 = UnivariateSpline(gp.timeax()*1.0e12, np.abs(E_Tx[0]['E'][0])-1*np.max(np.abs(E_Tx[0]['E'][0]))/2, s=0)
r1_0, r2_0 = spline_0.roots() # find the roots
# Get FWHM of the output signal E
spline_1 = UnivariateSpline(gp.timeax()*1.0e12, np.abs(E[0]['E'][0])-1*np.max(np.abs(E[0]['E'][0]))/2, s=0)
r1_1, r2_1 = spline_1.roots() # find the roots
T_FWHM_0 = (r2_0-r1_0) * 1e-12
T_0_plot = T_FWHM_0 / 2.35482
T_FWHM_1 = (r2_1-r1_1) * 1e-12
L_D = (T_0_plot)**2 / np.abs(beta_2)
# Plot Input and Output signal
plt.figure(1)
plt.plot(gp.timeax()*1.0e12, np.abs(E_Tx[0]['E'][0]), 'r', label='$E(0, t)$')
plt.plot(gp.timeax()*1.0e12, np.abs(E[0]['E'][0]), 'g', label=f'$E(z={SSMF.l/1000}km, t$)')
plt.annotate(text='', xy=(r1_0,np.max(np.abs(E_Tx[0]['E'][0]))/2), xytext=(r2_0,np.max(np.abs(E_Tx[0]['E'][0]))/2), arrowprops=dict(arrowstyle='<->'))
plt.text(np.max((r2_0,r2_1))+10, np.max(np.abs(E_Tx[0]['E'][0]))/2, f'$T_{{FWHM,0}}$ = {r2_0-r1_0:.2f} ps', fontsize=12, horizontalalignment='left', verticalalignment='center')
plt.annotate(text='', xy=(r1_1,np.max(np.abs(E[0]['E'][0]))/2), xytext=(r2_1,np.max(np.abs(E[0]['E'][0]))/2), arrowprops=dict(arrowstyle='<->'))
plt.text(np.max((r2_0,r2_1))+10, np.max(np.abs(E[0]['E'][0]))/2, f'$T_{{FWHM,1}}$ = {r2_1-r1_1:.2f} ps', fontsize=12, horizontalalignment='left', verticalalignment='center')
plt.ylabel('$|E|$ a.u.')
plt.xlabel('Time $t$ [ps]')
plt.grid()
legend = plt.legend(loc='upper right')
# Print the results
print(f'Input signal 1/e-pulse width by definition: T_0 = {T_0*1e12:.6f} ps')
print(f'Input signal 1/e-pulse width from plot: T_0 = {T_0_plot*1e12:.6f} ps')
print(f'Input signal FWHM-pulse width from plot: T_FWHM,0 = {T_FWHM_0*1e12:.6f} ps')
print(f'Output signal FWHM-pulse width from plot: T_FWHM,1 = {T_FWHM_1*1e12:.6f} ps')
print(f'Calculated output FWHM-pulse width: T_FWHM,1 = {T_FWHM_0 * np.sqrt(1 + (z/L_D)**2)*1e12:.6f} ps')
plt.show()