Files
pytorch_learn/06_04_gradient_torch_model.py
Joseph Hopfmüller 3ce77417fe finish chapter 6
2022-10-17 13:04:51 +02:00

69 lines
1.9 KiB
Python

# prediction pytorch model -> forward function gets replaced by pytroch model
# gradient computation autograd
# loss computation pytorch loss
# parameter update pytorch optimizer
import torch
import torch.nn as nn # neural network module
# linear regression, no bias
# f = w*x
# f = 2*x
X = torch.tensor([[1], [2], [3], [4]], dtype=torch.float32) #reshape for pytorch model
Y = torch.tensor([[2], [4], [6], [8]], dtype=torch.float32)
X_test = torch.tensor([5], dtype=torch.float32)
n_samples, n_features = X.shape
print(n_samples, n_features)
input_size = n_features
output_size = n_features
# model = nn.Linear(input_size, output_size, bias=False)
#custom linear regression model (just a wrapper in this case, but you can add more layers)
class LinearRegression(nn.Module):
def __init__(self, input_dim, output_dim, bias=True):
super(LinearRegression, self).__init__()
#define layers
self.lin = nn.Linear(input_dim, output_dim, bias)
def forward(self, x):
return self.lin(x)
model = LinearRegression(input_size, output_size, bias=False)
print(f'Prediction before training: f(5) = {model(X_test).item():.3f}')
#Training
learning_rate = .01
n_iters = 100
loss = nn.MSELoss() # use pytorch built in MSE loss function
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate) # use pytorch built in optimizer to optimize parameter 'w' with learning rate
for epoch in range(n_iters):
# prediction = forward pass
y_pred = model(X)
# loss
l = loss(Y, y_pred)
# gradients = backward pass
l.backward()
#update weights
optimizer.step()
# clear gradients
optimizer.zero_grad()
if epoch % 10 == 0: #every nth epoch
[w] = model.parameters()
print(f'epoch {epoch+1}: w = {w[0].item():.3f}, loss = {l:.8f}')
print(f'Prediction after training: f(5) = {model(X_test).item():.3f}')