Files
pytorch_learn/my07_linear_regression.py
Joseph Hopfmüller 563f0ff8ec finish 09
2022-10-17 14:58:38 +02:00

47 lines
1.2 KiB
Python

# this is a recap
# a training pipeline generally consists of 3 steps:
# 1. Design model (input, output size, forward pass (layers))
# 2. Construct loss and optimizer
# 3. Training loop
# - forward pass: compute prediction
# - backward pass: gradient computation
# - update parameters
# (iterate step 3)
import torch
import torch.nn as nn
X = torch.tensor([[1], [2], [3], [4]], dtype=torch.float32)
Y = torch.tensor([[3], [6], [9], [12]], dtype=torch.float32)
X_test = torch.tensor([5], dtype=torch.float32)
n_samples, n_features = X.shape
input_size = output_size = n_features
learning_rate = 0.01
n_iter = 100
model = nn.Linear(input_size, output_size, bias=False)
loss = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
print(f'Prediction before training: f(5) = {model(X_test).item():.3f}')
for epoch in range(n_iter):
Y_pred = model(X)
l = loss(Y, Y_pred)
l.backward()
optimizer.step()
optimizer.zero_grad()
[w] = model.parameters()
w = w.item()
if epoch % 10 == 0:
print(f'Epoch {epoch}: w = {w:.3f}, loss = {l:.5f}')
print(f'Prediction after training: f(5) = {model(X_test).item():.3f}')