Files
pytorch_learn/06_03_gradient_torch_loss_optim.py
Joseph Hopfmüller 3ce77417fe finish chapter 6
2022-10-17 13:04:51 +02:00

53 lines
1.3 KiB
Python

# prediction manual
# gradient computation autograd
# loss computation pytorch loss -> loss function gets replaced by pytorch function
# parameter update pytorch optimizer -> update weights gets replaced by optimizer.step()
import torch
import torch.nn as nn # neural network module
# linear regression, no bias
# f = w*x
# f = 2*x
X = torch.tensor([1, 2, 3, 4], dtype=torch.float32)
Y = torch.tensor([2, 4, 6, 8], dtype=torch.float32)
w = torch.tensor(0.0, dtype=torch.float32, requires_grad=True) #requires grad for gradient
# model prediction
def forward(x):
return w*x
print(f'Prediction before training: f(5) = {forward(5):.3f}')
#Training
learning_rate = .01
n_iters = 100
loss = nn.MSELoss() # use pytorch built in MSE loss function
optimizer = torch.optim.SGD([w], lr = learning_rate) # use pytorch built in optimizer to optimize parameter 'w' with learning rate
for epoch in range(n_iters):
# prediction = forward pass
y_pred = forward(X)
# loss
l = loss(Y, y_pred)
# gradients = backward pass
l.backward()
#update weights
optimizer.step()
# clear gradients
optimizer.zero_grad()
if epoch % 10 == 0: #every nth epoch
print(f'epoch {epoch+1}: w = {w:.3f}, loss = {l:.8f}')
print(f'Prediction after training: f(5) = {forward(5):.3f}')