Files
pytorch_learn/03_autograd.py
2022-10-16 23:10:06 +02:00

83 lines
2.2 KiB
Python

import torch
x = torch.tensor([1.0,2.0,3.0], requires_grad=True)
print(x)
y = x+2 # a function used in backprop for calculating the gradient is created
# y.retain_grad() # for getting grad of y (a non-leaf tensor)
print(y)
z = y*y*2
z = y.mean()
print(z)
z.backward() # no argument needed because z is scalar -> will calculate the gradient pretty accurately
# print(y.grad)
print(x.grad)
z = y*y*2
print(z)
# z.backward() will fail because z is not scalar -> create vector vor Jacobian-Vector product (JVP)
# you have to specify the step size for the gradient approximation
# (calculation via chain rule Jacobian * vector = gradient vector) vector is size of step for each element -> very small elements approximate the gradient well
v = torch.tensor([0.000000001, 0.000000001, 0.000000001], dtype=torch.float32)
z.backward(v) # pass vector to JVP
print(x.grad)
# prevent operation from being tracked by gradient tracking (requires_grad)
# 3 options
# 1. x.requires_grad_(False) -> turn off requires_grad completely
# 2. x.detach() -> returns new tensor without requires_grad
# 3. with torch.no_grad(): -> lets you do operations without grad tracking temporarily
x = torch.tensor([1.0,2.0,3.0], requires_grad=True)
y = x*x
print(x)
# 1
x.requires_grad_(False)
print(x)
x = torch.tensor([1.0,2.0,3.0], requires_grad=True)
y = x*x
print(x)
# 2
z = x.detach()
print(z)
x = torch.tensor([1.0,2.0,3.0], requires_grad=True)
y = x*x
print(x)
#3
with torch.no_grad():
a = x+2
print(a)
b = x+2
print(b)
# gradients will be summed up! -> empty gradients
#this is a dummy training
weights = torch.ones(4, requires_grad=True)
for epoch in range(3):
model_output = (weights*3).sum()
model_output.backward()
print(weights.grad)
weights.grad.zero_()# clear gradients
#later
optimizer = torch.optim.SGD(weights, lr=0.01) # stochastic gradient descent
optimizer.step()
optimizer.zero_grad() # clear gradients
# RECAP
# turn on gradient tracking for interesting vectors (f(x) = x², f'(x) = ? -> requires_grad=True for x)
# calculate gradient with f.backward(), specify step size for vectors (not needed for scalar functions like mean())
# clear gradients with x.grad.zero_()
# prevent operations from being tracked in the comp graph with one of the 3 options above