# new: import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import numpy as np import torchvision from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import time import os import copy device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean, std) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean, std) ]) } #import data data_dir = 'data/hymenoptera_data' sets = ['train', 'val'] image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in sets} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=0) for x in sets} dataset_sizes = {x: len(image_datasets[x]) for x in sets} class_names = image_datasets['train'].classes print(f'Classes: {class_names}') # # show sample images # def imshow(inp, title): # """Imshow for Tensor.""" # inp = inp.numpy().transpose((1, 2, 0)) # inp = std * inp + mean # inp = np.clip(inp, 0, 1) # plt.imshow(inp) # plt.title(title) # plt.show() # inputs, classes = next(iter(dataloaders['train'])) # out = torchvision.utils.make_grid(inputs) # imshow(out, title=[class_names[x] for x in classes]) def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print(F'Epoch {epoch+1}/{num_epochs}') print('-'*11) for phase in sets: if phase == 'train': model.train() else: model.eval() running_loss = 0.0 running_corrects = 0 for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == 'train': optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) if phase == 'train': scheduler.step() epoch_loss = running_loss/dataset_sizes[phase] epoch_acc = running_corrects.double()/dataset_sizes[phase] print(f'{phase} Loss: {epoch_loss:.4f}, Acc: {epoch_acc:.4f}') if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since print(f'Training complete in {time_elapsed//(60*60):02.0f}:{(time_elapsed%(60*60)//60):02.0f}:{time_elapsed%60:02.0f}') print(f'Best val Acc: {best_acc:.4f}') model.load_state_dict(best_model_wts) return model ## transfer learning - finetuning ## model = torchvision.models.resnet18(weights=torchvision.models.ResNet18_Weights.DEFAULT) # import pretrained model #change last layer num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, 2) model.to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) # scheduler # updates the learning rate step_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1) # every seven epochs: lr = lr*gamma model = train_model(model, criterion, optimizer, step_lr_scheduler, num_epochs=50) print('-'*50) print() ## transfer learning - feature extractor ## model = torchvision.models.resnet18(weights=torchvision.models.ResNet18_Weights.DEFAULT) # import pretrained model # import pretrained model for param in model.parameters(): param.requires_grad = False # freezes all layers in beginning #change last layer num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, 2) model.to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) # scheduler # updates the learning rate step_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1) # every seven epochs: lr = lr*gamma model = train_model(model, criterion, optimizer, step_lr_scheduler, num_epochs=50)