import torch # linear regression, no bias # f = w*x # f = 2*x X = torch.tensor([1, 2, 3, 4], dtype=torch.float32) Y = torch.tensor([2, 4, 6, 8], dtype=torch.float32) w = torch.tensor(0.0, dtype=torch.float32, requires_grad=True) #requires grad for gradient # model prediction def forward(x): return w*x # loss = MSE def loss(y, y_pred): return ((y_pred - y)**2).mean() print(f'Prediction before training: f(5) = {forward(5):.3f}') #Training learning_rate = .01 n_iters = 100 for epoch in range(n_iters): # prediction = forward pass y_pred = forward(X) # loss l = loss(Y, y_pred) # gradients = backward pass l.backward() #update weights with torch.no_grad(): w -= learning_rate*w.grad w.grad.zero_() if epoch % 10 == 0: #every nth epoch print(f'epoch {epoch+1}: w = {w:.3f}, loss = {l:.8f}') print(f'Prediction after training: f(5) = {forward(5):.3f}')