in chapter 14 (3:23:19)

This commit is contained in:
Joseph Hopfmüller
2022-10-17 22:07:07 +02:00
parent 530bcae7e8
commit d405216a55
2 changed files with 129 additions and 0 deletions

1
.gitignore vendored
View File

@@ -6,3 +6,4 @@ share/
pyvenv.cfg pyvenv.cfg
.python-version .python-version
data/MNIST/ data/MNIST/
data/CIFAR10/

128
14_cnn Normal file
View File

@@ -0,0 +1,128 @@
# cnn on cifar-10
'''
convolutional net
similar to ff net, but applies convolutional filters (mainly on images)
also include pooling layers
specifically max pooling
downsamples image by getting max value in a region
12 20 30 0
8 12 2 0 20 30
34 70 37 4 -- 2x2 max-pool --> 112 37
112 100 25 12
helps avoid overfitting by providing abstract form of input
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
# device config
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'Device is {device}')
# hyper parameters
num_epochs = 4
batch_size = 4
learning_rate = 0.001
# dataset has PILImage images of range [0,1]
# transform to tensors of normalized range [-1, 1]
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))
])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=False, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck') # can also get them from the data, probably
#implement conv net
class ConvNet(nn.Module):
def __init__(self) -> None:
super().__init__()
self.layers = nn.Sequential([
nn.Conv2d(3, 6, 5), # 3 color channels, 6 output channels, kernel size 5
nn.MaxPool2d(2, 2), # kernel size 2, stride 2 (whats stride?)
# 3:23:19
])
pass
def forward(self, x):
# return self.layers(x)
pass
model = ConvNet().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
n_total_steps = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# origin shape: [4, 3, 32, 32] = 4, 3, 1024
# input_layer: 3 input channels, 6 output channels, 5 kernel size
images = images.to(device)
labels = labels.to(device)
#forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# backward pass + update
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 2000 == 0:
print(f'Epoch {(epoch+1)}/{num_epochs}, Step {(i+1)}/{n_total_steps}, loss = {loss.item():.4f}')
print('Finished Training')
with torch.no_grad():
n_correct = 0
n_samples = 0
n_class_correct = [0 for _ in range(10)]
n_class_samples = [0 for _ in range(10)]
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
# max returns (value, index)
_, predicted = torch.max(outputs, 1)
n_samples += labels.size(0)
n_correct += (predicted == labels).sum().item()
for i in range(batch_size):
label = labels[i]
pred = predicted[i]
if (label == pred):
n_class_correct[label] += 1
n_class_samples[label] += 1
acc = 100. * n_correct / n_samples
print(f'Accuracy of network: {acc:.1f}%')
for i in range(10):
acc = 100. * n_class_correct[i]/n_class_samples[i]
print(f'Accuracy of {classes[i]}: {acc:.1f}%')