in chapter 14 (3:23:19)
This commit is contained in:
128
14_cnn
Normal file
128
14_cnn
Normal file
@@ -0,0 +1,128 @@
|
||||
# cnn on cifar-10
|
||||
'''
|
||||
convolutional net
|
||||
similar to ff net, but applies convolutional filters (mainly on images)
|
||||
|
||||
also include pooling layers
|
||||
specifically max pooling
|
||||
downsamples image by getting max value in a region
|
||||
|
||||
12 20 30 0
|
||||
8 12 2 0 20 30
|
||||
34 70 37 4 -- 2x2 max-pool --> 112 37
|
||||
112 100 25 12
|
||||
helps avoid overfitting by providing abstract form of input
|
||||
'''
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision
|
||||
import torchvision.transforms as transforms
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
# device config
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
print(f'Device is {device}')
|
||||
|
||||
# hyper parameters
|
||||
num_epochs = 4
|
||||
batch_size = 4
|
||||
learning_rate = 0.001
|
||||
|
||||
# dataset has PILImage images of range [0,1]
|
||||
# transform to tensors of normalized range [-1, 1]
|
||||
|
||||
transform = transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))
|
||||
])
|
||||
|
||||
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,
|
||||
download=True, transform=transform)
|
||||
|
||||
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,
|
||||
download=False, transform=transform)
|
||||
|
||||
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size)
|
||||
|
||||
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
||||
'dog', 'frog', 'horse', 'ship', 'truck') # can also get them from the data, probably
|
||||
|
||||
#implement conv net
|
||||
class ConvNet(nn.Module):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.layers = nn.Sequential([
|
||||
nn.Conv2d(3, 6, 5), # 3 color channels, 6 output channels, kernel size 5
|
||||
nn.MaxPool2d(2, 2), # kernel size 2, stride 2 (whats stride?)
|
||||
|
||||
# 3:23:19
|
||||
|
||||
])
|
||||
pass
|
||||
|
||||
def forward(self, x):
|
||||
# return self.layers(x)
|
||||
pass
|
||||
|
||||
model = ConvNet().to(device)
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
||||
|
||||
n_total_steps = len(train_loader)
|
||||
for epoch in range(num_epochs):
|
||||
for i, (images, labels) in enumerate(train_loader):
|
||||
# origin shape: [4, 3, 32, 32] = 4, 3, 1024
|
||||
# input_layer: 3 input channels, 6 output channels, 5 kernel size
|
||||
images = images.to(device)
|
||||
labels = labels.to(device)
|
||||
|
||||
#forward pass
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
# backward pass + update
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
if (i+1) % 2000 == 0:
|
||||
print(f'Epoch {(epoch+1)}/{num_epochs}, Step {(i+1)}/{n_total_steps}, loss = {loss.item():.4f}')
|
||||
|
||||
print('Finished Training')
|
||||
|
||||
with torch.no_grad():
|
||||
n_correct = 0
|
||||
n_samples = 0
|
||||
n_class_correct = [0 for _ in range(10)]
|
||||
n_class_samples = [0 for _ in range(10)]
|
||||
for images, labels in test_loader:
|
||||
images = images.to(device)
|
||||
labels = labels.to(device)
|
||||
outputs = model(images)
|
||||
# max returns (value, index)
|
||||
_, predicted = torch.max(outputs, 1)
|
||||
n_samples += labels.size(0)
|
||||
n_correct += (predicted == labels).sum().item()
|
||||
|
||||
for i in range(batch_size):
|
||||
label = labels[i]
|
||||
pred = predicted[i]
|
||||
if (label == pred):
|
||||
n_class_correct[label] += 1
|
||||
n_class_samples[label] += 1
|
||||
|
||||
acc = 100. * n_correct / n_samples
|
||||
print(f'Accuracy of network: {acc:.1f}%')
|
||||
|
||||
for i in range(10):
|
||||
acc = 100. * n_class_correct[i]/n_class_samples[i]
|
||||
print(f'Accuracy of {classes[i]}: {acc:.1f}%')
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user