finsh chapter 16

This commit is contained in:
Joseph Hopfmüller
2022-10-22 10:17:41 +02:00
parent b555b45d1b
commit c5b5f2ef40
3 changed files with 144 additions and 1 deletions

3
.gitignore vendored
View File

@@ -6,4 +6,5 @@ share/
pyvenv.cfg
.python-version
data/*
!data/wine/
!data/wine/
runs/

134
16_tensorboard.py Normal file
View File

@@ -0,0 +1,134 @@
# 13_feedforward with tensorboard
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import sys
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter('runs/mnist')
# device config
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'Device is {device}')
# hyper parameters
input_size = 784 # 28x28 pixel images
hidden_size = 100 # PLAY WITH THIS
num_classes = 10 # digits 0..9
num_epochs = 2 # PLAY WITH THIS
batch_size = 100
learning_rate = .001
# MNIST
train_dataset = torchvision.datasets.MNIST(root='./data', train=True,
download=True, transform=transforms.ToTensor())
test_dataset = torchvision.datasets.MNIST(root='./data', train=False,
transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size)
examples = iter(train_loader)
samples, labels = examples.next()
print(samples.shape, labels.shape)
for i in range(6):
plt.subplot(2, 3, i+1)
plt.imshow(samples[i][0], cmap='gray')
# plt.show()
img_grid = torchvision.utils.make_grid(samples)
writer.add_image('mnist_images', img_grid)
writer.close()
# sys.exit()
model = nn.Sequential(
nn.Linear(input_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, num_classes)
# no softmax because its included in the CE loss function
).to(device)
# print(model)
# loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
writer.add_graph(model.to('cpu'), samples.to('cpu').reshape(-1, 28*28))
writer.close()
# sys.exit()
# training loop
num_total_steps = len(train_loader)
running_loss = 0.0
running_correct = 0
for epoch in range(num_epochs):
for batch, (images, labels) in enumerate(train_loader):
# reshape 100, 1, 28, 28 -> 100, 784
images = images.reshape(-1, 28*28).to(device) # reshape and send to gpu if available
labels = labels.to(device)
model = model.to(device)
# forward
outputs = model(images)
loss = criterion(outputs, labels)
# backward + update
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predictions = torch.max(outputs, 1)
running_correct += (predictions == labels).sum().item()
writer.add_scalar('training loss each', loss.item(), epoch * num_total_steps + batch)
writer.add_scalar('accuracy each', (predictions == labels).sum().item(), epoch * num_total_steps + batch)
if (batch+1) % 100 == 0:
writer.add_scalar('training loss', running_loss/100, epoch * num_total_steps + batch)
writer.add_scalar('accuracy', running_correct/100, epoch * num_total_steps + batch)
print(f'Epoch {epoch+1}/{num_epochs}, step {batch+1}/{num_total_steps}, loss = {loss.item():.4f}')
running_loss = 0.0
running_correct = 0
# test
b_labels = []
b_preds = []
with torch.no_grad():
n_correct = 0
n_samples = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
outputs = model(images)
# value, index (index is class label)
_, predictions = torch.max(outputs.data, 1)
n_samples += labels.shape[0]
n_correct += (predictions==labels).sum().item()
sm = nn.Softmax(dim=0)
class_predictions = [sm(output) for output in outputs]
b_preds.append(class_predictions)
b_labels.append(predictions)
b_preds = torch.cat([torch.stack(batch) for batch in b_preds])
b_labels = torch.cat(b_labels)
acc = 100.*n_correct/n_samples
print(f'Accuracy = {acc}%')
classes = range(10)
for i in classes:
labels_i = b_labels == i
preds_i = b_preds[:,i]
writer.add_pr_curve(str(i), labels_i, preds_i, global_step=0)
writer.close()

8
test.py Normal file
View File

@@ -0,0 +1,8 @@
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
v = np.array([[0.1, 0.2, 0.3, -0.4, -0.1], [0.03, -0.1, 0.6, -0.4, 0.25]], dtype=np.float128)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')