finsh chapter 16
This commit is contained in:
3
.gitignore
vendored
3
.gitignore
vendored
@@ -6,4 +6,5 @@ share/
|
|||||||
pyvenv.cfg
|
pyvenv.cfg
|
||||||
.python-version
|
.python-version
|
||||||
data/*
|
data/*
|
||||||
!data/wine/
|
!data/wine/
|
||||||
|
runs/
|
||||||
134
16_tensorboard.py
Normal file
134
16_tensorboard.py
Normal file
@@ -0,0 +1,134 @@
|
|||||||
|
# 13_feedforward with tensorboard
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torchvision
|
||||||
|
import torchvision.transforms as transforms
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
import sys
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
writer = SummaryWriter('runs/mnist')
|
||||||
|
|
||||||
|
# device config
|
||||||
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
print(f'Device is {device}')
|
||||||
|
|
||||||
|
# hyper parameters
|
||||||
|
input_size = 784 # 28x28 pixel images
|
||||||
|
hidden_size = 100 # PLAY WITH THIS
|
||||||
|
num_classes = 10 # digits 0..9
|
||||||
|
num_epochs = 2 # PLAY WITH THIS
|
||||||
|
batch_size = 100
|
||||||
|
learning_rate = .001
|
||||||
|
|
||||||
|
# MNIST
|
||||||
|
train_dataset = torchvision.datasets.MNIST(root='./data', train=True,
|
||||||
|
download=True, transform=transforms.ToTensor())
|
||||||
|
|
||||||
|
test_dataset = torchvision.datasets.MNIST(root='./data', train=False,
|
||||||
|
transform=transforms.ToTensor())
|
||||||
|
|
||||||
|
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size,
|
||||||
|
shuffle=True)
|
||||||
|
|
||||||
|
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size)
|
||||||
|
|
||||||
|
examples = iter(train_loader)
|
||||||
|
samples, labels = examples.next()
|
||||||
|
print(samples.shape, labels.shape)
|
||||||
|
|
||||||
|
for i in range(6):
|
||||||
|
plt.subplot(2, 3, i+1)
|
||||||
|
plt.imshow(samples[i][0], cmap='gray')
|
||||||
|
# plt.show()
|
||||||
|
img_grid = torchvision.utils.make_grid(samples)
|
||||||
|
writer.add_image('mnist_images', img_grid)
|
||||||
|
writer.close()
|
||||||
|
# sys.exit()
|
||||||
|
|
||||||
|
model = nn.Sequential(
|
||||||
|
nn.Linear(input_size, hidden_size),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(hidden_size, num_classes)
|
||||||
|
# no softmax because its included in the CE loss function
|
||||||
|
).to(device)
|
||||||
|
# print(model)
|
||||||
|
|
||||||
|
# loss and optimizer
|
||||||
|
criterion = nn.CrossEntropyLoss()
|
||||||
|
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||||
|
|
||||||
|
writer.add_graph(model.to('cpu'), samples.to('cpu').reshape(-1, 28*28))
|
||||||
|
writer.close()
|
||||||
|
# sys.exit()
|
||||||
|
|
||||||
|
# training loop
|
||||||
|
num_total_steps = len(train_loader)
|
||||||
|
|
||||||
|
running_loss = 0.0
|
||||||
|
running_correct = 0
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
for batch, (images, labels) in enumerate(train_loader):
|
||||||
|
# reshape 100, 1, 28, 28 -> 100, 784
|
||||||
|
images = images.reshape(-1, 28*28).to(device) # reshape and send to gpu if available
|
||||||
|
labels = labels.to(device)
|
||||||
|
model = model.to(device)
|
||||||
|
|
||||||
|
# forward
|
||||||
|
outputs = model(images)
|
||||||
|
loss = criterion(outputs, labels)
|
||||||
|
|
||||||
|
# backward + update
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
running_loss += loss.item()
|
||||||
|
_, predictions = torch.max(outputs, 1)
|
||||||
|
running_correct += (predictions == labels).sum().item()
|
||||||
|
writer.add_scalar('training loss each', loss.item(), epoch * num_total_steps + batch)
|
||||||
|
writer.add_scalar('accuracy each', (predictions == labels).sum().item(), epoch * num_total_steps + batch)
|
||||||
|
|
||||||
|
|
||||||
|
if (batch+1) % 100 == 0:
|
||||||
|
writer.add_scalar('training loss', running_loss/100, epoch * num_total_steps + batch)
|
||||||
|
writer.add_scalar('accuracy', running_correct/100, epoch * num_total_steps + batch)
|
||||||
|
print(f'Epoch {epoch+1}/{num_epochs}, step {batch+1}/{num_total_steps}, loss = {loss.item():.4f}')
|
||||||
|
running_loss = 0.0
|
||||||
|
running_correct = 0
|
||||||
|
|
||||||
|
# test
|
||||||
|
|
||||||
|
b_labels = []
|
||||||
|
b_preds = []
|
||||||
|
with torch.no_grad():
|
||||||
|
n_correct = 0
|
||||||
|
n_samples = 0
|
||||||
|
for images, labels in test_loader:
|
||||||
|
images = images.reshape(-1, 28*28).to(device)
|
||||||
|
labels = labels.to(device)
|
||||||
|
outputs = model(images)
|
||||||
|
|
||||||
|
# value, index (index is class label)
|
||||||
|
_, predictions = torch.max(outputs.data, 1)
|
||||||
|
n_samples += labels.shape[0]
|
||||||
|
n_correct += (predictions==labels).sum().item()
|
||||||
|
|
||||||
|
sm = nn.Softmax(dim=0)
|
||||||
|
class_predictions = [sm(output) for output in outputs]
|
||||||
|
b_preds.append(class_predictions)
|
||||||
|
b_labels.append(predictions)
|
||||||
|
|
||||||
|
b_preds = torch.cat([torch.stack(batch) for batch in b_preds])
|
||||||
|
b_labels = torch.cat(b_labels)
|
||||||
|
|
||||||
|
acc = 100.*n_correct/n_samples
|
||||||
|
print(f'Accuracy = {acc}%')
|
||||||
|
|
||||||
|
classes = range(10)
|
||||||
|
for i in classes:
|
||||||
|
labels_i = b_labels == i
|
||||||
|
preds_i = b_preds[:,i]
|
||||||
|
writer.add_pr_curve(str(i), labels_i, preds_i, global_step=0)
|
||||||
|
|
||||||
|
writer.close()
|
||||||
Reference in New Issue
Block a user