add readme, chapter 03 finished
This commit is contained in:
166
02_tensors_playground.py
Normal file
166
02_tensors_playground.py
Normal file
@@ -0,0 +1,166 @@
|
||||
import torch
|
||||
|
||||
# empty, zeros, ones of different sizes, specify datatype
|
||||
print('empty, zeros, ones of different sizes, specify datatype')
|
||||
x = torch.empty(1)
|
||||
print(x)
|
||||
x = torch.empty(3)
|
||||
print(x)
|
||||
x = torch.zeros(2, 3)
|
||||
print(x)
|
||||
x = torch.ones(2,3,4)
|
||||
print(x)
|
||||
x = torch.ones(2, 5, dtype=torch.float64)
|
||||
print(x.dtype)
|
||||
print()
|
||||
|
||||
# from data
|
||||
print('from data')
|
||||
x = torch.tensor([2.5, 0.1])
|
||||
print(x)
|
||||
print()
|
||||
|
||||
#basic ops
|
||||
print('basic ops')
|
||||
x = torch.rand(2,2)
|
||||
y = torch.rand(2,2)
|
||||
|
||||
print('add')
|
||||
z1 = x + y
|
||||
z2 = torch.add(x,y)
|
||||
print(x)
|
||||
print(y)
|
||||
print(z1)
|
||||
print(z2)
|
||||
# in place addition
|
||||
x.add_(y)
|
||||
print(x)
|
||||
|
||||
print('sub')
|
||||
z1 = x - y
|
||||
z2 = torch.sub(x,y)
|
||||
print(x)
|
||||
print(y)
|
||||
print(z1)
|
||||
print(z2)
|
||||
# in place addition
|
||||
x.sub_(y)
|
||||
print(x)
|
||||
|
||||
print('mul')
|
||||
z1 = x * y
|
||||
z2 = torch.mul(x,y)
|
||||
print(x)
|
||||
print(y)
|
||||
print(z1)
|
||||
print(z2)
|
||||
# in place addition
|
||||
x.mul_(y)
|
||||
print(x)
|
||||
|
||||
print('div')
|
||||
z1 = x / y
|
||||
z2 = torch.div(x,y)
|
||||
print(x)
|
||||
print(y)
|
||||
print(z1)
|
||||
print(z2)
|
||||
# in place addition
|
||||
x.div_(y)
|
||||
print(x)
|
||||
|
||||
print()
|
||||
|
||||
#slicing
|
||||
print('slicing, item')
|
||||
x = torch.rand(2,3,2)
|
||||
print(x)
|
||||
print(x[:,2,:])
|
||||
print(x[1, 2, 1])
|
||||
print(x[1, 2, 1].item()) # for single element tensors only
|
||||
|
||||
print()
|
||||
|
||||
# reshaping
|
||||
print('reshaping')
|
||||
|
||||
x = torch.rand(4,4)
|
||||
print(x)
|
||||
y = x.view(16)
|
||||
print(y)
|
||||
y = x.view(-1, 8)
|
||||
print(y)
|
||||
y = x.view(2, -1)
|
||||
print(y)
|
||||
|
||||
# y = x.view(3, -1) # fails 'shape is invalid'
|
||||
# print(y)
|
||||
|
||||
print()
|
||||
|
||||
# transposing
|
||||
print('transposing')
|
||||
x = torch.rand(2, 3)
|
||||
print(x.size())
|
||||
x = torch.transpose(x, 0, 1)
|
||||
print(x.size())
|
||||
x = torch.t(x)
|
||||
print(x.size())
|
||||
x = torch.rand(2, 3, 4)
|
||||
print(f'Original: {x.size()}')
|
||||
x = torch.transpose(x, 0, 1)
|
||||
print(f'01: {x.size()}')
|
||||
x = torch.rand(2, 3, 4)
|
||||
x = torch.transpose(x, 1, 2)
|
||||
print(f'12: {x.size()}')
|
||||
x = torch.rand(2, 3, 4)
|
||||
x = torch.transpose(x, 0, 2)
|
||||
print(f'02: {x.size()}')
|
||||
|
||||
print()
|
||||
|
||||
# numpy
|
||||
import numpy as np
|
||||
print('numpy')
|
||||
|
||||
a = torch.ones(5)
|
||||
print(a)
|
||||
b = a.numpy()
|
||||
print(b)
|
||||
print(type(b))
|
||||
|
||||
a.add_(1) # vectors/tensors share same memory
|
||||
print(a)
|
||||
print(b)
|
||||
|
||||
c = np.ones(5)
|
||||
print(c)
|
||||
d = torch.from_numpy(c)
|
||||
print(d)
|
||||
e = d.to(dtype=torch.float32) # e has its own memory
|
||||
print(e)
|
||||
|
||||
c += 1 # c and d share same memory
|
||||
print(c)
|
||||
print(d)
|
||||
print(e)
|
||||
|
||||
# device
|
||||
print('device')
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device('cuda')
|
||||
else:
|
||||
device = torch.device('cpu')
|
||||
print(device)
|
||||
x = torch.ones(5, device=device)
|
||||
y = torch.ones(5)
|
||||
y = y.to(device)
|
||||
z = x+y
|
||||
print(z)
|
||||
z = z.to('cpu') #move tensor back to cpu for conversion into numopy vector
|
||||
print(z)
|
||||
a = z.numpy()
|
||||
print(a)
|
||||
|
||||
x = torch.ones(5, requires_grad=True) # enable grad for autograd
|
||||
print(x)
|
||||
Reference in New Issue
Block a user