finish chapter 15

This commit is contained in:
Joseph Hopfmüller
2022-10-21 17:29:09 +02:00
parent d405216a55
commit b555b45d1b
3 changed files with 192 additions and 19 deletions

4
.gitignore vendored
View File

@@ -5,5 +5,5 @@ lib64
share/
pyvenv.cfg
.python-version
data/MNIST/
data/CIFAR10/
data/*
!data/wine/

View File

@@ -27,8 +27,8 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'Device is {device}')
# hyper parameters
num_epochs = 4
batch_size = 4
num_epochs = 10
batch_size = 10
learning_rate = 0.001
# dataset has PILImage images of range [0,1]
@@ -51,24 +51,44 @@ test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck') # can also get them from the data, probably
#implement conv net
class ConvNet(nn.Module):
def __init__(self) -> None:
super().__init__()
self.layers = nn.Sequential([
nn.Conv2d(3, 6, 5), # 3 color channels, 6 output channels, kernel size 5
nn.MaxPool2d(2, 2), # kernel size 2, stride 2 (whats stride?)
# 3:23:19
# #implement conv net
# class ConvNet(nn.Module):
# def __init__(self):
# super(ConvNet, self).__init__()
# self.layers = nn.Sequential( # -> 32x32
# nn.Conv2d(3, 6, 5), # 3 color channels, 6 output channels, kernel size 5 -> image size shrinks by 2 pixels in each direction -> 28x28
# nn.ReLU(),
# nn.MaxPool2d(2, 2), # kernel size 2, stride 2 -> shift by 2 pixels after each max-pooling -> image size shrinks to half size -> 14x14
# nn.Conv2d(6, 16, 5), # input size is output size of previous conv layer, -> image size shrinks by 2 pixels in each direction -> 10x10
# nn.ReLU(),
# nn.MaxPool2d(2, 2), # kernel size 2, stride 2 -> shift by 2 pixels after each max-pooling -> image size shrinks to half size -> 5x5
# nn.Flatten(),
# nn.Linear(16*5*5, 120), # 16 channels * 5px * 5px
# nn.ReLU(),
# nn.Linear(120, 84),
# nn.ReLU(),
# nn.Linear(84, 10) # output size 10 for 10 classes
# )
])
pass
def forward(self, x):
# def forward(self, x):
# return self.layers(x)
pass
model = ConvNet().to(device)
# model = ConvNet().to(device)
model = nn.Sequential( # -> 32x32
nn.Conv2d(3, 6, 5), # 3 color channels, 6 output channels, kernel size 5 -> image size shrinks by 2 pixels in each direction -> 28x28
nn.ReLU(),
nn.MaxPool2d(2, 2), # kernel size 2, stride 2 -> shift by 2 pixels after each max-pooling -> image size shrinks to half size -> 14x14
nn.Conv2d(6, 16, 5), # input size is output size of previous conv layer, -> image size shrinks by 2 pixels in each direction -> 10x10
nn.ReLU(),
nn.MaxPool2d(2, 2), # kernel size 2, stride 2 -> shift by 2 pixels after each max-pooling -> image size shrinks to half size -> 5x5
nn.Flatten(),
nn.Linear(16*5*5, 120), # 16 channels * 5px * 5px
nn.ReLU(),
nn.Linear(120, 84),
nn.ReLU(),
nn.Linear(84, 10) # output size 10 for 10 classes
).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)

153
15_transfer.py Normal file
View File

@@ -0,0 +1,153 @@
# new:
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
}
#import data
data_dir = 'data/hymenoptera_data'
sets = ['train', 'val']
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in sets}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=0) for x in sets}
dataset_sizes = {x: len(image_datasets[x]) for x in sets}
class_names = image_datasets['train'].classes
print(f'Classes: {class_names}')
# # show sample images
# def imshow(inp, title):
# """Imshow for Tensor."""
# inp = inp.numpy().transpose((1, 2, 0))
# inp = std * inp + mean
# inp = np.clip(inp, 0, 1)
# plt.imshow(inp)
# plt.title(title)
# plt.show()
# inputs, classes = next(iter(dataloaders['train']))
# out = torchvision.utils.make_grid(inputs)
# imshow(out, title=[class_names[x] for x in classes])
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print(F'Epoch {epoch+1}/{num_epochs}')
print('-'*11)
for phase in sets:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss/dataset_sizes[phase]
epoch_acc = running_corrects.double()/dataset_sizes[phase]
print(f'{phase} Loss: {epoch_loss:.4f}, Acc: {epoch_acc:.4f}')
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed//(60*60):02.0f}:{(time_elapsed%(60*60)//60):02.0f}:{time_elapsed%60:02.0f}')
print(f'Best val Acc: {best_acc:.4f}')
model.load_state_dict(best_model_wts)
return model
## transfer learning - finetuning ##
model = torchvision.models.resnet18(weights=torchvision.models.ResNet18_Weights.DEFAULT) # import pretrained model
#change last layer
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 2)
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
# scheduler
# updates the learning rate
step_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1) # every seven epochs: lr = lr*gamma
model = train_model(model, criterion, optimizer, step_lr_scheduler, num_epochs=50)
print('-'*50)
print()
## transfer learning - feature extractor ##
model = torchvision.models.resnet18(weights=torchvision.models.ResNet18_Weights.DEFAULT) # import pretrained model # import pretrained model
for param in model.parameters():
param.requires_grad = False
# freezes all layers in beginning
#change last layer
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 2)
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
# scheduler
# updates the learning rate
step_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1) # every seven epochs: lr = lr*gamma
model = train_model(model, criterion, optimizer, step_lr_scheduler, num_epochs=50)