finish chapter 15
This commit is contained in:
4
.gitignore
vendored
4
.gitignore
vendored
@@ -5,5 +5,5 @@ lib64
|
|||||||
share/
|
share/
|
||||||
pyvenv.cfg
|
pyvenv.cfg
|
||||||
.python-version
|
.python-version
|
||||||
data/MNIST/
|
data/*
|
||||||
data/CIFAR10/
|
!data/wine/
|
||||||
@@ -27,8 +27,8 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|||||||
print(f'Device is {device}')
|
print(f'Device is {device}')
|
||||||
|
|
||||||
# hyper parameters
|
# hyper parameters
|
||||||
num_epochs = 4
|
num_epochs = 10
|
||||||
batch_size = 4
|
batch_size = 10
|
||||||
learning_rate = 0.001
|
learning_rate = 0.001
|
||||||
|
|
||||||
# dataset has PILImage images of range [0,1]
|
# dataset has PILImage images of range [0,1]
|
||||||
@@ -51,24 +51,44 @@ test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size)
|
|||||||
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
||||||
'dog', 'frog', 'horse', 'ship', 'truck') # can also get them from the data, probably
|
'dog', 'frog', 'horse', 'ship', 'truck') # can also get them from the data, probably
|
||||||
|
|
||||||
#implement conv net
|
|
||||||
class ConvNet(nn.Module):
|
|
||||||
def __init__(self) -> None:
|
|
||||||
super().__init__()
|
|
||||||
self.layers = nn.Sequential([
|
|
||||||
nn.Conv2d(3, 6, 5), # 3 color channels, 6 output channels, kernel size 5
|
|
||||||
nn.MaxPool2d(2, 2), # kernel size 2, stride 2 (whats stride?)
|
|
||||||
|
|
||||||
# 3:23:19
|
|
||||||
|
|
||||||
])
|
# #implement conv net
|
||||||
pass
|
# class ConvNet(nn.Module):
|
||||||
|
# def __init__(self):
|
||||||
|
# super(ConvNet, self).__init__()
|
||||||
|
# self.layers = nn.Sequential( # -> 32x32
|
||||||
|
# nn.Conv2d(3, 6, 5), # 3 color channels, 6 output channels, kernel size 5 -> image size shrinks by 2 pixels in each direction -> 28x28
|
||||||
|
# nn.ReLU(),
|
||||||
|
# nn.MaxPool2d(2, 2), # kernel size 2, stride 2 -> shift by 2 pixels after each max-pooling -> image size shrinks to half size -> 14x14
|
||||||
|
# nn.Conv2d(6, 16, 5), # input size is output size of previous conv layer, -> image size shrinks by 2 pixels in each direction -> 10x10
|
||||||
|
# nn.ReLU(),
|
||||||
|
# nn.MaxPool2d(2, 2), # kernel size 2, stride 2 -> shift by 2 pixels after each max-pooling -> image size shrinks to half size -> 5x5
|
||||||
|
# nn.Flatten(),
|
||||||
|
# nn.Linear(16*5*5, 120), # 16 channels * 5px * 5px
|
||||||
|
# nn.ReLU(),
|
||||||
|
# nn.Linear(120, 84),
|
||||||
|
# nn.ReLU(),
|
||||||
|
# nn.Linear(84, 10) # output size 10 for 10 classes
|
||||||
|
# )
|
||||||
|
|
||||||
def forward(self, x):
|
# def forward(self, x):
|
||||||
# return self.layers(x)
|
# return self.layers(x)
|
||||||
pass
|
|
||||||
|
|
||||||
model = ConvNet().to(device)
|
# model = ConvNet().to(device)
|
||||||
|
model = nn.Sequential( # -> 32x32
|
||||||
|
nn.Conv2d(3, 6, 5), # 3 color channels, 6 output channels, kernel size 5 -> image size shrinks by 2 pixels in each direction -> 28x28
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.MaxPool2d(2, 2), # kernel size 2, stride 2 -> shift by 2 pixels after each max-pooling -> image size shrinks to half size -> 14x14
|
||||||
|
nn.Conv2d(6, 16, 5), # input size is output size of previous conv layer, -> image size shrinks by 2 pixels in each direction -> 10x10
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.MaxPool2d(2, 2), # kernel size 2, stride 2 -> shift by 2 pixels after each max-pooling -> image size shrinks to half size -> 5x5
|
||||||
|
nn.Flatten(),
|
||||||
|
nn.Linear(16*5*5, 120), # 16 channels * 5px * 5px
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(120, 84),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(84, 10) # output size 10 for 10 classes
|
||||||
|
).to(device)
|
||||||
|
|
||||||
criterion = nn.CrossEntropyLoss()
|
criterion = nn.CrossEntropyLoss()
|
||||||
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
||||||
153
15_transfer.py
Normal file
153
15_transfer.py
Normal file
@@ -0,0 +1,153 @@
|
|||||||
|
# new:
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
from torch.optim import lr_scheduler
|
||||||
|
import numpy as np
|
||||||
|
import torchvision
|
||||||
|
from torchvision import datasets, models, transforms
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import time
|
||||||
|
import os
|
||||||
|
import copy
|
||||||
|
|
||||||
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
|
||||||
|
mean = np.array([0.485, 0.456, 0.406])
|
||||||
|
std = np.array([0.229, 0.224, 0.225])
|
||||||
|
|
||||||
|
data_transforms = {
|
||||||
|
'train': transforms.Compose([
|
||||||
|
transforms.RandomResizedCrop(224),
|
||||||
|
transforms.RandomHorizontalFlip(),
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize(mean, std)
|
||||||
|
]),
|
||||||
|
'val': transforms.Compose([
|
||||||
|
transforms.Resize(256),
|
||||||
|
transforms.CenterCrop(224),
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize(mean, std)
|
||||||
|
])
|
||||||
|
}
|
||||||
|
|
||||||
|
#import data
|
||||||
|
data_dir = 'data/hymenoptera_data'
|
||||||
|
sets = ['train', 'val']
|
||||||
|
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in sets}
|
||||||
|
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=0) for x in sets}
|
||||||
|
dataset_sizes = {x: len(image_datasets[x]) for x in sets}
|
||||||
|
class_names = image_datasets['train'].classes
|
||||||
|
print(f'Classes: {class_names}')
|
||||||
|
|
||||||
|
|
||||||
|
# # show sample images
|
||||||
|
# def imshow(inp, title):
|
||||||
|
# """Imshow for Tensor."""
|
||||||
|
# inp = inp.numpy().transpose((1, 2, 0))
|
||||||
|
# inp = std * inp + mean
|
||||||
|
# inp = np.clip(inp, 0, 1)
|
||||||
|
# plt.imshow(inp)
|
||||||
|
# plt.title(title)
|
||||||
|
# plt.show()
|
||||||
|
# inputs, classes = next(iter(dataloaders['train']))
|
||||||
|
# out = torchvision.utils.make_grid(inputs)
|
||||||
|
# imshow(out, title=[class_names[x] for x in classes])
|
||||||
|
|
||||||
|
|
||||||
|
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
|
||||||
|
since = time.time()
|
||||||
|
best_model_wts = copy.deepcopy(model.state_dict())
|
||||||
|
best_acc = 0.0
|
||||||
|
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
print(F'Epoch {epoch+1}/{num_epochs}')
|
||||||
|
print('-'*11)
|
||||||
|
|
||||||
|
for phase in sets:
|
||||||
|
if phase == 'train':
|
||||||
|
model.train()
|
||||||
|
else:
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
running_loss = 0.0
|
||||||
|
running_corrects = 0
|
||||||
|
|
||||||
|
for inputs, labels in dataloaders[phase]:
|
||||||
|
inputs = inputs.to(device)
|
||||||
|
labels = labels.to(device)
|
||||||
|
|
||||||
|
with torch.set_grad_enabled(phase == 'train'):
|
||||||
|
outputs = model(inputs)
|
||||||
|
_, preds = torch.max(outputs, 1)
|
||||||
|
loss = criterion(outputs, labels)
|
||||||
|
|
||||||
|
if phase == 'train':
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
running_loss += loss.item() * inputs.size(0)
|
||||||
|
running_corrects += torch.sum(preds == labels.data)
|
||||||
|
|
||||||
|
if phase == 'train':
|
||||||
|
scheduler.step()
|
||||||
|
|
||||||
|
epoch_loss = running_loss/dataset_sizes[phase]
|
||||||
|
epoch_acc = running_corrects.double()/dataset_sizes[phase]
|
||||||
|
|
||||||
|
print(f'{phase} Loss: {epoch_loss:.4f}, Acc: {epoch_acc:.4f}')
|
||||||
|
|
||||||
|
if phase == 'val' and epoch_acc > best_acc:
|
||||||
|
best_acc = epoch_acc
|
||||||
|
best_model_wts = copy.deepcopy(model.state_dict())
|
||||||
|
|
||||||
|
print()
|
||||||
|
|
||||||
|
time_elapsed = time.time() - since
|
||||||
|
print(f'Training complete in {time_elapsed//(60*60):02.0f}:{(time_elapsed%(60*60)//60):02.0f}:{time_elapsed%60:02.0f}')
|
||||||
|
print(f'Best val Acc: {best_acc:.4f}')
|
||||||
|
|
||||||
|
model.load_state_dict(best_model_wts)
|
||||||
|
return model
|
||||||
|
|
||||||
|
## transfer learning - finetuning ##
|
||||||
|
model = torchvision.models.resnet18(weights=torchvision.models.ResNet18_Weights.DEFAULT) # import pretrained model
|
||||||
|
|
||||||
|
#change last layer
|
||||||
|
num_ftrs = model.fc.in_features
|
||||||
|
model.fc = nn.Linear(num_ftrs, 2)
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
criterion = nn.CrossEntropyLoss()
|
||||||
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
|
||||||
|
|
||||||
|
# scheduler
|
||||||
|
# updates the learning rate
|
||||||
|
step_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1) # every seven epochs: lr = lr*gamma
|
||||||
|
|
||||||
|
model = train_model(model, criterion, optimizer, step_lr_scheduler, num_epochs=50)
|
||||||
|
|
||||||
|
print('-'*50)
|
||||||
|
print()
|
||||||
|
|
||||||
|
## transfer learning - feature extractor ##
|
||||||
|
model = torchvision.models.resnet18(weights=torchvision.models.ResNet18_Weights.DEFAULT) # import pretrained model # import pretrained model
|
||||||
|
for param in model.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
# freezes all layers in beginning
|
||||||
|
|
||||||
|
#change last layer
|
||||||
|
num_ftrs = model.fc.in_features
|
||||||
|
model.fc = nn.Linear(num_ftrs, 2)
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
criterion = nn.CrossEntropyLoss()
|
||||||
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
|
||||||
|
|
||||||
|
# scheduler
|
||||||
|
# updates the learning rate
|
||||||
|
step_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1) # every seven epochs: lr = lr*gamma
|
||||||
|
|
||||||
|
model = train_model(model, criterion, optimizer, step_lr_scheduler, num_epochs=50)
|
||||||
Reference in New Issue
Block a user