finish 09

This commit is contained in:
Joseph Hopfmüller
2022-10-17 14:58:38 +02:00
parent 3ce77417fe
commit 563f0ff8ec
7 changed files with 441 additions and 0 deletions

60
07_linear_regression.py Normal file
View File

@@ -0,0 +1,60 @@
# this is a recap
# a training pipeline generally consists of 3 steps:
# 1. Design model (input, output size, forward pass (layers))
# 2. Construct loss and optimizer
# 3. Training loop
# - forward pass: compute prediction
# - backward pass: gradient computation
# - update parameters
# (iterate step 3)
import torch
import torch.nn as nn
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt
# 0. data preparation
X_numpy, Y_numpy = datasets.make_regression(n_samples=100, n_features=1, noise=20, random_state=1)
X = torch.from_numpy(X_numpy.astype(np.float32))
y = torch.from_numpy(Y_numpy.astype(np.float32))
y = y.view(y.shape[0], 1) # reshape into column vector
n_samples, n_features = X.shape
# 1. model
input_size = n_features
output_size = 1
model = nn.Linear(input_size, output_size)
# 2. loss and optimizer
learning_rate = .01
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
# 3. training loop
n_epochs = 10000
for epoch in range(n_epochs):
#forward pass and loss
y_pred = model(X)
loss = criterion(y, y_pred)
#backward pass
loss.backward()
#update
optimizer.step()
optimizer.zero_grad()
if (epoch+1) % (n_epochs/10) == 0:
print(f'Epoch {epoch+1}: loss = {loss.item():.4f}')
# plot
predicted = model(X).detach().numpy()
plt.plot(X_numpy, Y_numpy, 'ro')
plt.plot(X_numpy, predicted, 'b')
plt.show()