Compare commits

...

7 Commits

Author SHA1 Message Date
Joseph Hopfmüller
487288c923 define new activation functions and parametrizations 2024-11-29 15:51:25 +01:00
Joseph Hopfmüller
bdf6f5bfb8 clean up regen_no_hyper.py 2024-11-29 15:50:34 +01:00
Joseph Hopfmüller
e02662ed4f new optuna studies 2024-11-29 15:49:59 +01:00
Joseph Hopfmüller
fd7a0b9c31 using latest knowledge for hyperparameter search 2024-11-29 15:49:46 +01:00
Joseph Hopfmüller
ff32aefd52 minor fixes and changes 2024-11-29 15:49:10 +01:00
Joseph Hopfmüller
b156b9ceaf refactor hypertraining.py to improve model layer handling and response plotting; adjust data settings for batch processing 2024-11-29 15:48:27 +01:00
Joseph Hopfmüller
cfa08aae4e add training.py for defining and running models without hyperparametertuning 2024-11-29 15:48:18 +01:00
9 changed files with 1258 additions and 461 deletions

View File

@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:f3510d41f9f0605e438a09767c43edda38162601292be1207f50747117ae5479
size 9863168
oid sha256:746ea83013870351296e01e294905ee027291ef79fd78c1e6b69dd9ebaa1cba0
size 10240000

View File

@@ -19,7 +19,7 @@ import time
from matplotlib import pyplot as plt # noqa: F401
import numpy as np
import path_fix
import add_pypho # noqa: F401
import pypho
default_config = f"""
@@ -497,18 +497,18 @@ def plot_eye_diagram(
if __name__ == "__main__":
path_fix.show_log()
add_pypho.show_log()
config = get_config()
length_ranges = [1000, 10000]
length_scales = [1, 2, 3, 4, 5, 6, 7, 8, 9]
# length_ranges = [1000, 10000]
# length_scales = [1, 2, 3, 4, 5, 6, 7, 8, 9]
lengths = [
length_scale * length_range
for length_range in length_ranges
for length_scale in length_scales
]
lengths.append(max(length_ranges)*10)
# lengths = [
# length_scale * length_range
# for length_range in length_ranges
# for length_scale in length_scales
# ]
# lengths.append(max(length_ranges)*10)
# length_loop(config, lengths)

View File

@@ -245,18 +245,18 @@ class HyperTraining:
dtype = getattr(torch, dtype)
afunc = trial.suggest_categorical_optional("model_activation_func", self.model_settings.model_activation_func)
# T0 = trial.suggest_float_optional("T0", self.model_settings.satabsT0 , log=True)
layers = []
last_dim = input_dim
n_nodes = last_dim
for i in range(n_layers):
if hidden_dim_override := self.model_settings.overrides.get(f"n_hidden_nodes_{i}", False):
hidden_dim = trial.suggest_int_optional(f"model_hidden_dim_{i}", hidden_dim_override, force=True)
hidden_dim = trial.suggest_int_optional(f"model_hidden_dim_{i}", hidden_dim_override)
else:
hidden_dim = trial.suggest_int_optional(
f"model_hidden_dim_{i}",
self.model_settings.n_hidden_nodes,
# step=2,
)
layers.append(util.complexNN.SemiUnitaryLayer(last_dim, hidden_dim, dtype=dtype))
last_dim = hidden_dim
@@ -642,6 +642,7 @@ class HyperTraining:
if show:
plt.show()
return fig
def _plot_model_response_head(self, *signals, labels=None, sps=None, title_append="", subtitle="", show=True):
if not hasattr(labels, "__iter__") or isinstance(labels, (str, type(None))):
@@ -684,7 +685,7 @@ class HyperTraining:
):
data_settings_backup = copy.deepcopy(self.data_settings)
pytorch_settings_backup = copy.deepcopy(self.pytorch_settings)
self.data_settings.drop_first = 100
self.data_settings.drop_first = 100*128
self.data_settings.shuffle = False
self.data_settings.train_split = 1.0
self.pytorch_settings.batchsize = (
@@ -739,11 +740,15 @@ class HyperTraining:
@staticmethod
def build_title(trial: optuna.trial.Trial):
title_append = f"for trial {trial.number}"
model_n_layers = util.misc.multi_getattr((trial.params, trial.user_attrs), "model_n_layers", 0)
model_hidden_dims = [
model_n_hidden_layers = util.misc.multi_getattr((trial.params, trial.user_attrs), "model_n_hidden_layers", 0)
input_dim = util.misc.multi_getattr((trial.params, trial.user_attrs), "model_input_dim", 0)
model_dims = [
util.misc.multi_getattr((trial.params, trial.user_attrs), f"model_hidden_dim_{i}", 0)
for i in range(model_n_layers)
for i in range(model_n_hidden_layers)
]
model_dims.insert(0, input_dim)
model_dims.append(2)
model_dims = [str(dim) for dim in model_dims]
model_activation_func = util.misc.multi_getattr(
(trial.params, trial.user_attrs),
"model_activation_func",
@@ -752,7 +757,7 @@ class HyperTraining:
model_dtype = util.misc.multi_getattr((trial.params, trial.user_attrs), "model_dtype", "unknown dtype")
subtitle = (
f"{model_n_layers} layers à ({', '.join(model_hidden_dims)}) units, {model_activation_func}, {model_dtype}"
f"{model_n_hidden_layers+2} layers à ({', '.join(model_dims)}) units, {model_activation_func}, {model_dtype}"
)
return title_append, subtitle

View File

@@ -39,7 +39,7 @@ class PytorchSettings:
summary_dir: str = ".runs"
write_every: int = 10
head_symbols: int = 40
eye_symbols: int = 1000
eye_symbols: int = 400
# model settings
@@ -48,8 +48,11 @@ class ModelSettings:
output_dim: int = 2
n_hidden_layers: tuple | int = 3
n_hidden_nodes: tuple | int = 8
model_activation_func: tuple = "ModReLU"
model_activation_func: tuple | str = "ModReLU"
overrides: dict = field(default_factory=dict)
dropout_prob: float | None = None
model_layer_function: str | None = None
model_layer_parametrizations: list= field(default_factory=list)
@dataclass

View File

@@ -0,0 +1,739 @@
import copy
from datetime import datetime
from pathlib import Path
from typing import Literal
import matplotlib
import torch.nn.utils.parametrize
try:
matplotlib.use("cairo")
except ImportError:
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
# import torch.nn.functional as F # mse_loss doesn't support complex numbers
import torch.optim as optim
import torch.utils.data
from torch.utils.tensorboard import SummaryWriter
from rich.progress import (
Progress,
TextColumn,
BarColumn,
TaskProgressColumn,
TimeRemainingColumn,
MofNCompleteColumn,
TimeElapsedColumn,
)
from rich.console import Console
from util.datasets import FiberRegenerationDataset
import util
from .settings import (
GlobalSettings,
DataSettings,
ModelSettings,
OptimizerSettings,
PytorchSettings,
)
class regenerator(nn.Module):
def __init__(
self,
*dims,
layer_function=util.complexNN.ONN,
layer_parametrizations: list[dict] = None,
# [
# {
# "tensor_name": "weight",
# "parametrization": util.complexNN.Unitary,
# },
# {
# "tensor_name": "scale",
# "parametrization": util.complexNN.Clamp,
# },
# ],
activation_function=util.complexNN.Pow,
dtype=torch.float64,
dropout_prob=0.01,
**kwargs,
):
super(regenerator, self).__init__()
if len(dims) == 0:
try:
dims = kwargs["dims"]
except KeyError:
raise ValueError("dims must be provided")
self._n_hidden_layers = len(dims) - 2
self._layers = nn.Sequential()
for i in range(self._n_hidden_layers + 1):
self._layers.append(layer_function(dims[i], dims[i + 1], dtype=dtype))
if i < self._n_hidden_layers:
if dropout_prob is not None:
self._layers.append(util.complexNN.DropoutComplex(p=dropout_prob))
self._layers.append(activation_function())
# add parametrizations
if layer_parametrizations is not None:
for layer_parametrization in layer_parametrizations:
tensor_name = layer_parametrization.get("tensor_name", None)
parametrization = layer_parametrization.get("parametrization", None)
param_kwargs = layer_parametrization.get("kwargs", {})
if (
tensor_name is not None
and tensor_name in self._layers[-1]._parameters
and parametrization is not None
):
parametrization(self._layers[-1], tensor_name, **param_kwargs)
def forward(self, input_x):
x = input_x
# check if tracing
if torch.jit.is_tracing():
for layer in self._layers:
x = layer(x)
else:
# with torch.nn.utils.parametrize.cached():
for layer in self._layers:
x = layer(x)
return x
def traverse_dict_update(target, source):
for k, v in source.items():
if isinstance(v, dict):
if k not in target:
target[k] = {}
traverse_dict_update(target[k], v)
else:
try:
target[k] = v
except TypeError:
target.__dict__[k] = v
class Trainer:
def __init__(
self,
*,
global_settings=None,
data_settings=None,
pytorch_settings=None,
model_settings=None,
optimizer_settings=None,
console=None,
checkpoint_path=None,
settings_override=None,
reset_epoch=False,
):
self.resume = checkpoint_path is not None
torch.serialization.add_safe_globals([
*util.complexNN.__all__,
GlobalSettings,
DataSettings,
ModelSettings,
OptimizerSettings,
PytorchSettings,
regenerator,
torch.nn.utils.parametrizations.orthogonal
])
if self.resume:
self.checkpoint_dict = torch.load(checkpoint_path, weights_only=True)
if settings_override is not None:
traverse_dict_update(self.checkpoint_dict["settings"], settings_override)
if reset_epoch:
self.checkpoint_dict["epoch"] = -1
self.global_settings: GlobalSettings = self.checkpoint_dict["settings"]["global_settings"]
self.data_settings: DataSettings = self.checkpoint_dict["settings"]["data_settings"]
self.pytorch_settings: PytorchSettings = self.checkpoint_dict["settings"]["pytorch_settings"]
self.model_settings: ModelSettings = self.checkpoint_dict["settings"]["model_settings"]
self.optimizer_settings: OptimizerSettings = self.checkpoint_dict["settings"]["optimizer_settings"]
else:
if global_settings is None:
raise ValueError("global_settings must be provided")
if data_settings is None:
raise ValueError("data_settings must be provided")
if pytorch_settings is None:
raise ValueError("pytorch_settings must be provided")
if model_settings is None:
raise ValueError("model_settings must be provided")
if optimizer_settings is None:
raise ValueError("optimizer_settings must be provided")
self.global_settings: GlobalSettings = global_settings
self.data_settings: DataSettings = data_settings
self.pytorch_settings: PytorchSettings = pytorch_settings
self.model_settings: ModelSettings = model_settings
self.optimizer_settings: OptimizerSettings = optimizer_settings
self.console = console or Console()
self.writer = None
def setup_tb_writer(self, append=None):
log_dir = self.pytorch_settings.summary_dir + "/" + (datetime.now().strftime("%Y%m%d_%H%M%S"))
if append is not None:
log_dir += "_" + str(append)
print(f"Logging to {log_dir}")
self.writer = SummaryWriter(log_dir=log_dir)
def save_checkpoint(self, save_dict, filename):
torch.save(save_dict, filename)
def build_checkpoint_dict(self, loss=None, epoch=None):
return {
"epoch": -1 if epoch is None else epoch,
"loss": float("inf") if loss is None else loss,
"model_state_dict": copy.deepcopy(self.model.state_dict()),
"optimizer_state_dict": copy.deepcopy(self.optimizer.state_dict()),
"scheduler_state_dict": copy.deepcopy(self.scheduler.state_dict()) if hasattr(self, "scheduler") else None,
"model_kwargs": copy.deepcopy(self.model_kwargs),
"settings": {
"global_settings": copy.deepcopy(self.global_settings),
"data_settings": copy.deepcopy(self.data_settings),
"pytorch_settings": copy.deepcopy(self.pytorch_settings),
"model_settings": copy.deepcopy(self.model_settings),
"optimizer_settings": copy.deepcopy(self.optimizer_settings),
},
}
def define_model(self, model_kwargs=None):
if model_kwargs is None:
n_hidden_layers = self.model_settings.n_hidden_layers
input_dim = 2 * self.data_settings.output_size
dtype = getattr(torch, self.data_settings.dtype)
afunc = getattr(util.complexNN, self.model_settings.model_activation_func)
layer_func = getattr(util.complexNN, self.model_settings.model_layer_function)
layer_parametrizations = self.model_settings.model_layer_parametrizations
hidden_dims = [self.model_settings.overrides.get(f"n_hidden_nodes_{i}") for i in range(n_hidden_layers)]
self.model_kwargs = {
"dims": (input_dim, *hidden_dims, self.model_settings.output_dim),
"layer_function": layer_func,
"layer_parametrizations": layer_parametrizations,
"activation_function": afunc,
"dtype": dtype,
"dropout_prob": self.model_settings.dropout_prob,
}
else:
self.model_kwargs = model_kwargs
input_dim = self.model_kwargs["dims"][0]
dtype = self.model_kwargs["dtype"]
# dims = self.model_kwargs.pop("dims")
self.model = regenerator(**self.model_kwargs)
self.writer.add_graph(self.model, torch.zeros(1, input_dim, dtype=dtype))
self.model = self.model.to(self.pytorch_settings.device)
def get_sliced_data(self, override=None):
symbols = self.data_settings.symbols
in_out_delay = self.data_settings.in_out_delay
xy_delay = self.data_settings.xy_delay
data_size = self.data_settings.output_size
dtype = getattr(torch, self.data_settings.dtype)
num_symbols = None
if override is not None:
num_symbols = override.get("num_symbols", None)
# get dataset
dataset = FiberRegenerationDataset(
file_path=self.data_settings.config_path,
symbols=symbols,
output_dim=data_size,
target_delay=in_out_delay,
xy_delay=xy_delay,
drop_first=self.data_settings.drop_first,
dtype=dtype,
real=not dtype.is_complex,
num_symbols=num_symbols,
)
dataset_size = len(dataset)
indices = list(range(dataset_size))
split = int(np.floor(self.data_settings.train_split * dataset_size))
if self.data_settings.shuffle:
np.random.seed(self.global_settings.seed)
np.random.shuffle(indices)
train_indices, valid_indices = indices[:split], indices[split:]
if self.data_settings.shuffle:
train_sampler = torch.utils.data.SubsetRandomSampler(train_indices)
valid_sampler = torch.utils.data.SubsetRandomSampler(valid_indices)
else:
train_sampler = train_indices
valid_sampler = valid_indices
train_loader = torch.utils.data.DataLoader(
dataset,
batch_size=self.pytorch_settings.batchsize,
sampler=train_sampler,
drop_last=True,
pin_memory=True,
num_workers=self.pytorch_settings.dataloader_workers,
prefetch_factor=self.pytorch_settings.dataloader_prefetch,
)
valid_loader = torch.utils.data.DataLoader(
dataset,
batch_size=self.pytorch_settings.batchsize,
sampler=valid_sampler,
drop_last=True,
pin_memory=True,
num_workers=self.pytorch_settings.dataloader_workers,
prefetch_factor=self.pytorch_settings.dataloader_prefetch,
)
return train_loader, valid_loader
def train_model(
self,
optimizer,
train_loader,
epoch,
enable_progress=False,
):
if enable_progress:
progress = Progress(
TextColumn("[yellow] Training..."),
TextColumn("Error: {task.description}"),
BarColumn(),
TaskProgressColumn(),
TextColumn("[green]Batch"),
MofNCompleteColumn(),
TimeRemainingColumn(),
TimeElapsedColumn(),
transient=False,
console=self.console,
refresh_per_second=10,
)
task = progress.add_task("-.---e--", total=len(train_loader))
progress.start()
running_loss2 = 0.0
running_loss = 0.0
self.model.train()
for batch_idx, (x, y) in enumerate(train_loader):
self.model.zero_grad(set_to_none=True)
x, y = (
x.to(self.pytorch_settings.device),
y.to(self.pytorch_settings.device),
)
y_pred = self.model(x)
loss = util.complexNN.complex_mse_loss(y_pred, y, power=True)
loss_value = loss.item()
loss.backward()
optimizer.step()
running_loss2 += loss_value
running_loss += loss_value
if enable_progress:
progress.update(task, advance=1, description=f"{loss_value:.3e}")
if batch_idx % self.pytorch_settings.write_every == 0:
self.writer.add_scalar(
"training loss",
running_loss2 / (self.pytorch_settings.write_every if batch_idx > 0 else 1),
epoch * len(train_loader) + batch_idx,
)
running_loss2 = 0.0
if enable_progress:
progress.stop()
return running_loss / len(train_loader)
def eval_model(self, valid_loader, epoch, enable_progress=True):
if enable_progress:
progress = Progress(
TextColumn("[green]Evaluating..."),
TextColumn("Error: {task.description}"),
BarColumn(),
TaskProgressColumn(),
TextColumn("[green]Batch"),
MofNCompleteColumn(),
TimeRemainingColumn(),
TimeElapsedColumn(),
transient=False,
console=self.console,
refresh_per_second=10,
)
progress.start()
task = progress.add_task("-.---e--", total=len(valid_loader))
self.model.eval()
running_error = 0
with torch.no_grad():
for batch_idx, (x, y) in enumerate(valid_loader):
x, y = (
x.to(self.pytorch_settings.device),
y.to(self.pytorch_settings.device),
)
y_pred = self.model(x)
error = util.complexNN.complex_mse_loss(y_pred, y, power=True)
error_value = error.item()
running_error += error_value
if enable_progress:
progress.update(task, advance=1, description=f"{error_value:.3e}")
running_error /= len(valid_loader)
self.writer.add_scalar(
"eval loss",
running_error,
epoch,
)
title_append, subtitle = self.build_title(epoch + 1)
self.writer.add_figure(
"fiber response",
self.plot_model_response(
model=self.model,
title_append=title_append,
subtitle=subtitle,
show=False,
),
epoch + 1,
)
self.writer.add_figure(
"eye diagram",
self.plot_model_response(
model=self.model,
title_append=title_append,
subtitle=subtitle,
show=False,
mode="eye",
),
epoch + 1,
)
self.writer_histograms(epoch + 1)
if enable_progress:
progress.stop()
return running_error
def run_model(self, model, loader):
model.eval()
xs = []
ys = []
y_preds = []
with torch.no_grad():
model = model.to(self.pytorch_settings.device)
for x, y in loader:
x, y = (
x.to(self.pytorch_settings.device),
y.to(self.pytorch_settings.device),
)
y_pred = model(x).cpu()
# x = x.cpu()
# y = y.cpu()
y_pred = y_pred.view(y_pred.shape[0], -1, 2)
y = y.view(y.shape[0], -1, 2)
x = x.view(x.shape[0], -1, 2)
xs.append(x[:, 0, :].squeeze())
ys.append(y.squeeze())
y_preds.append(y_pred.squeeze())
xs = torch.vstack(xs).cpu()
ys = torch.vstack(ys).cpu()
y_preds = torch.vstack(y_preds).cpu()
return ys, xs, y_preds
def writer_histograms(self, epoch, attributes=["weight", "weight_U", "weight_V", "bias", "sigma", "scale"]):
for i, layer in enumerate(self.model._layers):
tag = f"layer {i}"
for attribute in attributes:
if hasattr(layer, attribute):
vals: np.ndarray = getattr(layer, attribute).detach().cpu().numpy().flatten()
if vals.ndim <= 1 and len(vals) == 1:
if np.iscomplexobj(vals):
self.writer.add_scalar(f"{tag} {attribute} (Mag)", np.abs(vals), epoch)
self.writer.add_scalar(f"{tag} {attribute} (Phase)", np.angle(vals), epoch)
else:
self.writer.add_scalar(f"{tag} {attribute}", vals, epoch)
else:
if np.iscomplexobj(vals):
self.writer.add_histogram(f"{tag} {attribute} (Mag)", np.abs(vals), epoch, bins="fd")
self.writer.add_histogram(f"{tag} {attribute} (Phase)", np.angle(vals), epoch, bins="fd")
else:
self.writer.add_histogram(f"{tag} {attribute}", vals, epoch, bins="fd")
def train(self):
if self.writer is None:
self.setup_tb_writer()
if self.resume:
model_kwargs = self.checkpoint_dict["model_kwargs"]
else:
model_kwargs = None
self.define_model(model_kwargs=model_kwargs)
print(f"number of parameters (trainable): {sum(p.numel() for p in self.model.parameters())} ({sum(p.numel() for p in self.model.parameters() if p.requires_grad)})")
title_append, subtitle = self.build_title(0)
self.writer.add_figure(
"fiber response",
self.plot_model_response(
model=self.model,
title_append=title_append,
subtitle=subtitle,
show=False,
),
0,
)
self.writer.add_figure(
"eye diagram",
self.plot_model_response(
model=self.model,
title_append=title_append,
subtitle=subtitle,
mode="eye",
show=False,
),
0,
)
self.writer_histograms(0)
train_loader, valid_loader = self.get_sliced_data()
optimizer_name = self.optimizer_settings.optimizer
lr = self.optimizer_settings.learning_rate
self.optimizer: optim.Optimizer = getattr(optim, optimizer_name)(self.model.parameters(), lr=lr)
if self.optimizer_settings.scheduler is not None:
self.scheduler = getattr(optim.lr_scheduler, self.optimizer_settings.scheduler)(
self.optimizer, **self.optimizer_settings.scheduler_kwargs
)
if self.resume:
try:
self.scheduler.load_state_dict(self.checkpoint_dict["scheduler_state_dict"])
except ValueError:
pass
self.writer.add_scalar("learning rate", self.scheduler.get_last_lr()[0], -1)
if not self.resume:
self.best = self.build_checkpoint_dict()
else:
self.best = self.checkpoint_dict
self.model.load_state_dict(self.best["model_state_dict"], strict=False)
try:
self.optimizer.load_state_dict(self.best["optimizer_state_dict"])
except ValueError:
pass
for epoch in range(self.best["epoch"] + 1, self.pytorch_settings.epochs):
enable_progress = True
if enable_progress:
self.console.rule(f"Epoch {epoch + 1}/{self.pytorch_settings.epochs}")
self.train_model(
self.optimizer,
train_loader,
epoch,
enable_progress=enable_progress,
)
loss = self.eval_model(
valid_loader,
epoch,
enable_progress=enable_progress,
)
if self.optimizer_settings.scheduler is not None:
lr_old = self.scheduler.get_last_lr()
self.scheduler.step(loss)
lr_new = self.scheduler.get_last_lr()
if lr_old[0] != lr_new[0]:
self.writer.add_scalar("learning rate", lr_new[0], epoch)
if self.pytorch_settings.save_models and self.model is not None:
save_path = (
Path(self.pytorch_settings.model_dir) / f"{self.writer.get_logdir().split('/')[-1]}_{epoch}.tar"
)
save_path.parent.mkdir(parents=True, exist_ok=True)
checkpoint = self.build_checkpoint_dict(loss, epoch)
self.save_checkpoint(checkpoint, save_path)
if loss < self.best["loss"]:
self.best = checkpoint
save_path = (
Path(self.pytorch_settings.model_dir) / f"best_{self.writer.get_logdir().split('/')[-1]}.tar"
)
save_path.parent.mkdir(parents=True, exist_ok=True)
self.save_checkpoint(self.best, save_path)
self.writer.flush()
self.writer.close()
return self.best
def _plot_model_response_eye(self, *signals, labels=None, sps=None, title_append="", subtitle="", show=True):
if sps is None:
raise ValueError("sps must be provided")
if not hasattr(labels, "__iter__") or isinstance(labels, (str, type(None))):
labels = [labels]
else:
labels = list(labels)
while len(labels) < len(signals):
labels.append(None)
# check if there are any labels
if not any(labels):
labels = [f"signal {i + 1}" for i in range(len(signals))]
fig, axs = plt.subplots(1, 2 * len(signals), sharex=True, sharey=True)
fig.set_figwidth(18)
fig.suptitle(f"Eye diagram{f' {title_append}' if title_append else ''}{f'\n{subtitle}' if subtitle else ''}")
xaxis = np.linspace(0, 2, 2 * sps, endpoint=False)
for j, (label, signal) in enumerate(zip(labels, signals)):
# signal = signal.cpu().numpy()
for i in range(len(signal) // sps - 1):
x, y = signal[i * sps : (i + 2) * sps].T
axs[0 + 2 * j].plot(xaxis, np.abs(x) ** 2, color=f"C{j}", alpha=1 / (len(signal) // sps) * 10)
axs[1 + 2 * j].plot(xaxis, np.abs(y) ** 2, color=f"C{j}", alpha=1 / (len(signal) // sps) * 10)
axs[0 + 2 * j].set_title(label + " x")
axs[1 + 2 * j].set_title(label + " y")
axs[0 + 2 * j].set_xlabel("Symbol")
axs[1 + 2 * j].set_xlabel("Symbol")
axs[0 + 2 * j].set_box_aspect(1)
axs[1 + 2 * j].set_box_aspect(1)
axs[0].set_ylabel("normalized power")
fig.tight_layout()
# axs[1+2*len(labels)-1].set_ylabel("normalized power")
if show:
plt.show()
return fig
def _plot_model_response_head(self, *signals, labels=None, sps=None, title_append="", subtitle="", show=True):
if not hasattr(labels, "__iter__") or isinstance(labels, (str, type(None))):
labels = [labels]
else:
labels = list(labels)
while len(labels) < len(signals):
labels.append(None)
# check if there are any labels
if not any(labels):
labels = [f"signal {i + 1}" for i in range(len(signals))]
fig, axs = plt.subplots(1, 2, sharex=True, sharey=True)
fig.set_figwidth(18)
fig.set_figheight(4)
fig.suptitle(f"Fiber response{f' {title_append}' if title_append else ''}{f'\n{subtitle}' if subtitle else ''}")
for i, ax in enumerate(axs):
for signal, label in zip(signals, labels):
if sps is not None:
xaxis = np.linspace(0, len(signal) / sps, len(signal), endpoint=False)
else:
xaxis = np.arange(len(signal))
ax.plot(xaxis, np.abs(signal[:, i]) ** 2, label=label)
ax.set_xlabel("Sample" if sps is None else "Symbol")
ax.set_ylabel("normalized power")
ax.legend(loc="upper right")
fig.tight_layout()
if show:
plt.show()
return fig
def plot_model_response(
self,
model=None,
title_append="",
subtitle="",
mode: Literal["eye", "head"] = "head",
show=False,
):
data_settings_backup = copy.deepcopy(self.data_settings)
pytorch_settings_backup = copy.deepcopy(self.pytorch_settings)
self.data_settings.drop_first = 100 * 128
self.data_settings.shuffle = False
self.data_settings.train_split = 1.0
self.pytorch_settings.batchsize = (
self.pytorch_settings.eye_symbols if mode == "eye" else self.pytorch_settings.head_symbols
)
plot_loader, _ = self.get_sliced_data(override={"num_symbols": self.pytorch_settings.batchsize})
self.data_settings = data_settings_backup
self.pytorch_settings = pytorch_settings_backup
fiber_in, fiber_out, regen = self.run_model(model, plot_loader)
fiber_in = fiber_in.view(-1, 2)
fiber_out = fiber_out.view(-1, 2)
regen = regen.view(-1, 2)
fiber_in = fiber_in.numpy()
fiber_out = fiber_out.numpy()
regen = regen.numpy()
# https://github.com/matplotlib/matplotlib/issues/27713#issue-2104110987
# https://github.com/matplotlib/matplotlib/issues/27713#issuecomment-1915497463
import gc
if mode == "head":
fig = self._plot_model_response_head(
fiber_in,
fiber_out,
regen,
labels=("fiber in", "fiber out", "regen"),
sps=plot_loader.dataset.samples_per_symbol,
title_append=title_append,
subtitle=subtitle,
show=show,
)
elif mode == "eye":
# raise NotImplementedError("Eye diagram not implemented")
fig = self._plot_model_response_eye(
fiber_in,
fiber_out,
regen,
labels=("fiber in", "fiber out", "regen"),
sps=plot_loader.dataset.samples_per_symbol,
title_append=title_append,
subtitle=subtitle,
show=show,
)
else:
raise ValueError(f"Unknown mode: {mode}")
gc.collect()
return fig
def build_title(self, number: int):
title_append = f"epoch {number}"
model_n_hidden_layers = self.model_settings.n_hidden_layers
input_dim = 2 * self.data_settings.output_size
model_dims = [
self.model_settings.overrides.get(f"n_hidden_nodes_{i}", -1) for i in range(model_n_hidden_layers)
]
model_dims.insert(0, input_dim)
model_dims.append(2)
model_dims = [str(dim) for dim in model_dims]
model_activation_func = self.model_settings.model_activation_func
model_dtype = self.data_settings.dtype
subtitle = f"{model_n_hidden_layers + 2} layers à ({', '.join(model_dims)}) units, {model_activation_func}, {model_dtype}"
return title_append, subtitle

View File

@@ -30,10 +30,10 @@ data_settings = DataSettings(
)
pytorch_settings = PytorchSettings(
epochs=10,
epochs=10000,
batchsize=2**10,
device="cuda",
dataloader_workers=2,
dataloader_workers=12,
dataloader_prefetch=4,
summary_dir=".runs",
write_every=2**5,
@@ -44,33 +44,31 @@ pytorch_settings = PytorchSettings(
model_settings = ModelSettings(
output_dim=2,
# n_hidden_layers = (3, 8),
n_hidden_layers=(4, 6), # study: single_core_regen_20241123_011232
n_hidden_nodes=(4,20),
# overrides={
# "n_hidden_nodes_0": (14, 20), # study: single_core_regen_20241123_011232
# "n_hidden_nodes_1": (8, 16),
# "n_hidden_nodes_2": (10, 16),
# # "n_hidden_nodes_3": (4, 20), # study: single_core_regen_20241123_135749
# "n_hidden_nodes_4": (2, 8),
# "n_hidden_nodes_5": (10, 16),
# },
# model_activation_func = ("ModReLU", "Mag", "Identity")
model_activation_func="Mag", # study: single_core_regen_20241123_011232
n_hidden_layers=4,
overrides={
"n_hidden_nodes_0": 8,
"n_hidden_nodes_1": 6,
"n_hidden_nodes_2": 4,
"n_hidden_nodes_3": 8,
},
model_activation_func="Mag",
# satabsT0=(1e-6, 1),
)
optimizer_settings = OptimizerSettings(
optimizer="Adam",
# learning_rate = (1e-5, 1e-1),
learning_rate=5e-4,
learning_rate=5e-3
# learning_rate=5e-4,
)
optuna_settings = OptunaSettings(
n_trials=512,
n_workers=14,
n_trials=1,
n_workers=1,
timeout=3600,
directions=("maximize", "minimize"),
metrics_names=("neg_log_mse","n_nodes"),
limit_examples=True,
directions=("minimize",),
metrics_names=("mse",),
limit_examples=False,
n_train_batches=500,
# n_valid_batches = 100,
storage="sqlite:///data/single_core_regen.db",

View File

@@ -1,414 +1,130 @@
import copy
from dataclasses import dataclass
from datetime import datetime
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
# import torch.nn.functional as F # mse_loss doesn't support complex numbers
import torch.optim as optim
import torch.utils.data
from torch.utils.tensorboard import SummaryWriter
from rich.progress import (
Progress,
TextColumn,
BarColumn,
TaskProgressColumn,
TimeRemainingColumn,
MofNCompleteColumn,
TimeElapsedColumn,
from hypertraining.settings import (
GlobalSettings,
DataSettings,
PytorchSettings,
ModelSettings,
OptimizerSettings,
)
from rich.console import Console
from rich import print as rprint
# from util.optuna_helpers import optional_suggest_categorical, optional_suggest_float, optional_suggest_int
from hypertraining.training import Trainer
import torch
import json
import util
global_settings = GlobalSettings(
seed=42,
)
# global settings
@dataclass
class GlobalSettings:
seed: int = 42
data_settings = DataSettings(
config_path="data/*-128-16384-100000-0-0-17-0-PAM4-0.ini",
dtype="complex64",
# symbols = (9, 20), # 13 symbol @ 10GBd <-> 1.3ns <-> 0.26m of fiber
symbols=13, # study: single_core_regen_20241123_011232
# output_size = (11, 32), # 26 taps -> 2 taps per input symbol -> 1 tap every 1cm (model has 52 inputs (x/y))
output_size=26, # study: single_core_regen_20241123_011232 (model_input_dim/2)
shuffle=True,
in_out_delay=0,
xy_delay=0,
drop_first=128*64,
train_split=0.8,
)
pytorch_settings = PytorchSettings(
epochs=10000,
batchsize=2**12,
device="cuda",
dataloader_workers=12,
dataloader_prefetch=8,
summary_dir=".runs",
write_every=2**5,
save_models=True,
model_dir=".models",
)
# data settings
@dataclass
class DataSettings:
config_path: str = "data/*-128-16384-100000-0-0-17-0-PAM4-0.ini"
dtype: torch.dtype = torch.complex64
symbols_range: float | int = 8
data_size_range: float | int = 64
shuffle: bool = True
target_delay: float = 0
xy_delay_range: float | int = 0
drop_first: int = 10
train_split: float = 0.8
model_settings = ModelSettings(
output_dim=2,
n_hidden_layers=4,
overrides={
"n_hidden_nodes_0": 8,
"n_hidden_nodes_1": 8,
"n_hidden_nodes_2": 4,
"n_hidden_nodes_3": 6,
},
model_activation_func="PowScale",
# dropout_prob=0.01,
model_layer_function="ONN",
model_layer_parametrizations=[
{
"tensor_name": "weight",
"parametrization": torch.nn.utils.parametrizations.orthogonal,
},
{
"tensor_name": "scales",
"parametrization": util.complexNN.clamp,
},
{
"tensor_name": "scale",
"parametrization": util.complexNN.clamp,
},
{
"tensor_name": "bias",
"parametrization": util.complexNN.clamp,
},
# {
# "tensor_name": "V",
# "parametrization": torch.nn.utils.parametrizations.orthogonal,
# },
# {
# "tensor_name": "S",
# "parametrization": util.complexNN.clamp,
# },
],
)
optimizer_settings = OptimizerSettings(
optimizer="Adam",
learning_rate=0.05,
scheduler="ReduceLROnPlateau",
scheduler_kwargs={
"patience": 2**6,
"factor": 0.9,
# "threshold": 1e-3,
"min_lr": 1e-6,
"cooldown": 10,
},
)
# pytorch settings
@dataclass
class PytorchSettings:
epochs: int = 1000
batchsize: int = 2**12
device: str = "cuda"
summary_dir: str = ".runs"
model_dir: str = ".models"
def save_dict_to_file(dictionary, filename):
"""
Save the best dictionary to a JSON file.
:param best: Dictionary containing the best training results.
:type best: dict
:param filename: Path to the JSON file where the dictionary will be saved.
:type filename: str
"""
with open(filename, 'w') as f:
json.dump(dictionary, f, indent=4)
# model settings
@dataclass
class ModelSettings:
output_size: int = 2
# n_layer_range: float|int = 2
# n_units_range: float|int = 32
n_layers: int = 3
n_units: int = 32
activation_func: tuple | str = "ModReLU"
@dataclass
class OptimizerSettings:
optimizer_range: str = "Adam"
lr_range: float = 2e-3
class Training:
def __init__(self):
self.global_settings = GlobalSettings()
self.data_settings = DataSettings()
self.pytorch_settings = PytorchSettings()
self.model_settings = ModelSettings()
self.optimizer_settings = OptimizerSettings()
self.study_name = (
f"single_core_regen_{datetime.now().strftime('%Y-%m-%d_%H:%M:%S')}"
)
if not hasattr(self.pytorch_settings, "model_dir"):
self.pytorch_settings.model_dir = ".models"
self.writer = None
self.console = Console()
def setup_tb_writer(self, study_name=None, append=None):
log_dir = (
self.pytorch_settings.summary_dir + "/" + (study_name or self.study_name) + ("_" + str(append)) if append else ""
)
self.writer = SummaryWriter(log_dir)
return self.writer
def plot_eye(self, width=2, symbols=None, alpha=None, complex=False, show=True):
if not hasattr(self, "eye_data"):
data, config = util.datasets.load_data(
self.data_settings.config_path,
skipfirst=10,
symbols=symbols or 1000,
real=not self.data_settings.dtype.is_complex,
normalize=True,
)
self.eye_data = {"data": data, "sps": int(config["glova"]["sps"])}
return util.plot.eye(
**self.eye_data,
width=width,
show=show,
alpha=alpha,
complex=complex,
symbols=symbols or 1000,
skipfirst=0,
)
def define_model(self):
n_layers = self.model_settings.n_layers
in_features = 2 * self.data_settings.data_size_range
layers = []
for i in range(n_layers):
out_features = self.model_settings.n_units
layers.append(util.complexNN.UnitaryLayer(in_features, out_features))
# layers.append(getattr(nn, self.model_settings.activation_func)())
layers.append(
getattr(util.complexNN, self.model_settings.activation_func)()
)
in_features = out_features
layers.append(
util.complexNN.UnitaryLayer(in_features, self.model_settings.output_size)
)
if self.writer is not None:
self.writer.add_graph(
nn.Sequential(*layers),
torch.zeros(1, layers[0].in_features, dtype=self.data_settings.dtype),
)
return nn.Sequential(*layers)
def get_sliced_data(self):
symbols = self.data_settings.symbols_range
xy_delay = self.data_settings.xy_delay_range
data_size = self.data_settings.data_size_range
# get dataset
dataset = util.datasets.FiberRegenerationDataset(
file_path=self.data_settings.config_path,
symbols=symbols,
output_dim=data_size,
target_delay=self.data_settings.target_delay,
xy_delay=xy_delay,
drop_first=self.data_settings.drop_first,
dtype=self.data_settings.dtype,
real=not self.data_settings.dtype.is_complex,
# device=self.pytorch_settings.device,
)
dataset_size = len(dataset)
indices = list(range(dataset_size))
split = int(np.floor(self.data_settings.train_split * dataset_size))
if self.data_settings.shuffle:
np.random.seed(self.global_settings.seed)
np.random.shuffle(indices)
train_indices, valid_indices = indices[:split], indices[split:]
if self.data_settings.shuffle:
train_sampler = torch.utils.data.SubsetRandomSampler(train_indices)
valid_sampler = torch.utils.data.SubsetRandomSampler(valid_indices)
else:
train_sampler = train_indices
valid_sampler = valid_indices
train_loader = torch.utils.data.DataLoader(
dataset,
batch_size=self.pytorch_settings.batchsize,
sampler=train_sampler,
drop_last=True,
pin_memory=True,
num_workers=24,
prefetch_factor=4,
# persistent_workers=True
)
valid_loader = torch.utils.data.DataLoader(
dataset,
batch_size=self.pytorch_settings.batchsize,
sampler=valid_sampler,
drop_last=True,
pin_memory=True,
num_workers=24,
prefetch_factor=4,
# persistent_workers=True
)
return train_loader, valid_loader
def train_model(self, model, optimizer, train_loader, epoch):
with Progress(
TextColumn("[yellow] Training..."),
TextColumn("Error: {task.description}"),
BarColumn(),
TaskProgressColumn(),
TextColumn("[green]Batch"),
MofNCompleteColumn(),
TimeRemainingColumn(),
TimeElapsedColumn(),
# description="Training",
transient=False,
console=self.console,
refresh_per_second=10,
) as progress:
task = progress.add_task("-.---e--", total=len(train_loader))
running_loss = 0.0
model.train()
for batch_idx, (x, y) in enumerate(train_loader):
model.zero_grad(set_to_none=True)
x, y = (
x.to(self.pytorch_settings.device),
y.to(self.pytorch_settings.device),
)
y_pred = model(x)
loss = util.complexNN.complex_mse_loss(y_pred, y)
loss.backward()
optimizer.step()
progress.update(task, advance=1, description=f"{loss.item():.3e}")
running_loss += loss.item()
if self.writer is not None:
if (batch_idx + 1) % 10 == 0:
self.writer.add_scalar(
"training loss",
running_loss / 10,
epoch * len(train_loader) + batch_idx,
)
running_loss = 0.0
return running_loss
def eval_model(self, model, valid_loader, epoch):
with Progress(
TextColumn("[green]Evaluating..."),
TextColumn("Error: {task.description}"),
BarColumn(),
TaskProgressColumn(),
TextColumn("[green]Batch"),
MofNCompleteColumn(),
TimeRemainingColumn(),
TimeElapsedColumn(),
# description="Training",
transient=False,
console=self.console,
refresh_per_second=10,
) as progress:
task = progress.add_task("-.---e--", total=len(valid_loader))
model.eval()
running_loss = 0
running_loss2 = 0
with torch.no_grad():
for batch_idx, (x, y) in enumerate(valid_loader):
x, y = (
x.to(self.pytorch_settings.device),
y.to(self.pytorch_settings.device),
)
y_pred = model(x)
loss = util.complexNN.complex_mse_loss(y_pred, y)
running_loss += loss.item()
running_loss2 += loss.item()
progress.update(task, advance=1, description=f"{loss.item():.3e}")
if self.writer is not None:
if (batch_idx + 1) % 10 == 0:
self.writer.add_scalar(
"loss",
running_loss / 10,
epoch * len(valid_loader) + batch_idx,
)
running_loss = 0.0
if self.writer is not None:
self.writer.add_figure("fiber response", self.plot_model_response(model, plot=False), epoch+1)
return running_loss2 / len(valid_loader)
def run_model(self, model, loader):
model.eval()
xs = []
ys = []
y_preds = []
with torch.no_grad():
model = model.to(self.pytorch_settings.device)
for x, y in loader:
x, y = (
x.to(self.pytorch_settings.device),
y.to(self.pytorch_settings.device),
)
y_pred = model(x).cpu()
# x = x.cpu()
# y = y.cpu()
y_pred = y_pred.view(y_pred.shape[0], -1, 2)
y = y.view(y.shape[0], -1, 2)
x = x.view(x.shape[0], -1, 2)
xs.append(x[:, 0, :].squeeze())
ys.append(y.squeeze())
y_preds.append(y_pred.squeeze())
xs = torch.vstack(xs).cpu()
ys = torch.vstack(ys).cpu()
y_preds = torch.vstack(y_preds).cpu()
return ys, xs, y_preds
def objective(self, save=False, plot_before=False):
try:
rprint(*list(self.study_name.split("_")))
self.model = self.define_model().to(self.pytorch_settings.device)
if self.writer is not None:
self.writer.add_figure("fiber response", self.plot_model_response(plot=plot_before), 0)
train_loader, valid_loader = self.get_sliced_data()
optimizer_name = self.optimizer_settings.optimizer_range
lr = self.optimizer_settings.lr_range
optimizer = getattr(optim, optimizer_name)(self.model.parameters(), lr=lr)
for epoch in range(self.pytorch_settings.epochs):
self.console.rule(f"Epoch {epoch + 1}/{self.pytorch_settings.epochs}")
self.train_model(self.model, optimizer, train_loader, epoch)
eval_loss = self.eval_model(self.model, valid_loader, epoch)
return eval_loss
except KeyboardInterrupt:
...
finally:
if hasattr(self, "model"):
save_path = (
Path(self.pytorch_settings.model_dir) / f"{self.study_name}.pth"
)
save_path.parent.mkdir(parents=True, exist_ok=True)
torch.save(self.model, save_path)
def _plot_model_response_plotter(self, fiber_in, fiber_out, regen, plot=True):
fig, axs = plt.subplots(2)
for i, ax in enumerate(axs):
ax.plot(np.abs(fiber_in[:, i]) ** 2, label="fiber in")
ax.plot(np.abs(fiber_out[:, i]) ** 2, label="fiber out")
ax.plot(np.abs(regen[:, i]) ** 2, label="regenerated")
ax.legend()
if plot:
plt.show()
return fig
def plot_model_response(self, model=None, plot=True):
data_settings_backup = copy.copy(self.data_settings)
self.data_settings.shuffle = False
self.data_settings.train_split = 0.01
self.data_settings.drop_first = 100
plot_loader, _ = self.get_sliced_data()
self.data_settings = data_settings_backup
fiber_in, fiber_out, regen = self.run_model(model or self.model, plot_loader)
fiber_in = fiber_in.view(-1, 2)
fiber_out = fiber_out.view(-1, 2)
regen = regen.view(-1, 2)
fiber_in = fiber_in.numpy()
fiber_out = fiber_out.numpy()
regen = regen.numpy()
# https://github.com/matplotlib/matplotlib/issues/27713#issue-2104110987
# https://github.com/matplotlib/matplotlib/issues/27713#issuecomment-1915497463
import gc
fig = self._plot_model_response_plotter(fiber_in, fiber_out, regen, plot=plot)
gc.collect()
return fig
if __name__ == "__main__":
trainer = Training()
trainer = Trainer(
global_settings=global_settings,
data_settings=data_settings,
pytorch_settings=pytorch_settings,
model_settings=model_settings,
optimizer_settings=optimizer_settings,
checkpoint_path='.models/20241128_084935_8885.tar',
settings_override={
"model_settings": {
# "model_activation_func": "PowScale",
"dropout_prob": 0,
}
},
reset_epoch=True,
)
# trainer.plot_eye()
trainer.setup_tb_writer()
trainer.objective(save=True)
best_model = trainer.model
# best_model = trainer.define_model(trainer.study.best_trial).to(trainer.pytorch_settings.device)
trainer.plot_model_response(best_model)
# print(f"Best model: {best_model}")
best = trainer.train()
save_dict_to_file(best, ".models/best_results.json")
...

View File

@@ -1,16 +1,26 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
# from torchlambertw.special import lambertw
def complex_mse_loss(input, target):
def complex_mse_loss(input, target, power=False, reduction="mean"):
"""
Compute the mean squared error between two complex tensors.
If power is set to True, the loss is computed as |input|^2 - |target|^2
"""
if input.is_complex():
return torch.mean(torch.square(input.real - target.real) + torch.square(input.imag - target.imag))
reduce = getattr(torch, reduction)
if power:
input = (input * input.conj()).real.to(dtype=input.dtype.to_real())
target = (target * target.conj()).real.to(dtype=target.dtype.to_real())
if input.is_complex() and target.is_complex():
return reduce(torch.square(input.real - target.real) + torch.square(input.imag - target.imag))
elif input.is_complex() or target.is_complex():
raise ValueError("Input and target must have the same type (real or complex)")
else:
return F.mse_loss(input, target)
return F.mse_loss(input, target, reduction=reduction)
def complex_sse_loss(input, target):
@@ -43,6 +53,174 @@ class UnitaryLayer(nn.Module):
return f"UnitaryLayer({self.in_features}, {self.out_features})"
class _Unitary(nn.Module):
def forward(self, X:torch.Tensor):
if X.ndim < 2:
raise ValueError(
"Only tensors with 2 or more dimensions are supported. "
f"Got a tensor of shape {X.shape}"
)
n, k = X.size(-2), X.size(-1)
transpose = n<k
if transpose:
X = X.transpose(-2, -1)
q, r = torch.linalg.qr(X)
# q: torch.Tensor = q
# r: torch.Tensor = r
d = r.diagonal(dim1=-2, dim2=-1).sgn()
q*=d.unsqueeze(-2)
if transpose:
q = q.transpose(-2, -1)
if n == k:
mask = (torch.linalg.det(q).abs() >= 0).to(q.dtype.to_real())
mask[mask == 0] = -1
mask = mask.unsqueeze(-1)
q[..., 0] *= mask
# X.copy_(q)
return q
def unitary(module: nn.Module, name: str = "weight") -> nn.Module:
weight = getattr(module, name, None)
if not isinstance(weight, torch.Tensor):
raise ValueError(f"Module '{module}' has no parameter or buffer '{name}'")
if weight.ndim < 2:
raise ValueError(f"Expected a matrix or batch of matrices. Got a tensor of {weight.ndim} dimensions.")
if weight.shape[-2] != weight.shape[-1]:
raise ValueError(f"Expected a square matrix or batch of square matrices. Got a tensor of shape {weight.shape}")
unit = _Unitary()
nn.utils.parametrize.register_parametrization(module, name, unit)
return module
class _SpecialUnitary(nn.Module):
def __init__(self):
super().__init__()
def forward(self, X:torch.Tensor):
n, k = X.size(-2), X.size(-1)
if n != k:
raise ValueError(f"Expected a square matrix. Got a tensor of shape {X.shape}")
q, _ = torch.linalg.qr(X)
q = q / torch.linalg.det(q).pow(1/n)
return q
def special_unitary(module: nn.Module, name: str = "weight") -> nn.Module:
weight = getattr(module, name, None)
if not isinstance(weight, torch.Tensor):
raise ValueError(f"Module '{module}' has no parameter or buffer '{name}'")
if weight.ndim < 2:
raise ValueError(f"Expected a matrix or batch of matrices. Got a tensor of {weight.ndim} dimensions.")
if weight.shape[-2] != weight.shape[-1]:
raise ValueError(f"Expected a square matrix or batch of square matrices. Got a tensor of shape {weight.shape}")
unit = _SpecialUnitary()
nn.utils.parametrize.register_parametrization(module, name, unit)
return module
class _Clamp(nn.Module):
def __init__(self, min, max):
super(_Clamp, self).__init__()
self.min = min
self.max = max
def forward(self, x):
if x.is_complex():
# clamp magnitude, ignore phase
return torch.clamp(x.abs(), self.min, self.max) * x / x.abs()
return torch.clamp(x, self.min, self.max)
def clamp(module: nn.Module, name: str = "scale", min=0, max=1) -> nn.Module:
scale = getattr(module, name, None)
if not isinstance(scale, torch.Tensor):
raise ValueError(f"Module '{module}' has no parameter or buffer '{name}'")
cl = _Clamp(min, max)
nn.utils.parametrize.register_parametrization(module, name, cl)
return module
class ONNMiller(nn.Module):
def __init__(self, input_dim, output_dim, dtype=None) -> None:
super(ONNMiller, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.dtype = dtype
self.dim = max(input_dim, output_dim)
# zero pad input to internal size if smaller
if self.input_dim < self.dim:
self.pad = lambda x: F.pad(x, ((self.dim - self.input_dim) // 2, (self.dim - self.input_dim + 1) // 2))
else:
self.pad = lambda x: x
self.pad.__doc__ = f"Zero pad input from {self.input_dim} to {self.dim}"
# crop output to desired size
if self.output_dim < self.dim:
self.crop = lambda x: x[:, (self.dim - self.output_dim) // 2 : (x.shape[1] - (self.dim - self.output_dim + 1) // 2)]
else:
self.crop = lambda x: x
self.crop.__doc__ = f"Crop output from {self.dim} to {self.output_dim}"
self.U = nn.Parameter(torch.randn(self.dim, self.dim, dtype=self.dtype)) # -> parametrization: Unitary
self.S = nn.Parameter(torch.randn(self.dim, dtype=self.dtype)) # -> parametrization: Clamp (magnitude 0..1)
self.V = nn.Parameter(torch.randn(self.dim, self.dim, dtype=self.dtype)) # -> parametrization: Unitary
self.register_buffer("MZI_scale", torch.tensor(2, dtype=self.dtype.to_real()).sqrt())
# V is actually V.H, but
def forward(self, x_in):
x = x_in
x = self.pad(x)
x = x @ self.U
x = x * (self.S.squeeze() / self.MZI_scale)
x = x @ self.V
x = self.crop(x)
return x
class ONN(nn.Module):
def __init__(self, input_dim, output_dim, dtype=None) -> None:
super(ONN, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.dtype = dtype
self.dim = max(input_dim, output_dim)
# zero pad input to internal size if smaller
if self.input_dim < self.dim:
self.pad = lambda x: F.pad(x, ((self.dim - self.input_dim) // 2, (self.dim - self.input_dim + 1) // 2))
self.pad.__doc__ = f"Zero pad input from {self.input_dim} to {self.dim}"
else:
self.pad = lambda x: x
self.pad.__doc__ = f"Input size equals internal size {self.dim}"
# crop output to desired size
if self.output_dim < self.dim:
self.crop = lambda x: x[:, (self.dim - self.output_dim) // 2 : (x.shape[1] - (self.dim - self.output_dim + 1) // 2)]
self.crop.__doc__ = f"Crop output from {self.dim} to {self.output_dim}"
else:
self.crop = lambda x: x
self.crop.__doc__ = f"Output size equals internal size {self.dim}"
self.weight = nn.Parameter(torch.randn(self.dim, self.dim, dtype=self.dtype))
def reset_parameters(self):
q, _ = torch.linalg.qr(self.weight)
self.weight.data = q
# def get_M(self):
# return self.U @ self.sigma @ self.V
def forward(self, x):
return self.crop(self.pad(x) @ self.weight)
class SemiUnitaryLayer(nn.Module):
def __init__(self, input_dim, output_dim, dtype=None):
super(SemiUnitaryLayer, self).__init__()
@@ -51,24 +229,84 @@ class SemiUnitaryLayer(nn.Module):
# Create a larger square matrix for QR decomposition
self.weight = nn.Parameter(torch.randn(max(input_dim, output_dim), max(input_dim, output_dim), dtype=dtype))
self.scale = nn.Parameter(torch.tensor(1.0, dtype=dtype.to_real()))
self.reset_parameters()
def reset_parameters(self):
# Ensure the weights are semi-unitary by QR decomposition
# Ensure the weights are unitary by QR decomposition
q, _ = torch.linalg.qr(self.weight)
# A = QR with A being a complex square matrix -> Q is unitary, R is upper triangular
# truncate the matrix to the desired size
if self.input_dim > self.output_dim:
self.weight.data = q[: self.input_dim, : self.output_dim]
else:
self.weight.data = q[: self.output_dim, : self.input_dim].t()
...
def forward(self, x):
out = torch.matmul(x, self.weight)
with torch.no_grad():
scale = torch.clamp(self.scale, 0.0, 1.0)
out = torch.matmul(x, scale * self.weight)
return out
def __repr__(self):
return f"SemiUnitaryLayer({self.input_dim}, {self.output_dim})"
# class SaturableAbsorberLambertW(nn.Module):
# """
# Implements the activation function for an optical saturable absorber
# base eqn: sigma*tau*I0 = 0.5*(log(Tm/T0))/(1-Tm),
# where: sigma is the absorption cross section
# tau is the radiative lifetime of the absorber material
# T0 is the initial transmittance
# I0 is the input intensity
# Tm is the transmittance of the absorber
# The activation function is defined as:
# Iout = I0 * Tm(I0)
# where Tm(I0) is the transmittance of the absorber as a function of the input intensity I0
# for a unit sigma*tau product, he solution Tm(I0) is given by:
# Tm(I0) = (W(2*exp(2*I0)*I0*T0))/(2*I0),
# where W is the Lambert W function
# if sigma*tau is not 1, I0 has to be scaled by sigma*tau
# (-> x has to be scaled by sqrt(sigma*tau))
# """
# def __init__(self, T0):
# super(SaturableAbsorberLambertW, self).__init__()
# self.register_buffer("T0", torch.tensor(T0))
# def forward(self, x: torch.Tensor):
# xc = x.conj()
# two_x_xc = (2 * x * xc).real
# return (lambertw(2 * torch.exp(two_x_xc) * (x * self.T0 * xc).real) / two_x_xc).to(dtype=x.dtype)
# def backward(self, x):
# xc = x.conj()
# lambert_eval = lambertw(2 * torch.exp(2 * x * xc).real * (x * self.T0 * xc).real)
# return (((xc * (-2 * lambert_eval + 2 * torch.square(x) - 1) + 2 * x * torch.square(xc) + x) * lambert_eval) / (
# 2 * torch.pow(x, 3) * xc * (lambert_eval + 1)
# )).to(dtype=x.dtype)
# class SaturableAbsorber(nn.Module):
# def __init__(self, alpha, I0):
# super(SaturableAbsorber, self).__init__()
# self.register_buffer("alpha", torch.tensor(alpha))
# self.register_buffer("I0", torch.tensor(I0))
# def forward(self, x):
# I = (x*x.conj()).to(dtype=x.dtype.to_real())
# A = self.alpha/(1+I/self.I0)
# class SpreadLayer(nn.Module):
# def __init__(self, in_features, out_features, dtype=None):
# super(SpreadLayer, self).__init__()
@@ -85,6 +323,19 @@ class SemiUnitaryLayer(nn.Module):
#### as defined by zhang et al
class DropoutComplex(nn.Module):
def __init__(self, p=0.5):
super(DropoutComplex, self).__init__()
self.dropout = nn.Dropout(p=p)
def forward(self, x):
if x.is_complex():
mask = self.dropout(torch.ones_like(x.real))
return x * mask
else:
return self.dropout(x)
class Identity(nn.Module):
"""
implements the "activation" function
@@ -97,18 +348,76 @@ class Identity(nn.Module):
def forward(self, x):
return x
class PowRot(nn.Module):
def __init__(self, bias=False):
super(PowRot, self).__init__()
self.scale = nn.Parameter(torch.tensor(1.0))
if bias:
self.bias = nn.Parameter(torch.tensor(0.0))
else:
self.register_buffer("bias", torch.tensor(0.0))
def forward(self, x: torch.Tensor):
if x.is_complex():
return x * torch.exp(-self.scale*1j*x.abs().square()+self.bias.to(dtype=x.dtype))
else:
return x
class Pow(nn.Module):
"""
implements the activation function
M(z) = ||z||^2 + b
"""
def __init__(self, bias=False):
super(Pow, self).__init__()
if bias:
self.bias = nn.Parameter(torch.tensor(0.0))
else:
self.register_buffer("bias", torch.tensor(0.0))
def forward(self, x: torch.Tensor):
return x.abs().square().add(self.bias).to(dtype=x.dtype)
class Mag(nn.Module):
"""
implements the activation function
M(z) = ||z||
M(z) = ||z||+b
"""
def __init__(self):
def __init__(self, bias=False):
super(Mag, self).__init__()
if bias:
self.bias = nn.Parameter(torch.tensor(0.0))
else:
self.register_buffer("bias", torch.tensor(0.0))
def forward(self, x):
return torch.abs(x).to(dtype=x.dtype)
def forward(self, x: torch.Tensor):
return x.abs().add(self.bias).to(dtype=x.dtype)
class MagScale(nn.Module):
def __init__(self, bias=False):
super(MagScale, self).__init__()
if bias:
self.bias = nn.Parameter(torch.tensor(0.0))
else:
self.register_buffer("bias", torch.tensor(0.0))
def forward(self, x: torch.Tensor):
return x.abs().add(self.bias).to(dtype=x.dtype).sin().mul(x)
class PowScale(nn.Module):
def __init__(self, bias=False):
super(PowScale, self).__init__()
if bias:
self.bias = nn.Parameter(torch.tensor(0.0))
else:
self.register_buffer("bias", torch.tensor(0.0))
def forward(self, x: torch.Tensor):
return x.mul(x.abs().square().add(self.bias).to(dtype=x.dtype).sin())
class ModReLU(nn.Module):
@@ -118,17 +427,21 @@ class ModReLU(nn.Module):
= ReLU(||z|| + b)*z/||z||
"""
def __init__(self, b=0):
def __init__(self, bias=True):
super(ModReLU, self).__init__()
self.b = torch.tensor(b)
if bias:
self.bias = nn.Parameter(torch.tensor(0.0))
else:
self.register_buffer("bias", torch.tensor(0.0))
def forward(self, x):
if x.is_complex():
mod = torch.abs(x.real**2 + x.imag**2)
return torch.relu(mod + self.b) * x / mod
mod = x.abs()
out = torch.relu(mod + self.bias) * x / mod
return out.to(dtype=x.dtype)
else:
return torch.relu(x + self.b)
return torch.relu(x + self.bias).to(dtype=x.dtype)
def __repr__(self):
return f"ModReLU(b={self.b})"
@@ -166,3 +479,26 @@ class ZReLU(nn.Module):
return x * (torch.angle(x) >= 0) * (torch.angle(x) <= torch.pi / 2)
else:
return torch.relu(x)
__all__ = [
complex_sse_loss,
complex_mse_loss,
UnitaryLayer,
unitary,
clamp,
ONN,
ONNMiller,
SemiUnitaryLayer,
DropoutComplex,
Identity,
Pow,
PowRot,
Mag,
ModReLU,
CReLU,
ZReLU,
# SaturableAbsorberLambertW,
# SaturableAbsorber,
# SpreadLayer,
]

View File

@@ -20,7 +20,7 @@ def _optional_suggest(
type: str,
log: bool = False,
step: int | float | None = None,
add_user: bool = False,
add_user: bool = True,
force: bool = False,
multiply: float | int = 1,
set_new: bool = True,
@@ -96,7 +96,7 @@ def suggest_categorical_optional(
trial: trial.Trial,
name: str,
choices_or_value: tuple[Any] | list[Any] | Any,
add_user: bool = False,
add_user: bool = True,
force: bool = False,
set_new: bool = True,
):
@@ -129,7 +129,7 @@ def suggest_int_optional(
range_or_value: tuple[int] | list[int] | int,
step: int = 1,
log: bool = False,
add_user: bool = False,
add_user: bool = True,
force: bool = False,
multiply: int = 1,
set_new: bool = True,
@@ -174,7 +174,7 @@ def suggest_float_optional(
range_or_value: tuple[float] | list[float] | float,
step: float | None = None,
log: bool = False,
add_user: bool = False,
add_user: bool = True,
force: bool = False,
multiply: float = 1,
set_new: bool = True,
@@ -222,7 +222,7 @@ def suggest_categorical_optional_wrapper(
self: trial.Trial,
name: str,
choices_or_value: tuple[Any] | list[Any] | Any,
add_user: bool = False,
add_user: bool = True,
force: bool = False,
set_new: bool = True,
):
@@ -253,7 +253,7 @@ def suggest_int_optional_wrapper(
range_or_value: tuple[int] | list[int] | int,
step: int = 1,
log: bool = False,
add_user: bool = False,
add_user: bool = True,
force: bool = False,
multiply: int = 1,
set_new: bool = True,
@@ -295,7 +295,7 @@ def suggest_float_optional_wrapper(
range_or_value: tuple[float] | list[float] | float,
step: float | None = None,
log: bool = False,
add_user: bool = False,
add_user: bool = True,
force: bool = False,
multiply: float = 1,
set_new: bool = True,