diff --git a/src/single-core-regen/hypertraining/hypertraining.py b/src/single-core-regen/hypertraining/hypertraining.py index 50c8da5..d14c308 100644 --- a/src/single-core-regen/hypertraining/hypertraining.py +++ b/src/single-core-regen/hypertraining/hypertraining.py @@ -245,18 +245,18 @@ class HyperTraining: dtype = getattr(torch, dtype) afunc = trial.suggest_categorical_optional("model_activation_func", self.model_settings.model_activation_func) + # T0 = trial.suggest_float_optional("T0", self.model_settings.satabsT0 , log=True) layers = [] last_dim = input_dim n_nodes = last_dim for i in range(n_layers): if hidden_dim_override := self.model_settings.overrides.get(f"n_hidden_nodes_{i}", False): - hidden_dim = trial.suggest_int_optional(f"model_hidden_dim_{i}", hidden_dim_override, force=True) + hidden_dim = trial.suggest_int_optional(f"model_hidden_dim_{i}", hidden_dim_override) else: hidden_dim = trial.suggest_int_optional( f"model_hidden_dim_{i}", self.model_settings.n_hidden_nodes, - # step=2, ) layers.append(util.complexNN.SemiUnitaryLayer(last_dim, hidden_dim, dtype=dtype)) last_dim = hidden_dim @@ -642,6 +642,7 @@ class HyperTraining: if show: plt.show() + return fig def _plot_model_response_head(self, *signals, labels=None, sps=None, title_append="", subtitle="", show=True): if not hasattr(labels, "__iter__") or isinstance(labels, (str, type(None))): @@ -684,7 +685,7 @@ class HyperTraining: ): data_settings_backup = copy.deepcopy(self.data_settings) pytorch_settings_backup = copy.deepcopy(self.pytorch_settings) - self.data_settings.drop_first = 100 + self.data_settings.drop_first = 100*128 self.data_settings.shuffle = False self.data_settings.train_split = 1.0 self.pytorch_settings.batchsize = ( @@ -739,11 +740,15 @@ class HyperTraining: @staticmethod def build_title(trial: optuna.trial.Trial): title_append = f"for trial {trial.number}" - model_n_layers = util.misc.multi_getattr((trial.params, trial.user_attrs), "model_n_layers", 0) - model_hidden_dims = [ + model_n_hidden_layers = util.misc.multi_getattr((trial.params, trial.user_attrs), "model_n_hidden_layers", 0) + input_dim = util.misc.multi_getattr((trial.params, trial.user_attrs), "model_input_dim", 0) + model_dims = [ util.misc.multi_getattr((trial.params, trial.user_attrs), f"model_hidden_dim_{i}", 0) - for i in range(model_n_layers) + for i in range(model_n_hidden_layers) ] + model_dims.insert(0, input_dim) + model_dims.append(2) + model_dims = [str(dim) for dim in model_dims] model_activation_func = util.misc.multi_getattr( (trial.params, trial.user_attrs), "model_activation_func", @@ -752,7 +757,7 @@ class HyperTraining: model_dtype = util.misc.multi_getattr((trial.params, trial.user_attrs), "model_dtype", "unknown dtype") subtitle = ( - f"{model_n_layers} layers à ({', '.join(model_hidden_dims)}) units, {model_activation_func}, {model_dtype}" + f"{model_n_hidden_layers+2} layers à ({', '.join(model_dims)}) units, {model_activation_func}, {model_dtype}" ) return title_append, subtitle