update dataset configurations, add rotation module, and refine model settings for training, new hyperparameter tuning run for corrected datasets

This commit is contained in:
Joseph Hopfmüller
2024-12-29 16:00:36 +01:00
parent 638b62ee03
commit 98305fdf47
10 changed files with 561 additions and 305 deletions

View File

@@ -1,6 +1,8 @@
from datetime import datetime
import optuna
import torch
import util
from hypertraining.hypertraining import HyperTraining
from hypertraining.settings import (
GlobalSettings,
@@ -16,24 +18,29 @@ global_settings = GlobalSettings(
)
data_settings = DataSettings(
config_path="data/*-128-16384-100000-0-0-17-0-PAM4-0.ini",
# config_path="data/*-128-16384-100000-0-0-17-0-PAM4-0.ini",
config_path="data/20241204-131003-128-16384-100000-0-0-17-0-PAM4-0.ini",
dtype="complex64",
# symbols = (9, 20), # 13 symbol @ 10GBd <-> 1.3ns <-> 0.26m of fiber
symbols=13, # study: single_core_regen_20241123_011232
# symbols=13, # study: single_core_regen_20241123_011232
# symbols = (3, 13),
symbols=4,
# output_size = (11, 32), # ballpark 26 taps -> 2 taps per input symbol -> 1 tap every 0.01m (model has 52 inputs)
output_size=26, # study: single_core_regen_20241123_011232 (model_input_dim/2)
# output_size=26, # study: single_core_regen_20241123_011232 (model_input_dim/2)
output_size=(8, 30),
shuffle=True,
in_out_delay=0,
xy_delay=0,
drop_first=128 * 100,
drop_first=256,
train_split=0.8,
randomise_polarisations=False,
)
pytorch_settings = PytorchSettings(
epochs=10000,
epochs=10,
batchsize=2**10,
device="cuda",
dataloader_workers=12,
dataloader_workers=4,
dataloader_prefetch=4,
summary_dir=".runs",
write_every=2**5,
@@ -43,28 +50,70 @@ pytorch_settings = PytorchSettings(
model_settings = ModelSettings(
output_dim=2,
# n_hidden_layers = (3, 8),
n_hidden_layers=4,
overrides={
"n_hidden_nodes_0": 8,
"n_hidden_nodes_1": 6,
"n_hidden_nodes_2": 4,
"n_hidden_nodes_3": 8,
},
model_activation_func="Mag",
# satabsT0=(1e-6, 1),
n_hidden_layers = (2, 5),
n_hidden_nodes=(2, 16),
model_activation_func="EOActivation",
dropout_prob=0,
model_layer_function="ONNRect",
model_layer_kwargs={"square": True},
# scale=(False, True),
scale=False,
model_layer_parametrizations=[
{
"tensor_name": "weight",
"parametrization": util.complexNN.energy_conserving,
},
{
"tensor_name": "alpha",
"parametrization": util.complexNN.clamp,
},
{
"tensor_name": "gain",
"parametrization": util.complexNN.clamp,
"kwargs": {
"min": 0,
"max": float("inf"),
},
},
{
"tensor_name": "phase_bias",
"parametrization": util.complexNN.clamp,
"kwargs": {
"min": 0,
"max": 2 * torch.pi,
},
},
{
"tensor_name": "scales",
"parametrization": util.complexNN.clamp,
},
{
"tensor_name": "angle",
"parametrization": util.complexNN.clamp,
"kwargs": {
"min": -torch.pi,
"max": torch.pi,
},
},
{
"tensor_name": "loss",
"parametrization": util.complexNN.clamp,
},
],
)
optimizer_settings = OptimizerSettings(
optimizer="Adam",
# learning_rate = (1e-5, 1e-1),
learning_rate=5e-3
# learning_rate=5e-4,
optimizer="AdamW",
optimizer_kwargs={
"lr": 5e-3,
"amsgrad": True,
# "weight_decay": 1e-7,
},
)
optuna_settings = OptunaSettings(
n_trials=1,
n_workers=1,
n_trials=1024,
n_workers=8,
timeout=3600,
directions=("minimize",),
metrics_names=("mse",),