add SlicedDataset class and utility scripts; refactor: remove _path_fix.py and update imports;
This commit is contained in:
51
src/single-core-regen/testing/sliced_dataset_test.py
Normal file
51
src/single-core-regen/testing/sliced_dataset_test.py
Normal file
@@ -0,0 +1,51 @@
|
||||
# move into dir single-core-regen before running
|
||||
|
||||
from util.dataset import SlicedDataset
|
||||
from torch.utils.data import DataLoader
|
||||
from matplotlib import pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
def eye_dataset(dataset, no_symbols=None, offset=False, show=True):
|
||||
if no_symbols is None:
|
||||
no_symbols = len(dataset)
|
||||
_, axs = plt.subplots(2,2, sharex=True, sharey=True)
|
||||
|
||||
xaxis = np.linspace(0,dataset.symbols_per_slice,dataset.samples_per_slice)
|
||||
roll = dataset.samples_per_symbol//2 if offset else 0
|
||||
for E_out, E_in in dataset[roll:dataset.samples_per_symbol*no_symbols+roll:dataset.samples_per_symbol]:
|
||||
E_in_x, E_in_y, E_out_x, E_out_y = E_in[0], E_in[1], E_out[0], E_out[1]
|
||||
axs[0,0].plot(xaxis, np.abs( E_in_x.numpy())**2, alpha=0.05, color='C0')
|
||||
axs[1,0].plot(xaxis, np.abs( E_in_y.numpy())**2, alpha=0.05, color='C0')
|
||||
axs[0,1].plot(xaxis, np.abs(E_out_x.numpy())**2, alpha=0.05, color='C0')
|
||||
axs[1,1].plot(xaxis, np.abs(E_out_y.numpy())**2, alpha=0.05, color='C0')
|
||||
|
||||
if show:
|
||||
plt.show()
|
||||
|
||||
# def plt_dataloader(dataloader, show=True):
|
||||
# _, axs = plt.subplots(2,2, sharex=True, sharey=True)
|
||||
|
||||
# E_outs, E_ins = next(iter(dataloader))
|
||||
# for i, (E_out, E_in) in enumerate(zip(E_outs, E_ins)):
|
||||
# xaxis = np.linspace(dataset.symbols_per_slice*i,dataset.symbols_per_slice+dataset.symbols_per_slice*i,dataset.samples_per_slice)
|
||||
# E_in_x, E_in_y, E_out_x, E_out_y = E_in[0], E_in[1], E_out[0], E_out[1]
|
||||
# axs[0,0].plot(xaxis, np.abs(E_in_x.numpy())**2)
|
||||
# axs[1,0].plot(xaxis, np.abs(E_in_y.numpy())**2)
|
||||
# axs[0,1].plot(xaxis, np.abs(E_out_x.numpy())**2)
|
||||
# axs[1,1].plot(xaxis, np.abs(E_out_y.numpy())**2)
|
||||
|
||||
# if show:
|
||||
# plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
dataset = SlicedDataset("data/20241115-175517-128-16384-10000-0-0-17-0-PAM4-0.ini", symbols=1, drop_first=100)
|
||||
print(dataset[0][0].shape)
|
||||
|
||||
eye_dataset(dataset, 1000, offset=True, show=False)
|
||||
|
||||
train_loader = DataLoader(dataset, batch_size=10, shuffle=False)
|
||||
|
||||
# plt_dataloader(train_loader, show=False)
|
||||
|
||||
plt.show()
|
||||
68
src/single-core-regen/testing/torch-import-test.py
Normal file
68
src/single-core-regen/testing/torch-import-test.py
Normal file
@@ -0,0 +1,68 @@
|
||||
import torch
|
||||
import time
|
||||
|
||||
def print_torch_env():
|
||||
print("Torch version: ", torch.__version__)
|
||||
print("CUDA available: ", torch.cuda.is_available())
|
||||
print("CUDA version: ", torch.version.cuda)
|
||||
print("CUDNN version: ", torch.backends.cudnn.version())
|
||||
print("Device count: ", torch.cuda.device_count())
|
||||
print("Current device: ", torch.cuda.current_device())
|
||||
print("Device name: ", torch.cuda.get_device_name(0))
|
||||
print("Device capability: ", torch.cuda.get_device_capability(0))
|
||||
print("Device memory: ", torch.cuda.get_device_properties(0).total_memory)
|
||||
|
||||
def measure_runtime(func):
|
||||
"""
|
||||
Measure the runtime of a function.
|
||||
|
||||
:param func: Function to measure
|
||||
:type func: function
|
||||
:return: Wrapped function with runtime measurement
|
||||
:rtype: function
|
||||
"""
|
||||
def wrapper(*args, **kwargs):
|
||||
start_time = time.time()
|
||||
result = func(*args, **kwargs)
|
||||
end_time = time.time()
|
||||
print(f"Runtime: {end_time - start_time:.6f} seconds")
|
||||
return result, end_time - start_time
|
||||
return wrapper
|
||||
|
||||
@measure_runtime
|
||||
def tensor_addition(a, b):
|
||||
"""
|
||||
Perform tensor addition.
|
||||
|
||||
:param a: First tensor
|
||||
:type a: torch.Tensor
|
||||
:param b: Second tensor
|
||||
:type b: torch.Tensor
|
||||
:return: Sum of tensors
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return a + b
|
||||
|
||||
def runtime_test():
|
||||
x = torch.rand(2**18, 2**10)
|
||||
y = torch.rand(2**18, 2**10)
|
||||
|
||||
print("Tensor addition on CPU")
|
||||
_, cpu_time = tensor_addition(x, y)
|
||||
|
||||
print()
|
||||
print("Tensor addition on GPU")
|
||||
if not torch.cuda.is_available():
|
||||
print("CUDA is not available")
|
||||
return
|
||||
|
||||
_, gpu_time = tensor_addition(x.cuda(), y.cuda())
|
||||
|
||||
print()
|
||||
print(f"Speedup: {cpu_time / gpu_time *100:.2f}%")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print_torch_env()
|
||||
print()
|
||||
runtime_test()
|
||||
Reference in New Issue
Block a user