refactor complex loss functions for improved readability; update settings and dataset classes for consistency

This commit is contained in:
Joseph Hopfmüller
2024-11-24 01:55:32 +01:00
parent 9a16a5637d
commit 7343ccb3a5
4 changed files with 392 additions and 361 deletions

View File

@@ -6,7 +6,8 @@ import matplotlib.pyplot as plt
import numpy as np
import optuna
import optunahub
# import optunahub
import warnings
import torch
@@ -18,26 +19,28 @@ import torch.utils.data
from torch.utils.tensorboard import SummaryWriter
from rich.progress import (
Progress,
TextColumn,
BarColumn,
TaskProgressColumn,
TimeRemainingColumn,
MofNCompleteColumn,
TimeElapsedColumn,
)
from rich.console import Console
# from rich.progress import (
# Progress,
# TextColumn,
# BarColumn,
# TaskProgressColumn,
# TimeRemainingColumn,
# MofNCompleteColumn,
# TimeElapsedColumn,
# )
# from rich.console import Console
# from rich import print as rprint
import multiprocessing
from util.datasets import FiberRegenerationDataset
from util.optuna_helpers import (
force_suggest_categorical,
force_suggest_float,
force_suggest_int,
)
# from util.optuna_helpers import (
# suggest_categorical_optional, # noqa: F401
# suggest_float_optional, # noqa: F401
# suggest_int_optional, # noqa: F401
# )
from util.optuna_helpers import install_optional_suggests
import util
from .settings import (
@@ -49,6 +52,8 @@ from .settings import (
PytorchSettings,
)
install_optional_suggests()
class HyperTraining:
def __init__(
@@ -60,7 +65,7 @@ class HyperTraining:
model_settings,
optimizer_settings,
optuna_settings,
console=None,
# console=None,
):
self.global_settings: GlobalSettings = global_settings
self.data_settings: DataSettings = data_settings
@@ -68,18 +73,16 @@ class HyperTraining:
self.model_settings: ModelSettings = model_settings
self.optimizer_settings: OptimizerSettings = optimizer_settings
self.optuna_settings: OptunaSettings = optuna_settings
self.processes = None
self.console = console or Console()
# self.console = console or Console()
# set some extra settings to make the code more readable
self._extra_optuna_settings()
self.stop_study = True
def setup_tb_writer(self, study_name=None, append=None):
log_dir = (
self.pytorch_settings.summary_dir
+ "/"
+ (study_name or self.optuna_settings.study_name)
)
log_dir = self.pytorch_settings.summary_dir + "/" + (study_name or self.optuna_settings.study_name)
if append is not None:
log_dir += "_" + str(append)
@@ -89,180 +92,211 @@ class HyperTraining:
study_name = self.get_latest_study()
if study_name:
print(f"Resuming study: {study_name}")
if verbose:
print(f"Resuming study: {study_name}")
self.optuna_settings.study_name = study_name
def get_latest_study(self, verbose=True):
def get_latest_study(self, verbose=False) -> optuna.Study:
studies = self.get_studies()
study = None
for study in studies:
study.datetime_start = study.datetime_start or datetime.min
if studies:
study = sorted(studies, key=lambda x: x.datetime_start, reverse=True)[0]
if verbose:
print(f"Last study: {study.study_name}")
study_name = study.study_name
else:
if verbose:
print("No previous studies found")
study_name = None
return study_name
return optuna.load_study(study_name=study.study_name, storage=self.optuna_settings.storage)
# def study(self) -> optuna.Study:
# return optuna.load_study(self.optuna_settings.study_name, storage=self.optuna_settings.storage)
def get_studies(self):
return optuna.get_all_study_summaries(storage=self.optuna_settings.storage)
def setup_study(self):
module = optunahub.load_module(package="samplers/auto_sampler")
# module = optunahub.load_module(package="samplers/auto_sampler")
if self.optuna_settings._parallel:
self.processes = []
pruner = getattr(optuna.pruners, self.optuna_settings.pruner, None)
if pruner and self.optuna_settings.pruner_kwargs is not None:
pruner = pruner(**self.optuna_settings.pruner_kwargs)
elif pruner:
pruner = pruner()
self.study = optuna.create_study(
study_name=self.optuna_settings.study_name,
storage=self.optuna_settings.storage,
load_if_exists=True,
direction=self.optuna_settings.direction,
directions=self.optuna_settings.directions,
sampler=module.AutoSampler(),
direction=self.optuna_settings._direction,
directions=self.optuna_settings._directions,
pruner=pruner,
# sampler=module.AutoSampler(),
)
print("using sampler:", self.study.sampler)
# print("using sampler:", self.study.sampler)
with warnings.catch_warnings(action="ignore"):
self.study.set_metric_names(self.optuna_settings.metrics_names)
self.n_threads = min(
self.optuna_settings.n_trials, self.optuna_settings.n_threads
)
self.processes = []
if self.n_threads > 1:
for _ in range(self.n_threads):
p = multiprocessing.Process(
# target=lambda n_trials: self._run_optimize(self, n_trials),
target=self._run_optimize,
args=(self.optuna_settings.n_trials // self.n_threads,),
)
self.processes.append(p)
# def plot_eye(self, width=2, symbols=None, alpha=None, complex=False, show=True):
# data, config = util.datasets.load_data(
# self.data_settings.config_path,
# skipfirst=10,
# symbols=symbols or 1000,
# real=not complex,
# normalize=True,
# )
# eye_data = {"data": data.numpy(), "sps": int(config["glova"]["sps"])}
# return util.plot.eye(
# **eye_data,
# width=width,
# show=show,
# alpha=alpha,
# complex=complex,
# symbols=symbols or 1000,
# skipfirst=0,
# )
def run_study(self):
if self.processes:
for p in self.processes:
p.start()
for p in self.processes:
p.join()
try:
if self.optuna_settings._parallel:
self._run_parallel_study()
else:
self._run_study()
except KeyboardInterrupt:
print("Stopping. Please wait for the processes to finish.")
self.stop_study = True
remaining_trials = self.optuna_settings.n_trials % self.n_threads
else:
remaining_trials = self.optuna_settings.n_trials
def trials_left(self):
return self.optuna_settings.n_trials - len(self.study.get_trials(states=self.optuna_settings.n_trials_filter))
if remaining_trials:
self._run_optimize(remaining_trials)
def remove_completed_processes(self):
if self.processes is None:
return
for p, process in enumerate(self.processes):
if not process.is_alive():
process.join()
self.processes.pop(p)
def _run_optimize(self, n_trials):
def remove_outliers(self):
if self.optuna_settings.remove_outliers is not None:
trials = self.study.get_trials(states=(optuna.trial.TrialState.COMPLETE,))
if len(trials) == 0:
return
vals = [trial.value for trial in trials]
vals = np.log(vals)
mean = np.mean(vals)
std = np.std(vals)
outliers = [
trial for trial in trials if np.log(trial.value) > mean + self.optuna_settings.remove_outliers * std
]
for trial in outliers:
trial: optuna.trial.Trial = trial
trial.state = optuna.trial.TrialState.FAIL
trial.set_user_attr("outlier", True)
def _run_study(self):
while trials_left := self.trials_left():
self.remove_outliers()
self._run_optimize(n_trials=trials_left, timeout=self.optuna_settings.timeout)
def _run_parallel_study(self):
while trials_left := self.trials_left():
self.remove_outliers()
self.remove_completed_processes()
n_trials = max(trials_left, self.optuna_settings._n_threads) // self.optuna_settings._n_threads
def target_fun():
self._run_optimize(n_trials=n_trials, timeout=self.optuna_settings.timeout)
for _ in range(self.optuna_settings._n_threads - len(self.processes)):
self.processes.append(multiprocessing.Process(target=target_fun))
self.processes[-1].start()
def _run_optimize(self, **kwargs):
self.study.optimize(
self.objective, n_trials=n_trials, timeout=self.optuna_settings.timeout
self.objective,
**kwargs,
show_progress_bar=not self.optuna_settings._parallel,
)
def _extra_optuna_settings(self):
self.optuna_settings.multi_objective = len(self.optuna_settings.directions) > 1
if self.optuna_settings.multi_objective:
self.optuna_settings.direction = None
else:
self.optuna_settings.direction = self.optuna_settings.directions[0]
self.optuna_settings.directions = None
self.optuna_settings._multi_objective = len(self.optuna_settings.directions) > 1
self.optuna_settings.n_train_batches = (
self.optuna_settings.n_train_batches
if self.optuna_settings.limit_examples
else float("inf")
if self.optuna_settings._multi_objective:
self.optuna_settings._direction = None
self.optuna_settings._directions = self.optuna_settings.directions
else:
self.optuna_settings._direction = self.optuna_settings.directions[0]
self.optuna_settings._directions = None
self.optuna_settings._n_train_batches = (
self.optuna_settings.n_train_batches if self.optuna_settings.limit_examples else float("inf")
)
self.optuna_settings.n_valid_batches = (
self.optuna_settings.n_valid_batches
if self.optuna_settings.limit_examples
else float("inf")
self.optuna_settings._n_valid_batches = (
self.optuna_settings.n_valid_batches if self.optuna_settings.limit_examples else float("inf")
)
self.optuna_settings._n_threads = self.optuna_settings.n_workers
self.optuna_settings._parallel = self.optuna_settings._n_threads > 1
def define_model(self, trial: optuna.Trial, writer=None):
n_layers = force_suggest_int(
trial, "model_n_layers", self.model_settings.model_n_layers
)
n_layers = trial.suggest_int_optional("model_n_hidden_layers", self.model_settings.n_hidden_layers)
input_dim = 2 * trial.params.get(
input_dim = trial.suggest_int_optional(
"model_input_dim",
force_suggest_int(trial, "model_input_dim", self.data_settings.model_input_dim),
self.data_settings.output_size,
step=2,
multiply=2,
set_new=False,
)
dtype = trial.params.get(
"model_dtype",
force_suggest_categorical(trial, "model_dtype", self.data_settings.dtype),
)
# trial.set_user_attr("model_input_dim", input_dim)
dtype = trial.suggest_categorical_optional("model_dtype", self.data_settings.dtype, set_new=False)
dtype = getattr(torch, dtype)
afunc = force_suggest_categorical(
trial, "model_activation_func", self.model_settings.model_activation_func
)
afunc = trial.suggest_categorical_optional("model_activation_func", self.model_settings.model_activation_func)
layers = []
last_dim = input_dim
n_nodes = last_dim
for i in range(n_layers):
hidden_dim = force_suggest_int(
trial, f"model_hidden_dim_{i}", self.model_settings.unit_count
)
layers.append(
util.complexNN.SemiUnitaryLayer(last_dim, hidden_dim, dtype=dtype)
)
if hidden_dim_override := self.model_settings.overrides.get(f"n_hidden_nodes_{i}", False):
hidden_dim = trial.suggest_int_optional(f"model_hidden_dim_{i}", hidden_dim_override, force=True)
else:
hidden_dim = trial.suggest_int_optional(
f"model_hidden_dim_{i}",
self.model_settings.n_hidden_nodes,
# step=2,
)
layers.append(util.complexNN.SemiUnitaryLayer(last_dim, hidden_dim, dtype=dtype))
last_dim = hidden_dim
layers.append(getattr(util.complexNN, afunc)())
n_nodes += last_dim
layers.append(
util.complexNN.UnitaryLayer(
hidden_dim, self.model_settings.output_dim, dtype=dtype
)
)
layers.append(util.complexNN.SemiUnitaryLayer(last_dim, self.model_settings.output_dim, dtype=dtype))
model = nn.Sequential(*layers)
if writer is not None:
writer.add_graph(
model, torch.zeros(1, input_dim, dtype=dtype), use_strict_trace=False
)
writer.add_graph(model, torch.zeros(1, input_dim, dtype=dtype), use_strict_trace=False)
n_params = sum(p.numel() for p in model.parameters())
trial.set_user_attr("model_n_params", n_params)
trial.set_user_attr("model_n_nodes", n_nodes)
return model.to(self.pytorch_settings.device)
def get_sliced_data(self, trial: optuna.Trial, override=None):
symbols = trial.params.get(
"dataset_symbols",
force_suggest_float(trial, "dataset_symbols", self.data_settings.symbols),
symbols = trial.suggest_float_optional("dataset_symbols", self.data_settings.symbols, set_new=False)
in_out_delay = trial.suggest_float_optional(
"dataset_in_out_delay", self.data_settings.in_out_delay, set_new=False
)
xy_delay = trial.params.get(
"dataset_xy_delay",
force_suggest_float(trial, "dataset_xy_delay", self.data_settings.xy_delay),
xy_delay = trial.suggest_float_optional("dataset_xy_delay", self.data_settings.xy_delay, set_new=False)
data_size = int(
0.5
* trial.suggest_int_optional(
"model_input_dim",
self.data_settings.output_size,
step=2,
multiply=2,
set_new=False,
)
)
data_size = trial.params.get(
"model_input_dim",
force_suggest_int(trial, "model_input_dim", self.data_settings.model_input_dim),
)
dtype = trial.params.get(
"model_dtype",
force_suggest_categorical(trial, "model_dtype", self.data_settings.dtype),
)
dtype = trial.suggest_categorical_optional("model_dtype", self.data_settings.dtype, set_new=False)
dtype = getattr(torch, dtype)
num_symbols = None
@@ -273,7 +307,7 @@ class HyperTraining:
file_path=self.data_settings.config_path,
symbols=symbols,
output_dim=data_size,
target_delay=self.data_settings.in_out_delay,
target_delay=in_out_delay,
xy_delay=xy_delay,
drop_first=self.data_settings.drop_first,
dtype=dtype,
@@ -327,31 +361,31 @@ class HyperTraining:
train_loader,
epoch,
writer=None,
enable_progress=False,
# enable_progress=False,
):
if enable_progress:
progress = Progress(
TextColumn("[yellow] Training..."),
TextColumn("Error: {task.description}"),
BarColumn(),
TaskProgressColumn(),
TextColumn("[green]Batch"),
MofNCompleteColumn(),
TimeRemainingColumn(),
TimeElapsedColumn(),
# description="Training",
transient=False,
console=self.console,
refresh_per_second=10,
)
task = progress.add_task("-.---e--", total=len(train_loader))
progress.start()
# if enable_progress:
# progress = Progress(
# TextColumn("[yellow] Training..."),
# TextColumn("Error: {task.description}"),
# BarColumn(),
# TaskProgressColumn(),
# TextColumn("[green]Batch"),
# MofNCompleteColumn(),
# TimeRemainingColumn(),
# TimeElapsedColumn(),
# # description="Training",
# transient=False,
# console=self.console,
# refresh_per_second=10,
# )
# task = progress.add_task("-.---e--", total=len(train_loader))
# progress.start()
running_loss2 = 0.0
running_loss = 0.0
model.train()
for batch_idx, (x, y) in enumerate(train_loader):
if batch_idx >= self.optuna_settings.n_train_batches:
if batch_idx >= self.optuna_settings._n_train_batches:
break
model.zero_grad(set_to_none=True)
x, y = (
@@ -366,55 +400,56 @@ class HyperTraining:
running_loss2 += loss_value
running_loss += loss_value
if enable_progress:
progress.update(task, advance=1, description=f"{loss_value:.3e}")
# if enable_progress:
# progress.update(task, advance=1, description=f"{loss_value:.3e}")
if writer is not None:
if batch_idx % self.pytorch_settings.write_every == 0:
writer.add_scalar(
"training loss",
running_loss2
/ (self.pytorch_settings.write_every if batch_idx > 0 else 1),
epoch
* min(len(train_loader), self.optuna_settings.n_train_batches)
+ batch_idx,
running_loss2 / (self.pytorch_settings.write_every if batch_idx > 0 else 1),
epoch * min(len(train_loader), self.optuna_settings._n_train_batches) + batch_idx,
)
running_loss2 = 0.0
if enable_progress:
progress.stop()
# if enable_progress:
# progress.stop()
return running_loss / min(
len(train_loader), self.optuna_settings.n_train_batches
)
return running_loss / min(len(train_loader), self.optuna_settings._n_train_batches)
def eval_model(
self, trial, model, valid_loader, epoch, writer=None, enable_progress=True
self,
trial,
model,
valid_loader,
epoch,
writer=None,
# enable_progress=True
):
if enable_progress:
progress = Progress(
TextColumn("[green]Evaluating..."),
TextColumn("Error: {task.description}"),
BarColumn(),
TaskProgressColumn(),
TextColumn("[green]Batch"),
MofNCompleteColumn(),
TimeRemainingColumn(),
TimeElapsedColumn(),
# description="Training",
transient=False,
console=self.console,
refresh_per_second=10,
)
progress.start()
task = progress.add_task("-.---e--", total=len(valid_loader))
# if enable_progress:
# progress = Progress(
# TextColumn("[green]Evaluating..."),
# TextColumn("Error: {task.description}"),
# BarColumn(),
# TaskProgressColumn(),
# TextColumn("[green]Batch"),
# MofNCompleteColumn(),
# TimeRemainingColumn(),
# TimeElapsedColumn(),
# # description="Training",
# transient=False,
# console=self.console,
# refresh_per_second=10,
# )
# progress.start()
# task = progress.add_task("-.---e--", total=len(valid_loader))
model.eval()
running_error = 0
running_error_2 = 0
with torch.no_grad():
for batch_idx, (x, y) in enumerate(valid_loader):
if batch_idx >= self.optuna_settings.n_valid_batches:
if batch_idx >= self.optuna_settings._n_valid_batches:
break
x, y = (
x.to(self.pytorch_settings.device),
@@ -426,28 +461,19 @@ class HyperTraining:
running_error += error_value
running_error_2 += error_value
if enable_progress:
progress.update(task, advance=1, description=f"{error_value:.3e}")
# if enable_progress:
# progress.update(task, advance=1, description=f"{error_value:.3e}")
if writer is not None:
if batch_idx % self.pytorch_settings.write_every == 0:
writer.add_scalar(
"eval loss",
running_error_2
/ (
self.pytorch_settings.write_every
if batch_idx > 0
else 1
),
epoch
* min(
len(valid_loader), self.optuna_settings.n_valid_batches
)
+ batch_idx,
running_error_2 / (self.pytorch_settings.write_every if batch_idx > 0 else 1),
epoch * min(len(valid_loader), self.optuna_settings._n_valid_batches) + batch_idx,
)
running_error_2 = 0.0
running_error /= min(len(valid_loader), self.optuna_settings.n_valid_batches)
running_error /= min(len(valid_loader), self.optuna_settings._n_valid_batches)
if writer is not None:
title_append, subtitle = self.build_title(trial)
@@ -463,8 +489,8 @@ class HyperTraining:
epoch + 1,
)
if enable_progress:
progress.stop()
# if enable_progress:
# progress.stop()
return running_error
@@ -496,103 +522,94 @@ class HyperTraining:
return ys, xs, y_preds
def objective(self, trial: optuna.Trial, plot_before=False):
if self.stop_study:
trial.study.stop()
model = None
exc = None
try:
# rprint(*list(self.study_name.split("_")))
writer = self.setup_tb_writer(
self.optuna_settings.study_name,
f"{trial.number:0{len(str(self.optuna_settings.n_trials))}}",
writer = self.setup_tb_writer(
self.optuna_settings.study_name,
f"{trial.number:0{len(str(self.optuna_settings.n_trials)) + 2}}",
)
model = self.define_model(trial, writer)
# n_nodes = trial.params.get("model_n_hidden_layers", self.model_settings.model_n_layers) * trial.params.get("model_hidden_dim", self.model_settings.unit_count)
title_append, subtitle = self.build_title(trial)
writer.add_figure(
"fiber response",
self.plot_model_response(
trial,
model=model,
title_append=title_append,
subtitle=subtitle,
show=plot_before,
),
0,
)
train_loader, valid_loader = self.get_sliced_data(trial)
optimizer_name = trial.suggest_categorical_optional("optimizer", self.optimizer_settings.optimizer)
lr = trial.suggest_float_optional("lr", self.optimizer_settings.learning_rate, log=True)
optimizer = getattr(optim, optimizer_name)(model.parameters(), lr=lr)
if self.optimizer_settings.scheduler is not None:
scheduler = getattr(optim.lr_scheduler, self.optimizer_settings.scheduler)(
optimizer, **self.optimizer_settings.scheduler_kwargs
)
model = self.define_model(trial, writer)
n_params = sum(p.numel() for p in model.parameters())
# n_nodes = trial.params.get("model_n_layers", self.model_settings.model_n_layers) * trial.params.get("model_hidden_dim", self.model_settings.unit_count)
title_append, subtitle = self.build_title(trial)
writer.add_figure(
"fiber response",
self.plot_model_response(
trial,
model=model,
title_append=title_append,
subtitle=subtitle,
show=plot_before,
),
0,
for epoch in range(self.pytorch_settings.epochs):
trial.set_user_attr("epoch", epoch)
# enable_progress = self.optuna_settings.n_threads == 1
# if enable_progress:
# self.console.rule(
# f"Epoch {epoch + 1}/{self.pytorch_settings.epochs}"
# )
self.train_model(
trial,
model,
optimizer,
train_loader,
epoch,
writer,
# enable_progress=enable_progress,
)
train_loader, valid_loader = self.get_sliced_data(trial)
optimizer_name = force_suggest_categorical(
trial, "optimizer", self.optimizer_settings.optimizer
error = self.eval_model(
trial,
model,
valid_loader,
epoch,
writer,
# enable_progress=enable_progress,
)
lr = force_suggest_float(
trial, "lr", self.optimizer_settings.learning_rate, log=True
)
optimizer = getattr(optim, optimizer_name)(model.parameters(), lr=lr)
if self.optimizer_settings.scheduler is not None:
scheduler = getattr(optim.lr_scheduler, self.optimizer_settings.scheduler)(
optimizer, **self.optimizer_settings.scheduler_kwargs)
scheduler.step(error)
for epoch in range(self.pytorch_settings.epochs):
enable_progress = self.optuna_settings.n_threads == 1
if enable_progress:
self.console.rule(
f"Epoch {epoch + 1}/{self.pytorch_settings.epochs}"
)
self.train_model(
trial,
model,
optimizer,
train_loader,
epoch,
writer,
enable_progress=enable_progress,
)
error = self.eval_model(
trial,
model,
valid_loader,
epoch,
writer,
enable_progress=enable_progress,
)
if self.optimizer_settings.scheduler is not None:
scheduler.step(error)
writer.close()
trial.set_user_attr("mse", error)
trial.set_user_attr("log_mse", np.log10(error + np.finfo(float).eps))
trial.set_user_attr("neg_mse", -error)
trial.set_user_attr("neg_log_mse", -np.log10(error + np.finfo(float).eps))
if not self.optuna_settings._multi_objective:
trial.report(error, epoch)
if trial.should_prune():
raise optuna.exceptions.TrialPruned()
if self.optuna_settings.multi_objective:
return n_params, error
trial.report(error, epoch)
if trial.should_prune():
raise optuna.exceptions.TrialPruned()
return error
except KeyboardInterrupt:
...
# except Exception as e:
# exc = e
finally:
if model is not None:
save_path = (
Path(self.pytorch_settings.model_dir)
/ f"{self.optuna_settings.study_name}_{trial.number}.pth"
)
save_path.parent.mkdir(parents=True, exist_ok=True)
torch.save(model, save_path)
if exc is not None:
raise exc
writer.close()
def _plot_model_response_eye(
self, *signals, labels=None, sps=None, title_append="", subtitle="", show=True
):
if self.optuna_settings._multi_objective:
return -np.log10(error + np.finfo(float).eps), trial.user_attrs.get("model_n_nodes", -1)
if self.pytorch_settings.save_models and model is not None:
save_path = Path(self.pytorch_settings.model_dir) / f"{self.optuna_settings.study_name}_{trial.number}.pth"
save_path.parent.mkdir(parents=True, exist_ok=True)
torch.save(model, save_path)
return error
def _plot_model_response_eye(self, *signals, labels=None, sps=None, title_append="", subtitle="", show=True):
if sps is None:
raise ValueError("sps must be provided")
if not hasattr(labels, "__iter__") or isinstance(labels, (str, type(None))):
@@ -608,9 +625,7 @@ class HyperTraining:
labels = [f"signal {i + 1}" for i in range(len(signals))]
fig, axs = plt.subplots(2, len(signals), sharex=True, sharey=True)
fig.suptitle(
f"Eye diagram{f' {title_append}' if title_append else ''}{f'\n{subtitle}' if subtitle else ''}"
)
fig.suptitle(f"Eye diagram{f' {title_append}' if title_append else ''}{f'\n{subtitle}' if subtitle else ''}")
xaxis = np.linspace(0, 2, 2 * sps, endpoint=False)
for j, (label, signal) in enumerate(zip(labels, signals)):
# signal = signal.cpu().numpy()
@@ -628,9 +643,7 @@ class HyperTraining:
if show:
plt.show()
def _plot_model_response_head(
self, *signals, labels=None, sps=None, title_append="", subtitle="", show=True
):
def _plot_model_response_head(self, *signals, labels=None, sps=None, title_append="", subtitle="", show=True):
if not hasattr(labels, "__iter__") or isinstance(labels, (str, type(None))):
labels = [labels]
else:
@@ -644,16 +657,12 @@ class HyperTraining:
labels = [f"signal {i + 1}" for i in range(len(signals))]
fig, axs = plt.subplots(1, 2, sharex=True, sharey=True)
fig.set_size_inches(18,6)
fig.suptitle(
f"Fiber response{f' {title_append}' if title_append else ''}{f'\n{subtitle}' if subtitle else ''}"
)
fig.set_size_inches(18, 6)
fig.suptitle(f"Fiber response{f' {title_append}' if title_append else ''}{f'\n{subtitle}' if subtitle else ''}")
for i, ax in enumerate(axs):
for signal, label in zip(signals, labels):
if sps is not None:
xaxis = np.linspace(
0, len(signal) / sps, len(signal), endpoint=False
)
xaxis = np.linspace(0, len(signal) / sps, len(signal), endpoint=False)
else:
xaxis = np.arange(len(signal))
ax.plot(xaxis, np.abs(signal[:, i]) ** 2, label=label)
@@ -678,10 +687,10 @@ class HyperTraining:
self.data_settings.drop_first = 100
self.data_settings.shuffle = False
self.data_settings.train_split = 1.0
self.pytorch_settings.batchsize = self.pytorch_settings.eye_symbols if mode == "eye" else self.pytorch_settings.head_symbols
plot_loader, _ = self.get_sliced_data(
trial, override={"num_symbols": self.pytorch_settings.batchsize}
self.pytorch_settings.batchsize = (
self.pytorch_settings.eye_symbols if mode == "eye" else self.pytorch_settings.head_symbols
)
plot_loader, _ = self.get_sliced_data(trial, override={"num_symbols": self.pytorch_settings.batchsize})
self.data_settings = data_settings_backup
self.pytorch_settings = pytorch_settings_backup
@@ -728,13 +737,22 @@ class HyperTraining:
return fig
@staticmethod
def build_title(trial):
def build_title(trial: optuna.trial.Trial):
title_append = f"for trial {trial.number}"
model_n_layers = util.misc.multi_getattr((trial.params, trial.user_attrs), "model_n_layers", 0)
model_hidden_dims = [
util.misc.multi_getattr((trial.params, trial.user_attrs), f"model_hidden_dim_{i}", 0)
for i in range(model_n_layers)
]
model_activation_func = util.misc.multi_getattr(
(trial.params, trial.user_attrs),
"model_activation_func",
"unknown act. fun",
)
model_dtype = util.misc.multi_getattr((trial.params, trial.user_attrs), "model_dtype", "unknown dtype")
subtitle = (
f"{trial.params['model_n_layers']} layers, "
f"{', '.join([str(trial.params[f'model_hidden_dim_{i}']) for i in range(trial.params['model_n_layers'])])} units, "
f"{trial.params['model_activation_func']}, "
f"{trial.params['model_dtype']}"
f"{model_n_layers} layers à ({', '.join(model_hidden_dims)}) units, {model_activation_func}, {model_dtype}"
)
return title_append, subtitle