move hypertraining class into separate file;
move settings dataclasses into separate file; add SemiUnitaryLayer; clean up model response plotting code; cnt hyperparameter search
This commit is contained in:
735
src/single-core-regen/hypertraining/hypertraining.py
Normal file
735
src/single-core-regen/hypertraining/hypertraining.py
Normal file
@@ -0,0 +1,735 @@
|
||||
import copy
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Literal
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import numpy as np
|
||||
import optuna
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
# import torch.nn.functional as F # mse_loss doesn't support complex numbers
|
||||
import torch.optim as optim
|
||||
import torch.utils.data
|
||||
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from rich.progress import (
|
||||
Progress,
|
||||
TextColumn,
|
||||
BarColumn,
|
||||
TaskProgressColumn,
|
||||
TimeRemainingColumn,
|
||||
MofNCompleteColumn,
|
||||
TimeElapsedColumn,
|
||||
)
|
||||
from rich.console import Console
|
||||
# from rich import print as rprint
|
||||
|
||||
import multiprocessing
|
||||
|
||||
from util.datasets import FiberRegenerationDataset
|
||||
from util.optuna_helpers import (
|
||||
force_suggest_categorical,
|
||||
force_suggest_float,
|
||||
force_suggest_int,
|
||||
)
|
||||
import util
|
||||
|
||||
from .settings import (
|
||||
GlobalSettings,
|
||||
DataSettings,
|
||||
ModelSettings,
|
||||
OptunaSettings,
|
||||
OptimizerSettings,
|
||||
PytorchSettings,
|
||||
)
|
||||
|
||||
|
||||
class HyperTraining:
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
global_settings,
|
||||
data_settings,
|
||||
pytorch_settings,
|
||||
model_settings,
|
||||
optimizer_settings,
|
||||
optuna_settings,
|
||||
console=None,
|
||||
):
|
||||
self.global_settings: GlobalSettings = global_settings
|
||||
self.data_settings: DataSettings = data_settings
|
||||
self.pytorch_settings: PytorchSettings = pytorch_settings
|
||||
self.model_settings: ModelSettings = model_settings
|
||||
self.optimizer_settings: OptimizerSettings = optimizer_settings
|
||||
self.optuna_settings: OptunaSettings = optuna_settings
|
||||
|
||||
self.console = console or Console()
|
||||
|
||||
# set some extra settings to make the code more readable
|
||||
self._extra_optuna_settings()
|
||||
|
||||
def setup_tb_writer(self, study_name=None, append=None):
|
||||
log_dir = (
|
||||
self.pytorch_settings.summary_dir
|
||||
+ "/"
|
||||
+ (study_name or self.optuna_settings.study_name)
|
||||
)
|
||||
if append is not None:
|
||||
log_dir += "_" + str(append)
|
||||
|
||||
return SummaryWriter(log_dir)
|
||||
|
||||
def resume_latest_study(self, verbose=True):
|
||||
study_name = self.get_latest_study()
|
||||
|
||||
if study_name:
|
||||
print(f"Resuming study: {study_name}")
|
||||
self.optuna_settings.study_name = study_name
|
||||
|
||||
def get_latest_study(self, verbose=True):
|
||||
studies = self.get_studies()
|
||||
for study in studies:
|
||||
study.datetime_start = study.datetime_start or datetime.min
|
||||
if studies:
|
||||
study = sorted(studies, key=lambda x: x.datetime_start, reverse=True)[0]
|
||||
if verbose:
|
||||
print(f"Last study: {study.study_name}")
|
||||
study_name = study.study_name
|
||||
else:
|
||||
if verbose:
|
||||
print("No previous studies found")
|
||||
study_name = None
|
||||
return study_name
|
||||
|
||||
def get_studies(self):
|
||||
return optuna.get_all_study_summaries(storage=self.optuna_settings.storage)
|
||||
|
||||
def setup_study(self):
|
||||
self.study = optuna.create_study(
|
||||
study_name=self.optuna_settings.study_name,
|
||||
storage=self.optuna_settings.storage,
|
||||
load_if_exists=True,
|
||||
direction=self.optuna_settings.direction,
|
||||
directions=self.optuna_settings.directions,
|
||||
)
|
||||
|
||||
with warnings.catch_warnings(action="ignore"):
|
||||
self.study.set_metric_names(self.optuna_settings.metrics_names)
|
||||
|
||||
self.n_threads = min(
|
||||
self.optuna_settings.n_trials, self.optuna_settings.n_threads
|
||||
)
|
||||
self.processes = []
|
||||
if self.n_threads > 1:
|
||||
for _ in range(self.n_threads):
|
||||
p = multiprocessing.Process(
|
||||
# target=lambda n_trials: self._run_optimize(self, n_trials),
|
||||
target=self._run_optimize,
|
||||
args=(self.optuna_settings.n_trials // self.n_threads,),
|
||||
)
|
||||
self.processes.append(p)
|
||||
|
||||
# def plot_eye(self, width=2, symbols=None, alpha=None, complex=False, show=True):
|
||||
# data, config = util.datasets.load_data(
|
||||
# self.data_settings.config_path,
|
||||
# skipfirst=10,
|
||||
# symbols=symbols or 1000,
|
||||
# real=not complex,
|
||||
# normalize=True,
|
||||
# )
|
||||
# eye_data = {"data": data.numpy(), "sps": int(config["glova"]["sps"])}
|
||||
# return util.plot.eye(
|
||||
# **eye_data,
|
||||
# width=width,
|
||||
# show=show,
|
||||
# alpha=alpha,
|
||||
# complex=complex,
|
||||
# symbols=symbols or 1000,
|
||||
# skipfirst=0,
|
||||
# )
|
||||
|
||||
def run_study(self):
|
||||
if self.processes:
|
||||
for p in self.processes:
|
||||
p.start()
|
||||
for p in self.processes:
|
||||
p.join()
|
||||
|
||||
remaining_trials = self.optuna_settings.n_trials % self.n_threads
|
||||
else:
|
||||
remaining_trials = self.optuna_settings.n_trials
|
||||
|
||||
if remaining_trials:
|
||||
self._run_optimize(remaining_trials)
|
||||
|
||||
def _run_optimize(self, n_trials):
|
||||
self.study.optimize(
|
||||
self.objective, n_trials=n_trials, timeout=self.optuna_settings.timeout
|
||||
)
|
||||
|
||||
def _extra_optuna_settings(self):
|
||||
self.optuna_settings.multi_objective = len(self.optuna_settings.directions) > 1
|
||||
if self.optuna_settings.multi_objective:
|
||||
self.optuna_settings.direction = None
|
||||
else:
|
||||
self.optuna_settings.direction = self.optuna_settings.directions[0]
|
||||
self.optuna_settings.directions = None
|
||||
|
||||
self.optuna_settings.n_train_batches = (
|
||||
self.optuna_settings.n_train_batches
|
||||
if self.optuna_settings.limit_examples
|
||||
else float("inf")
|
||||
)
|
||||
self.optuna_settings.n_valid_batches = (
|
||||
self.optuna_settings.n_valid_batches
|
||||
if self.optuna_settings.limit_examples
|
||||
else float("inf")
|
||||
)
|
||||
|
||||
def define_model(self, trial: optuna.Trial, writer=None):
|
||||
n_layers = force_suggest_int(
|
||||
trial, "model_n_layers", self.model_settings.model_n_layers
|
||||
)
|
||||
|
||||
input_dim = 2 * trial.params.get(
|
||||
"model_input_dim",
|
||||
force_suggest_int(trial, "model_input_dim", self.data_settings.model_input_dim),
|
||||
)
|
||||
|
||||
dtype = trial.params.get(
|
||||
"model_dtype",
|
||||
force_suggest_categorical(trial, "model_dtype", self.data_settings.dtype),
|
||||
)
|
||||
dtype = getattr(torch, dtype)
|
||||
|
||||
afunc = force_suggest_categorical(
|
||||
trial, "model_activation_func", self.model_settings.model_activation_func
|
||||
)
|
||||
|
||||
layers = []
|
||||
last_dim = input_dim
|
||||
for i in range(n_layers):
|
||||
hidden_dim = force_suggest_int(
|
||||
trial, f"model_hidden_dim_{i}", self.model_settings.unit_count
|
||||
)
|
||||
layers.append(
|
||||
util.complexNN.SemiUnitaryLayer(last_dim, hidden_dim, dtype=dtype)
|
||||
)
|
||||
last_dim = hidden_dim
|
||||
layers.append(getattr(util.complexNN, afunc)())
|
||||
|
||||
layers.append(
|
||||
util.complexNN.UnitaryLayer(
|
||||
hidden_dim, self.model_settings.output_dim, dtype=dtype
|
||||
)
|
||||
)
|
||||
|
||||
model = nn.Sequential(*layers)
|
||||
|
||||
if writer is not None:
|
||||
writer.add_graph(
|
||||
model, torch.zeros(1, input_dim, dtype=dtype), use_strict_trace=False
|
||||
)
|
||||
|
||||
return model.to(self.pytorch_settings.device)
|
||||
|
||||
def get_sliced_data(self, trial: optuna.Trial, override=None):
|
||||
symbols = trial.params.get(
|
||||
"dataset_symbols",
|
||||
force_suggest_float(trial, "dataset_symbols", self.data_settings.symbols),
|
||||
)
|
||||
|
||||
xy_delay = trial.params.get(
|
||||
"dataset_xy_delay",
|
||||
force_suggest_float(trial, "dataset_xy_delay", self.data_settings.xy_delay),
|
||||
)
|
||||
|
||||
data_size = trial.params.get(
|
||||
"model_input_dim",
|
||||
force_suggest_int(trial, "model_input_dim", self.data_settings.model_input_dim),
|
||||
)
|
||||
|
||||
dtype = trial.params.get(
|
||||
"model_dtype",
|
||||
force_suggest_categorical(trial, "model_dtype", self.data_settings.dtype),
|
||||
)
|
||||
dtype = getattr(torch, dtype)
|
||||
|
||||
num_symbols = None
|
||||
if override is not None:
|
||||
num_symbols = override.get("num_symbols", None)
|
||||
# get dataset
|
||||
dataset = FiberRegenerationDataset(
|
||||
file_path=self.data_settings.config_path,
|
||||
symbols=symbols,
|
||||
output_dim=data_size,
|
||||
target_delay=self.data_settings.in_out_delay,
|
||||
xy_delay=xy_delay,
|
||||
drop_first=self.data_settings.drop_first,
|
||||
dtype=dtype,
|
||||
real=not dtype.is_complex,
|
||||
num_symbols=num_symbols,
|
||||
)
|
||||
|
||||
dataset_size = len(dataset)
|
||||
indices = list(range(dataset_size))
|
||||
split = int(np.floor(self.data_settings.train_split * dataset_size))
|
||||
if self.data_settings.shuffle:
|
||||
np.random.seed(self.global_settings.seed)
|
||||
np.random.shuffle(indices)
|
||||
|
||||
train_indices, valid_indices = indices[:split], indices[split:]
|
||||
|
||||
if self.data_settings.shuffle:
|
||||
train_sampler = torch.utils.data.SubsetRandomSampler(train_indices)
|
||||
valid_sampler = torch.utils.data.SubsetRandomSampler(valid_indices)
|
||||
else:
|
||||
train_sampler = train_indices
|
||||
valid_sampler = valid_indices
|
||||
|
||||
train_loader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
batch_size=self.pytorch_settings.batchsize,
|
||||
sampler=train_sampler,
|
||||
drop_last=True,
|
||||
pin_memory=True,
|
||||
num_workers=self.pytorch_settings.dataloader_workers,
|
||||
prefetch_factor=self.pytorch_settings.dataloader_prefetch,
|
||||
)
|
||||
|
||||
valid_loader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
batch_size=self.pytorch_settings.batchsize,
|
||||
sampler=valid_sampler,
|
||||
drop_last=True,
|
||||
pin_memory=True,
|
||||
num_workers=self.pytorch_settings.dataloader_workers,
|
||||
prefetch_factor=self.pytorch_settings.dataloader_prefetch,
|
||||
)
|
||||
|
||||
return train_loader, valid_loader
|
||||
|
||||
def train_model(
|
||||
self,
|
||||
trial,
|
||||
model,
|
||||
optimizer,
|
||||
train_loader,
|
||||
epoch,
|
||||
writer=None,
|
||||
enable_progress=False,
|
||||
):
|
||||
if enable_progress:
|
||||
progress = Progress(
|
||||
TextColumn("[yellow] Training..."),
|
||||
TextColumn("Error: {task.description}"),
|
||||
BarColumn(),
|
||||
TaskProgressColumn(),
|
||||
TextColumn("[green]Batch"),
|
||||
MofNCompleteColumn(),
|
||||
TimeRemainingColumn(),
|
||||
TimeElapsedColumn(),
|
||||
# description="Training",
|
||||
transient=False,
|
||||
console=self.console,
|
||||
refresh_per_second=10,
|
||||
)
|
||||
task = progress.add_task("-.---e--", total=len(train_loader))
|
||||
progress.start()
|
||||
|
||||
running_loss2 = 0.0
|
||||
running_loss = 0.0
|
||||
model.train()
|
||||
for batch_idx, (x, y) in enumerate(train_loader):
|
||||
if batch_idx >= self.optuna_settings.n_train_batches:
|
||||
break
|
||||
model.zero_grad(set_to_none=True)
|
||||
x, y = (
|
||||
x.to(self.pytorch_settings.device),
|
||||
y.to(self.pytorch_settings.device),
|
||||
)
|
||||
y_pred = model(x)
|
||||
loss = util.complexNN.complex_mse_loss(y_pred, y)
|
||||
loss_value = loss.item()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
running_loss2 += loss_value
|
||||
running_loss += loss_value
|
||||
|
||||
if enable_progress:
|
||||
progress.update(task, advance=1, description=f"{loss_value:.3e}")
|
||||
|
||||
if writer is not None:
|
||||
if batch_idx % self.pytorch_settings.write_every == 0:
|
||||
writer.add_scalar(
|
||||
"training loss",
|
||||
running_loss2
|
||||
/ (self.pytorch_settings.write_every if batch_idx > 0 else 1),
|
||||
epoch
|
||||
* min(len(train_loader), self.optuna_settings.n_train_batches)
|
||||
+ batch_idx,
|
||||
)
|
||||
running_loss2 = 0.0
|
||||
|
||||
if enable_progress:
|
||||
progress.stop()
|
||||
|
||||
return running_loss / min(
|
||||
len(train_loader), self.optuna_settings.n_train_batches
|
||||
)
|
||||
|
||||
def eval_model(
|
||||
self, trial, model, valid_loader, epoch, writer=None, enable_progress=True
|
||||
):
|
||||
if enable_progress:
|
||||
progress = Progress(
|
||||
TextColumn("[green]Evaluating..."),
|
||||
TextColumn("Error: {task.description}"),
|
||||
BarColumn(),
|
||||
TaskProgressColumn(),
|
||||
TextColumn("[green]Batch"),
|
||||
MofNCompleteColumn(),
|
||||
TimeRemainingColumn(),
|
||||
TimeElapsedColumn(),
|
||||
# description="Training",
|
||||
transient=False,
|
||||
console=self.console,
|
||||
refresh_per_second=10,
|
||||
)
|
||||
progress.start()
|
||||
task = progress.add_task("-.---e--", total=len(valid_loader))
|
||||
|
||||
model.eval()
|
||||
running_error = 0
|
||||
running_error_2 = 0
|
||||
with torch.no_grad():
|
||||
for batch_idx, (x, y) in enumerate(valid_loader):
|
||||
if batch_idx >= self.optuna_settings.n_valid_batches:
|
||||
break
|
||||
x, y = (
|
||||
x.to(self.pytorch_settings.device),
|
||||
y.to(self.pytorch_settings.device),
|
||||
)
|
||||
y_pred = model(x)
|
||||
error = util.complexNN.complex_mse_loss(y_pred, y)
|
||||
error_value = error.item()
|
||||
running_error += error_value
|
||||
running_error_2 += error_value
|
||||
|
||||
if enable_progress:
|
||||
progress.update(task, advance=1, description=f"{error_value:.3e}")
|
||||
|
||||
if writer is not None:
|
||||
if batch_idx % self.pytorch_settings.write_every == 0:
|
||||
writer.add_scalar(
|
||||
"eval loss",
|
||||
running_error_2
|
||||
/ (
|
||||
self.pytorch_settings.write_every
|
||||
if batch_idx > 0
|
||||
else 1
|
||||
),
|
||||
epoch
|
||||
* min(
|
||||
len(valid_loader), self.optuna_settings.n_valid_batches
|
||||
)
|
||||
+ batch_idx,
|
||||
)
|
||||
running_error_2 = 0.0
|
||||
|
||||
running_error /= min(len(valid_loader), self.optuna_settings.n_valid_batches)
|
||||
|
||||
if writer is not None:
|
||||
title_append, subtitle = self.build_title(trial)
|
||||
writer.add_figure(
|
||||
"fiber response",
|
||||
self.plot_model_response(
|
||||
trial,
|
||||
model=model,
|
||||
title_append=title_append,
|
||||
subtitle=subtitle,
|
||||
show=False,
|
||||
),
|
||||
epoch + 1,
|
||||
)
|
||||
|
||||
if enable_progress:
|
||||
progress.stop()
|
||||
|
||||
return running_error
|
||||
|
||||
def run_model(self, model, loader):
|
||||
model.eval()
|
||||
xs = []
|
||||
ys = []
|
||||
y_preds = []
|
||||
with torch.no_grad():
|
||||
model = model.to(self.pytorch_settings.device)
|
||||
for x, y in loader:
|
||||
x, y = (
|
||||
x.to(self.pytorch_settings.device),
|
||||
y.to(self.pytorch_settings.device),
|
||||
)
|
||||
y_pred = model(x).cpu()
|
||||
# x = x.cpu()
|
||||
# y = y.cpu()
|
||||
y_pred = y_pred.view(y_pred.shape[0], -1, 2)
|
||||
y = y.view(y.shape[0], -1, 2)
|
||||
x = x.view(x.shape[0], -1, 2)
|
||||
xs.append(x[:, 0, :].squeeze())
|
||||
ys.append(y.squeeze())
|
||||
y_preds.append(y_pred.squeeze())
|
||||
|
||||
xs = torch.vstack(xs).cpu()
|
||||
ys = torch.vstack(ys).cpu()
|
||||
y_preds = torch.vstack(y_preds).cpu()
|
||||
return ys, xs, y_preds
|
||||
|
||||
def objective(self, trial: optuna.Trial, plot_before=False):
|
||||
model = None
|
||||
exc = None
|
||||
try:
|
||||
# rprint(*list(self.study_name.split("_")))
|
||||
|
||||
writer = self.setup_tb_writer(
|
||||
self.optuna_settings.study_name,
|
||||
f"{trial.number:0{len(str(self.optuna_settings.n_trials))}}",
|
||||
)
|
||||
|
||||
model = self.define_model(trial, writer)
|
||||
n_params = sum(p.numel() for p in model.parameters())
|
||||
# n_nodes = trial.params.get("model_n_layers", self.model_settings.model_n_layers) * trial.params.get("model_hidden_dim", self.model_settings.unit_count)
|
||||
|
||||
title_append, subtitle = self.build_title(trial)
|
||||
|
||||
writer.add_figure(
|
||||
"fiber response",
|
||||
self.plot_model_response(
|
||||
trial,
|
||||
model=model,
|
||||
title_append=title_append,
|
||||
subtitle=subtitle,
|
||||
show=plot_before,
|
||||
),
|
||||
0,
|
||||
)
|
||||
|
||||
train_loader, valid_loader = self.get_sliced_data(trial)
|
||||
|
||||
optimizer_name = force_suggest_categorical(
|
||||
trial, "optimizer", self.optimizer_settings.optimizer
|
||||
)
|
||||
|
||||
lr = force_suggest_float(
|
||||
trial, "lr", self.optimizer_settings.learning_rate, log=True
|
||||
)
|
||||
|
||||
optimizer = getattr(optim, optimizer_name)(model.parameters(), lr=lr)
|
||||
if self.optimizer_settings.scheduler is not None:
|
||||
scheduler = getattr(optim.lr_scheduler, self.optimizer_settings.scheduler)(
|
||||
optimizer, **self.optimizer_settings.scheduler_kwargs)
|
||||
|
||||
for epoch in range(self.pytorch_settings.epochs):
|
||||
enable_progress = self.optuna_settings.n_threads == 1
|
||||
if enable_progress:
|
||||
self.console.rule(
|
||||
f"Epoch {epoch + 1}/{self.pytorch_settings.epochs}"
|
||||
)
|
||||
self.train_model(
|
||||
trial,
|
||||
model,
|
||||
optimizer,
|
||||
train_loader,
|
||||
epoch,
|
||||
writer,
|
||||
enable_progress=enable_progress,
|
||||
)
|
||||
error = self.eval_model(
|
||||
trial,
|
||||
model,
|
||||
valid_loader,
|
||||
epoch,
|
||||
writer,
|
||||
enable_progress=enable_progress,
|
||||
)
|
||||
if self.optimizer_settings.scheduler is not None:
|
||||
scheduler.step(error)
|
||||
|
||||
writer.close()
|
||||
|
||||
if self.optuna_settings.multi_objective:
|
||||
return n_params, error
|
||||
trial.report(error, epoch)
|
||||
if trial.should_prune():
|
||||
raise optuna.exceptions.TrialPruned()
|
||||
return error
|
||||
|
||||
except KeyboardInterrupt:
|
||||
...
|
||||
# except Exception as e:
|
||||
# exc = e
|
||||
finally:
|
||||
if model is not None:
|
||||
save_path = (
|
||||
Path(self.pytorch_settings.model_dir)
|
||||
/ f"{self.optuna_settings.study_name}_{trial.number}.pth"
|
||||
)
|
||||
save_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
torch.save(model, save_path)
|
||||
if exc is not None:
|
||||
raise exc
|
||||
|
||||
|
||||
def _plot_model_response_eye(
|
||||
self, *signals, labels=None, sps=None, title_append="", subtitle="", show=True
|
||||
):
|
||||
if sps is None:
|
||||
raise ValueError("sps must be provided")
|
||||
if not hasattr(labels, "__iter__") or isinstance(labels, (str, type(None))):
|
||||
labels = [labels]
|
||||
else:
|
||||
labels = list(labels)
|
||||
|
||||
while len(labels) < len(signals):
|
||||
labels.append(None)
|
||||
|
||||
# check if there are any labels
|
||||
if not any(labels):
|
||||
labels = [f"signal {i + 1}" for i in range(len(signals))]
|
||||
|
||||
fig, axs = plt.subplots(2, len(signals), sharex=True, sharey=True)
|
||||
fig.suptitle(
|
||||
f"Eye diagram{f' {title_append}' if title_append else ''}{f'\n{subtitle}' if subtitle else ''}"
|
||||
)
|
||||
xaxis = np.linspace(0, 2, 2 * sps, endpoint=False)
|
||||
for j, (label, signal) in enumerate(zip(labels, signals)):
|
||||
# signal = signal.cpu().numpy()
|
||||
for i in range(len(signal) // sps - 1):
|
||||
x, y = signal[i * sps : (i + 2) * sps].T
|
||||
axs[0, j].plot(xaxis, np.abs(x) ** 2, color="C0", alpha=0.02)
|
||||
axs[1, j].plot(xaxis, np.abs(y) ** 2, color="C0", alpha=0.02)
|
||||
axs[0, j].set_title(label + " x")
|
||||
axs[1, j].set_title(label + " y")
|
||||
axs[0, j].set_xlabel("Symbol")
|
||||
axs[1, j].set_xlabel("Symbol")
|
||||
axs[0, j].set_ylabel("normalized power")
|
||||
axs[1, j].set_ylabel("normalized power")
|
||||
|
||||
if show:
|
||||
plt.show()
|
||||
|
||||
def _plot_model_response_head(
|
||||
self, *signals, labels=None, sps=None, title_append="", subtitle="", show=True
|
||||
):
|
||||
if not hasattr(labels, "__iter__") or isinstance(labels, (str, type(None))):
|
||||
labels = [labels]
|
||||
else:
|
||||
labels = list(labels)
|
||||
|
||||
while len(labels) < len(signals):
|
||||
labels.append(None)
|
||||
|
||||
# check if there are any labels
|
||||
if not any(labels):
|
||||
labels = [f"signal {i + 1}" for i in range(len(signals))]
|
||||
|
||||
fig, axs = plt.subplots(1, 2, sharex=True, sharey=True)
|
||||
fig.set_size_inches(18,6)
|
||||
fig.suptitle(
|
||||
f"Fiber response{f' {title_append}' if title_append else ''}{f'\n{subtitle}' if subtitle else ''}"
|
||||
)
|
||||
for i, ax in enumerate(axs):
|
||||
for signal, label in zip(signals, labels):
|
||||
if sps is not None:
|
||||
xaxis = np.linspace(
|
||||
0, len(signal) / sps, len(signal), endpoint=False
|
||||
)
|
||||
else:
|
||||
xaxis = np.arange(len(signal))
|
||||
ax.plot(xaxis, np.abs(signal[:, i]) ** 2, label=label)
|
||||
ax.set_xlabel("Sample" if sps is None else "Symbol")
|
||||
ax.set_ylabel("normalized power")
|
||||
ax.legend(loc="upper right")
|
||||
if show:
|
||||
plt.show()
|
||||
return fig
|
||||
|
||||
def plot_model_response(
|
||||
self,
|
||||
trial,
|
||||
model=None,
|
||||
title_append="",
|
||||
subtitle="",
|
||||
mode: Literal["eye", "head"] = "head",
|
||||
show=True,
|
||||
):
|
||||
data_settings_backup = copy.deepcopy(self.data_settings)
|
||||
pytorch_settings_backup = copy.deepcopy(self.pytorch_settings)
|
||||
self.data_settings.drop_first = 100
|
||||
self.data_settings.shuffle = False
|
||||
self.data_settings.train_split = 1.0
|
||||
self.pytorch_settings.batchsize = self.pytorch_settings.eye_symbols if mode == "eye" else self.pytorch_settings.head_symbols
|
||||
plot_loader, _ = self.get_sliced_data(
|
||||
trial, override={"num_symbols": self.pytorch_settings.batchsize}
|
||||
)
|
||||
self.data_settings = data_settings_backup
|
||||
self.pytorch_settings = pytorch_settings_backup
|
||||
|
||||
fiber_in, fiber_out, regen = self.run_model(model, plot_loader)
|
||||
fiber_in = fiber_in.view(-1, 2)
|
||||
fiber_out = fiber_out.view(-1, 2)
|
||||
regen = regen.view(-1, 2)
|
||||
|
||||
fiber_in = fiber_in.numpy()
|
||||
fiber_out = fiber_out.numpy()
|
||||
regen = regen.numpy()
|
||||
|
||||
# https://github.com/matplotlib/matplotlib/issues/27713#issue-2104110987
|
||||
# https://github.com/matplotlib/matplotlib/issues/27713#issuecomment-1915497463
|
||||
import gc
|
||||
|
||||
if mode == "head":
|
||||
fig = self._plot_model_response_head(
|
||||
fiber_in,
|
||||
fiber_out,
|
||||
regen,
|
||||
labels=("fiber in", "fiber out", "regen"),
|
||||
sps=plot_loader.dataset.samples_per_symbol,
|
||||
title_append=title_append,
|
||||
subtitle=subtitle,
|
||||
show=show,
|
||||
)
|
||||
elif mode == "eye":
|
||||
# raise NotImplementedError("Eye diagram not implemented")
|
||||
fig = self._plot_model_response_eye(
|
||||
fiber_in,
|
||||
fiber_out,
|
||||
regen,
|
||||
labels=("fiber in", "fiber out", "regen"),
|
||||
sps=plot_loader.dataset.samples_per_symbol,
|
||||
title_append=title_append,
|
||||
subtitle=subtitle,
|
||||
show=show,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown mode: {mode}")
|
||||
gc.collect()
|
||||
|
||||
return fig
|
||||
|
||||
@staticmethod
|
||||
def build_title(trial):
|
||||
title_append = f"for trial {trial.number}"
|
||||
subtitle = (
|
||||
f"{trial.params['model_n_layers']} layers, "
|
||||
f"{', '.join([str(trial.params[f'model_hidden_dim_{i}']) for i in range(trial.params['model_n_layers'])])} units, "
|
||||
f"{trial.params['model_activation_func']}, "
|
||||
f"{trial.params['model_dtype']}"
|
||||
)
|
||||
|
||||
return title_append, subtitle
|
||||
Reference in New Issue
Block a user