update single_core_regen settings new runs
This commit is contained in:
@@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:7231dea2c9107f443de9122fdc971d9ce6df93db2ee27a9d68a5e22c986373eb
|
||||
size 937984
|
||||
oid sha256:f3510d41f9f0605e438a09767c43edda38162601292be1207f50747117ae5479
|
||||
size 9863168
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
from datetime import datetime
|
||||
|
||||
import optuna
|
||||
from hypertraining.hypertraining import HyperTraining
|
||||
from hypertraining.settings import (
|
||||
GlobalSettings,
|
||||
@@ -10,59 +12,72 @@ from hypertraining.settings import (
|
||||
)
|
||||
|
||||
global_settings = GlobalSettings(
|
||||
seed = 42,
|
||||
seed=42,
|
||||
)
|
||||
|
||||
data_settings = DataSettings(
|
||||
config_path = "data/*-128-16384-100000-0-0-17-0-PAM4-0.ini",
|
||||
dtype = ("complex128", "complex64", "float64", "float32"),
|
||||
symbols = (1, 16),
|
||||
model_input_dim = (1, 32),
|
||||
shuffle = True,
|
||||
in_out_delay = 0,
|
||||
xy_delay = 0,
|
||||
drop_first = 1000,
|
||||
train_split = 0.8,
|
||||
config_path="data/*-128-16384-100000-0-0-17-0-PAM4-0.ini",
|
||||
dtype="complex64",
|
||||
# symbols = (9, 20), # 13 symbol @ 10GBd <-> 1.3ns <-> 0.26m of fiber
|
||||
symbols=13, # study: single_core_regen_20241123_011232
|
||||
# output_size = (11, 32), # ballpark 26 taps -> 2 taps per input symbol -> 1 tap every 0.01m (model has 52 inputs)
|
||||
output_size=26, # study: single_core_regen_20241123_011232 (model_input_dim/2)
|
||||
shuffle=True,
|
||||
in_out_delay=0,
|
||||
xy_delay=0,
|
||||
drop_first=128 * 100,
|
||||
train_split=0.8,
|
||||
)
|
||||
|
||||
pytorch_settings = PytorchSettings(
|
||||
epochs = 25,
|
||||
batchsize = 2**10,
|
||||
device = "cuda",
|
||||
dataloader_workers = 2,
|
||||
dataloader_prefetch = 2,
|
||||
summary_dir = ".runs",
|
||||
write_every = 2**5,
|
||||
model_dir = ".models",
|
||||
epochs=10,
|
||||
batchsize=2**10,
|
||||
device="cuda",
|
||||
dataloader_workers=2,
|
||||
dataloader_prefetch=4,
|
||||
summary_dir=".runs",
|
||||
write_every=2**5,
|
||||
save_models=True,
|
||||
model_dir=".models",
|
||||
)
|
||||
|
||||
model_settings = ModelSettings(
|
||||
output_dim = 2,
|
||||
model_n_layers = (2, 8),
|
||||
unit_count = (2, 16),
|
||||
model_activation_func = ("ModReLU")#, "ZReLU", "Mag")#, "CReLU", "Identity"),
|
||||
output_dim=2,
|
||||
# n_hidden_layers = (3, 8),
|
||||
n_hidden_layers=(4, 6), # study: single_core_regen_20241123_011232
|
||||
n_hidden_nodes=(4,20),
|
||||
# overrides={
|
||||
# "n_hidden_nodes_0": (14, 20), # study: single_core_regen_20241123_011232
|
||||
# "n_hidden_nodes_1": (8, 16),
|
||||
# "n_hidden_nodes_2": (10, 16),
|
||||
# # "n_hidden_nodes_3": (4, 20), # study: single_core_regen_20241123_135749
|
||||
# "n_hidden_nodes_4": (2, 8),
|
||||
# "n_hidden_nodes_5": (10, 16),
|
||||
# },
|
||||
# model_activation_func = ("ModReLU", "Mag", "Identity")
|
||||
model_activation_func="Mag", # study: single_core_regen_20241123_011232
|
||||
)
|
||||
|
||||
optimizer_settings = OptimizerSettings(
|
||||
optimizer = ("Adam", "RMSprop"),#, "SGD"),
|
||||
optimizer="Adam",
|
||||
# learning_rate = (1e-5, 1e-1),
|
||||
learning_rate=1e-3,
|
||||
# scheduler = "ReduceLROnPlateau",
|
||||
# scheduler_kwargs = {"mode": "min", "factor": 0.5, "patience": 10}
|
||||
learning_rate=5e-4,
|
||||
)
|
||||
|
||||
optuna_settings = OptunaSettings(
|
||||
n_trials = 4096,
|
||||
n_threads = 16,
|
||||
timeout = 600,
|
||||
directions = ("minimize","minimize"),
|
||||
metrics_names = ("n_params","mse"),
|
||||
|
||||
limit_examples = True,
|
||||
n_train_batches = 100,
|
||||
n_valid_batches = 100,
|
||||
storage = "sqlite:///data/single_core_regen.db",
|
||||
study_name = f"single_core_regen_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
|
||||
n_trials=512,
|
||||
n_workers=14,
|
||||
timeout=3600,
|
||||
directions=("maximize", "minimize"),
|
||||
metrics_names=("neg_log_mse","n_nodes"),
|
||||
limit_examples=True,
|
||||
n_train_batches=500,
|
||||
# n_valid_batches = 100,
|
||||
storage="sqlite:///data/single_core_regen.db",
|
||||
study_name=f"single_core_regen_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
|
||||
n_trials_filter=(optuna.trial.TrialState.COMPLETE, optuna.trial.TrialState.PRUNED),
|
||||
pruner="MedianPruner",
|
||||
pruner_kwargs=None
|
||||
)
|
||||
|
||||
|
||||
@@ -78,8 +93,6 @@ if __name__ == "__main__":
|
||||
|
||||
hyper_training.setup_study()
|
||||
|
||||
# hyper_training.resume_latest_study()
|
||||
|
||||
hyper_training.run_study()
|
||||
# best_trial = hyper_training.study.best_trial
|
||||
|
||||
|
||||
Reference in New Issue
Block a user