Files
ieee802_constellations/const.py

252 lines
7.5 KiB
Python

from functools import cache
from typing import Tuple
import numpy as np
import const_utils
import matplotlib.pyplot as plt
class ConstellationPoints():
def __init__(self, length:int=None, constellation_dict:dict=None, radius:Tuple[int, float]=1):
self._radius = radius
if constellation_dict:
self._constellation = constellation_dict
elif length:
self._length = length
def _generate_from_length(self, length):
const_utils.validate_intpow2(length, 'length')
object.__setattr__(self, '_length', length)
object.__setattr__(self, '_n', int(self._length/2+0.5))
object.__setattr__(self, '_m', self._length // 2)
object.__setattr__(self, '_constellation', const_utils.bidict(generate_rectangular_constellation(self._length)))
def _generate_from_dict(self, constellation_dict):
const_utils.validate_coords(constellation_dict)
const_utils.validate_int(next(iter(constellation_dict.keys())), 'labels')
# check if constellation is a one-to-one mapping
if len(set(constellation_dict.values())) != len(constellation_dict):
raise ValueError('constellation must be a one-to-one mapping of labels and coordinates')
object.__setattr__(self, '_constellation', const_utils.bidict(constellation_dict))
object.__setattr__(self, '_length', len(constellation_dict))
object.__setattr__(self, '_n', int(self._length/2+0.5))
object.__setattr__(self, '_m', self._length // 2)
def plot(self):
# STUB ConstellationPots.plot()
raise NotImplementedError()
def __len__(self):
return self._length
@property
def symbols(self):
return dict(self._constellation).values()
@property
def labels(self):
return dict(self._constellation.inverse).values()
@property
def constellation(self):
return dict(self._constellation)
@property
def lookup(self):
return dict(self._constellation.inverse)
def get_symbol(self, label):
return self._constellation[label]
def get_label(self, symbol):
return self._constellation.inverse[symbol]
def __setattr__(self, name: str, value) -> None:
if name == '_constellation':
self._generate_from_dict(value)
elif name == '_length':
self._generate_from_length(value)
elif name == '_radius':
self._set_radius(value)
else:
object.__setattr__(self, name, value)
def _set_radius(self, value):
if isinstance(value, (int, float)):
object.__setattr__(self, '_radius',value)
else:
raise TypeError('radius must be an integer or a float')
@cache
def gray_1d(k: int, label: int) -> int:
const_utils.gray_1d_input_validation(k, label)
if k == 1:
return 1 if label==0 else -1
b0, new_symbol = const_utils.next_symbol(k, label)
return (1-2*b0)*(2**(k-1)+gray_1d(k-1, new_symbol))
def gray_2d(n: int, m: int, label: int) -> tuple:
const_utils.gray_2d_input_validation(n, m, label)
if m == 0:
return (gray_1d(n, label), 0) # it's a 1d case in disguise!
symbol_i, symbol_q = const_utils.split_symbol(n, m, label)
return (gray_1d(n, symbol_i), gray_1d(m, symbol_q))
def hamming_dist(a, b):
if not isinstance(a, int):
raise ValueError('a must be an integer')
if not isinstance(b, int):
raise ValueError('b must be an integer')
def euclidean_distance(coord1, coord2):
if isinstance(coord1, int):
return abs(coord1 - coord2)
return np.sqrt((coord1[0] - coord2[0])**2 + (coord1[1] - coord2[1])**2)
def find_nearest(coord, coords):
min_distance = float('inf')
nearest_symbols = []
for c in coords:
dist = euclidean_distance(coord, c)
if dist == 0:
continue
elif dist < min_distance:
min_distance = dist
nearest_symbols = [c]
elif dist == min_distance:
nearest_symbols.append(c)
return nearest_symbols
def gray_penalty(constellation):
raise NotImplementedError
# constellation: {label_0:coordinate_0, label_1:coordinate_1, .., label_2^n-1:coordinate_2^n-1}
# 2^n-QAM -> 2^n symbols S_i, where i=0,1,..2^n-1, ex. S_0 = (-3,-3) or S_0 = -2
# N(S_i): set of (euclidean) nearest symbols S_j -> N((-3,-3)) = {(-3,-2), (-3,-4), (-2,-3), (-4,-3)}
# |N(S_i)|: size of set N(S_i)
# l(S): label given by mapping -> inverse of gray_Qd -> generate all symbols/labels for given constellation
# wt(l_1, l_2), hamming distance btw. two labels
t = constellation['meta']['len']
inverted_constellation = {tuple(symbol):label for label,symbol in constellation.items() if label != 'meta'} # -> invert constellation dict
syms = [symbol for _, symbol in constellation.items()]
const_utils.validate_intpow2()
G = 0
for li, si in constellation.items():
N = find_nearest(si, syms)
size_N = len(N)
wt = sum(hamming_dist(inverted_constellation[tuple(sj)], li) for sj in N)
G += wt/size_N
G /= t
return G
def generate_rectangular_constellation(length: int):
# const_utils.validate_int(length, 'length')
const_utils.validate_intpow2(length, 'length')
lengthexp = int(np.log2(length))
n = int(lengthexp/2+0.5) # ceil
m = lengthexp // 2 # floor
return {label:gray_2d(n, m, label) for label in range(length)}
def transform_rectangular_mapping(constellation: ConstellationPoints):
n, m = constellation['meta'] # TODO def generate_rectangular_constellation(n)
# r, c = find_rows_columns(constellation)
# # example: 32-qam -> 2^(2n+1) -> n = 2
# two_n1 = np.log2(len(constellation))
# if int(two_n1) != two_n1:
# raise ValueError('only constellations with 2^m points allowed')
# if r == 1: # 1D-constellation
# return constellation
# # get n and m for one quadrant
# n = c/2
# m = r/2
# const_utils._validate_integer(n, 'n')
# const_utils._validate_integer(m, 'm')
# [ ] set transformed flag in constellation?
if n == m: # square 2^(2n)-QAM
return constellation
if n == 2 and m == 1: # rectangular 8-QAM (4*2)
return transform_8QAM(constellation)
elif n == m+2: # REVIEW m+2 correct? p. 7
new_const = {}
s = 2**(n-1)
for label, symbol in constellation.items():
# STUB transfrom_rectangular_mapping(constellation) -> generalized non-square-QAM
raise NotImplementedError()
else:
# TODO define what should happen here
return constellation
# 2^(2n+1)
# for 32-QAM: 2^5 -> n = 2
# rectangular grid of 4*8 -> 2*4 per quadrant
# for 128-QAM: 2^7 -> n = 3
# rectangular grid of
def transform_8QAM(constellation):
new_const = {}
for label, symbol in constellation.items():
if symbol[0] < 3:
new_const[label] = symbol
else:
i_rct, q_rct = symbol
i_cr = -np.sign(i_rct)*(4-np.abs(i_rct))
q_cr = np.sign(q_rct)*(np.abs(q_rct)+2)
new_const[label] = [i_cr, q_cr]
return new_const# rectangular 2^(m+n)-QAM
if __name__ == '__main__':
const0 = ConstellationPoints()
const128 = ConstellationPoints(length=128)
const_ext = ConstellationPoints(constellation_dict=generate_rectangular_constellation(64))
print(vars(const0))
print(vars(const128))
print(vars(const_ext))
# constellation_128 = {label:gray_2d(3, 4, label) for label in range(128)}