from functools import cache import numpy as np import const_utils # https://www.ieee802.org/3/bn/public/nov13/prodan_3bn_02_1113.pdf @cache def gray_1d(k, label): const_utils.gray_1d_input_validation(k, label) # special case if k == 1: return 1 if label==0 else -1 # all other cases -> recurse b0, new_symbol = const_utils.next_symbol(k, label) return (1-2*b0)*(2**(k-1)+gray_1d(k-1, new_symbol)) def gray_2d(n, m, label): const_utils.gray_2d_input_validation(n, m, label) # n or m is 0 if (coord:=const_utils.gray_2d_handle_1d(n, m, label)) is not None: return coord # all other cases symbol_i, symbol_q = const_utils.split_symbol(n, m, label) return (gray_1d(n, symbol_i), gray_1d(m, symbol_q)) def hamming_dist(a, b): if not isinstance(a, int): raise ValueError('a must be an integer') if not isinstance(b, int): raise ValueError('b must be an integer') def euclidean_distance(coord1, coord2): if isinstance(coord1, int): return abs(coord1 - coord2) return np.sqrt((coord1[0] - coord2[0])**2 + (coord1[1] - coord2[1])**2) def find_nearest(coord, coords): min_distance = float('inf') nearest_symbols = [] for c in coords: dist = euclidean_distance(coord, c) if dist == 0: continue elif dist < min_distance: min_distance = dist nearest_symbols = [c] elif dist == min_distance: nearest_symbols.append(c) # else: # pass return nearest_symbols def gray_penalty(constellation): # constellation: {label_0:coordinate_0, label_1:coordinate_1, .., label_2^n-1:coordinate_2^n-1} # 2^n-QAM -> 2^n symbols S_i, where i=0,1,..2^n-1, ex. S_0 = (-3,-3) or S_0 = -2 # N(S_i): set of (euclidean) nearest symbols S_j -> N((-3,-3)) = {(-3,-2), (-3,-4), (-2,-3), (-4,-3)} # |N(S_i)|: size of set N(S_i) # l(S): label given by mapping -> inverse of gray_Qd -> generate all symbols/labels for given constellation # wt(l_1, l_2), hamming distance btw. two labels t = len(constellation) inverted_constellation = {tuple(symbol):label for label,symbol in constellation.items() if label != 'meta'} # -> invert constellation dict syms = [symbol for _, symbol in constellation.items()] if (n:=np.log2(t)) != int(n): raise ValueError('only constellations with 2^n points supported') G = 0 for li, si in constellation.items(): N = find_nearest(si, syms) size_N = len(N) wt = sum(hamming_dist(inverted_constellation[tuple(sj)], li) for sj in N) G += wt/size_N G /= t return G def find_rows_columns(coordinates): if not coordinates: return 0, 0 min_row = min(coord[0] for coord in coordinates.values()) max_row = max(coord[0] for coord in coordinates.values()) row_spacing = abs(coordinates[next(iter(coordinates))][0] - coordinates[next(iter(coordinates))][0]) min_col = min(coord[1] for coord in coordinates.values()) max_col = max(coord[1] for coord in coordinates.values()) col_spacing = abs(coordinates[next(iter(coordinates))][1] - coordinates[next(iter(coordinates))][1]) num_rows = (max_row - min_row) // row_spacing + 1 num_cols = (max_col - min_col) // col_spacing + 1 return num_rows, num_cols def transform_rectangular_mapping(constellation): n, m = find_rows_columns(constellation) # example: 32-qam -> 2^(2n+1) -> n = 2 two_n1 = np.log2(len(constellation)) if int(two_n1) != two_n1: raise ValueError('only constellations with 2^m points allowed') if n == 1 or m == 1: # 1D-constellation return constellation n = c/2 m = r/2 const_utils._validate_integer(n, 'n') const_utils._validate_integer(m, 'm') if n == m: # square 2^(2n)-QAM return constellation if n == 2 and m == 1: # rectangular 8-QAM (4*2) return transform_8QAM(constellation) elif n == m+2: new_const = {} s = 2**(n-1) for label, symbol in constellation.items(): def transform_8QAM(constellation): new_const = {} for label, symbol in constellation.items(): if symbol[0] < 3: new_const[label] = symbol else: i_rct, q_rct = symbol i_cr = -np.sign(i_rct)*(4-np.abs(i_rct)) q_cr = np.sign(q_rct)*(np.abs(q_rct)+2) new_const[label] = [i_cr, q_cr] return new_const# rectangular 2^(m+n)-QAM if __name__ == '__main__': # print(gray_1d(2, 0)) print(gray_2d(2, 3, 4)) print(gray_2d(0, 2, 4))