Files
LTSpiceXVII/lib/sub/MAX44246.lib
Joseph Hopfmüller 1d8dca1c6c initial commit
2023-01-23 08:17:09 +01:00

194 lines
4.9 KiB
Plaintext

* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt MAX44246 1 2 3 4 5
* CM / DM Input Parameters
C2 1 4 1.00P
C3 2 4 1.00P
R19 1 4 2.00E12
R20 2 4 2.00E12
R21 1 2 178G
C13 1 2 1.5P
* Differential Stage
GIVR 0 IVR 14 0 1m
RIVR 0 IVR 1k Noiseless
CIVR IVR 0 1.59f
BCMPI 0 CMpi I=1m*(V(3)+{Vcm_max})
RCMPI CMpi 0 1k Noiseless
CCMPI CMpi 0 1n
BCMNI 0 CMni I=1m*(V(4)+{Vcm_min})
RCMNI CMni 0 1k Noiseless
CCMNI CMni 0 1n
GCMP 0 CMp CMpi 0 1k
RCMP 0 CMp 1m Noiseless
GCMN 0 CMn CMni 0 1k
RCMN 0 CMn 1m Noiseless
DIP CMp IVR DI
DIN IVR CMn DI
CIN IVR CMn 1f
CIP IVR CMp 1f
* Noise Stage
I2 21 20 100
D1 20 0 DN1
D2 0 21 DN1
I3 22 23 1N
R10 22 0 1k
R11 0 23 1k
B_E1 71 14 I=(-5.4N) + V(20) * 1.60 + V(21) * 1.60 + V(22) * 1.60 + V(23) * 1.60 + V(137) +V(118) + V(128)
R_E1 71 14 1 Noiseless
I8 0 70 DC 1
R22 0 70 1 TC=1.00N
B_E5 1 71 I=V(70)-1
R_E5 1 71 1 Noiseless
EG1 VIBIASP 0 62 0 1u
GB1 1 0 VIBIASP 0 1
EG2 VIBIASM 0 622 0 1u
GB2 2 0 VIBIASM 0 1
I6 0 62 DC 1uA
VA100 62A 62 DC 0
R17 0 62A 300 TC=1.18M,91.9U
I622 0 622 DC 1uA
VA201 622A 622 DC 300U
R17A 0 622A REXPM 227.85813
R16 0 61 1 TC=739U,682N
G61 3 4 61 0 1
G60 0 61 TABLE { V(3, 4) } ((0, 0)(1.00,430E-18)(2.7,380U)(5.00,428U)(15.0,429U)(25.0,430U)(36.0,431U))
* PSRR
C4 118 110 {C1a_PSRn}
G4 0 110 3 0 {G1_PSRn}
R30 110 0 1 Noiseless
R31 118 110 {R1a_PSRn} Noiseless
R32 118 0 {R2a_PSRn} Noiseless
C5 128 120 {C1a_PSRn}
G1 0 120 4 0 {G1_PSRn}
R18 120 0 1 Noiseless
R24 128 120 {R1a_PSRn} Noiseless
R25 128 0 {R2a_PSRn} Noiseless
* CMRR
B_G50 0 130 I=(V(1)+V(2))/2*500n
C1 137 130x {C1a_CMR}
G2 0 130x 130 0 {G1_CMR}
R26 130x 0 1 Noiseless
R27 137 130x {R1a_CMR} Noiseless
R28 137 0 {R2a_CMR} Noiseless
R15 130 0 1Meg Noiseless
* OP Amp Output Gain / Response
G3A 0 30A IVR 2 1
RG3A 30A 0 1
G3 0 30 30A 0 1
R3 30 0 1.00K
G6 0 33 30 0 1m
R6 33 0 1K
R7 34 0 1K
C7 34 0 {Cfp1}
BSR 0 34 I=Uplim(Dnlim(V(33)*318, {Isink},1m),{Isrc},1m)
C_30 30 0 1f
C_33 33 0 1f
G8 0 37 34 0 1m
R8 37 0 1K
C8 37 0 17.6P
G88A 0 377A 37 0 1m
R88A 377A 0 1G
R_GR88A 377A 0 1k
C88A 377A 0 159E-15
G888A 0 378A 377A 0 1m
R888A 378A 0 1G
R_GR888A 378A 0 1k
C888A 378A 0 159E-15
G9 0 38 378A 0 1m
R9 39 0 1K
L9 38 39 159N
R_GRL9 38 39 {1/10.0M}
G9A 0 38A 38 0 1m
R9A 39A 0 1K
L9A 38A 39A 159N
R_GRL9A 38A 39A {1/10.0M}
B_E9 0 35 I={1/Zo_dc}*V(38)
R_E9 0 35 {Zo_dc} Noiseless
* Output Impedance / Saturation / Current Limit
B1 0 N001 I=Uplim(Dnlim({G1_Zo}* V(35,57), {Izon}, 25m), {Izop}, 25m)
R_B1 N001 0 1 Noiseless
RX 57 N001 {Rx_Zo} Noiseless
RDUMMY 57 0 {Rdummy_Zo} Noiseless
R23 50 0 100MEG
VR15 57 96 0
R15X 57 96 1G
F1 0 50 VR15 1
E3 55 0 VALUE { 0.00 + V(3) * 1 + V(51) * -38.1M }
E4 56 0 VALUE { 0.00 + V(4) * 1 + V(52) * -28.1M }
DOP Vsatp 57 DO
COP 57 Vsatp 1f
DON 57 Vsatn DO
CON 57 Vsatn 1f
GSATP 0 Vsatp 55 0 1k
RSATP Vsatp 0 1m
GSATN 0 Vsatn 56 0 1k
RSATN Vsatn 0 1m
CSATP Vsatp 0 1n
CSATN Vsatn 0 1n
R12 51 0 1k
R13 52 0 1k
GD12 50 51 VALUE={( IF( (V(50,51))>0,V(50,51)/0.002,V(50,51)/1E9 ) ) }
GD13 50 52 VALUE={( IF( (V(50,52))>0,V(50,52)/1E9,V(50,52)/0.002 ) ) }
G21 3 0 VALUE { 0 + V(51) * 1M }
G22 0 4 VALUE { 0 + V(52) * -1M }
R_96_5 96 5 1m
S_D4 3 5 5 3 ESDO
S_D3 5 4 4 5 ESDO
DGP N004 34 DG
DGN 34 N005 DG
VGN N005 N008 0
VGP N004 N007 0
GRP 0 N007 GRpi 0 1k
GRN 0 N008 GRni 0 1k
RRP N007 0 1m Noiseless
RRN N008 0 1m Noiseless
RGRP GRpi 0 1k Noiseless
RGRN GRni 0 1k Noiseless
CGRN GRni 0 10p
CGRP GRpi 0 10p
CGP 34 N007 1f
CGN 34 N008 1f
BGRP 0 GRpi I=1m*({Zo_max}* {Iscp}+V(3)+450)
BGRN 0 GRni I=1m*({Zo_max}* {Iscn}+V(4)-450)
* Models
.MODEL DG D(Vfwd=10k Vrev=0 Revepsilon=0.5 Noiseless Ron=1m)
.MODEL DN1 D IS=1P KF=4.35E-18 AF=1
.MODEL REXPM RES TCE= 627.12665M
.MODEL DIDL2 D()
.MODEL DO D(Vfwd=1k Vrev=0 Revepsilon=0.1 Ron=1m Noiseless)
.MODEL ESDO SW (Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
.MODEL DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.param Vcm_min=-50m Vcm_max=-1.5
.param beta_Zo=1.13
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=100
.param Zo_max={Zo_dc}
.param Iscp=30m Iscn=-40m
.param IZop={1.5*Rx_Zo*Iscp} IZon={1.5*Rx_Zo*Iscn}
.param Cfp1=7.57m
.param SRp=4.25 SRn=-4.25
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Rej_dc_CMR=148
.param R1a_CMR=1G
.param fz1_CMR=2.2
.param fp1_CMR=75Meg
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param Rej_dc_PSRn=150
.param R1a_PSRn=1G
.param fz1_PSRn=2.5
.param fp1_PSRn=80Meg
*
.ENDS MAX44246