Files
LTSpiceXVII/lib/sub/MAX40111.lib
Joseph Hopfmüller 1d8dca1c6c initial commit
2023-01-23 08:17:09 +01:00

206 lines
5.4 KiB
Plaintext

* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt MAX40111 1 2 3 4 5 6
* CM / DM Input Parameters
C2 1 4 1.25P
C3 2 4 1.25P
R19 1 4 2.00E12
R20 2 4 2.00E12
R21 1 2 575G
C13 1 2 500E-15
* Differential Stage
GIVR 0 IVR 14 0 1m
RIVR 0 IVR 1k Noiseless
CIVR IVR 0 1.59f
BCMPI 0 CMpi I=1m*(V(3)+{Vcm_max})
RCMPI CMpi 0 1k Noiseless
CCMPI CMpi 0 1n
BCMNI 0 CMni I=1m*(V(4)+{Vcm_min})
RCMNI CMni 0 1k Noiseless
CCMNI CMni 0 1n
GCMP 0 CMp CMpi 0 1k
RCMP 0 CMp 1m Noiseless
GCMN 0 CMn CMni 0 1k
RCMN 0 CMn 1m Noiseless
DIP CMp IVR DI
DIN IVR CMn DI
CIN IVR CMn 1f
CIP IVR CMp 1f
* Noise Stage
I2 21 20 1.00
D1 20 0 DN1
D2 0 21 DN1
I3 22 23 1N
R10 22 0 1k
R11 0 23 1k
B_E1 71 14 I=(2.5U) + V(20) * 2.09 + V(21) * 2.09 + V(22) * 2.09 + V(23) * 2.09 + V(137) + V(118) + V(128)
R_E1 71 14 1 Noiseless
I8 0 70 DC 1
R22 0 70 1 TC=1.01U
B_E5 1 71 I=V(70)-1
R_E5 1 71 1 Noiseless
EG1 VIBIAS 0 62 0 1
EG2 VIBIOS 0 63 0 1
EB1 VIB1 0 VALUE { (V(VIBIAS)+V(VIBIOS)) /2 }
EB2 VIB2 0 VALUE { (V(VIBIAS)-V(VIBIOS)) /2 }
GB1 1 0 VIB1 0 1u
GB2 2 0 VIB2 0 1u
I6 0 62 DC 1uA
VIB200 62A 62 DC 0.00
R17 0 62A REXP 1.09648
I7 0 63 DC 1uA
V100 63A 63 DC 0
R18 0 63A 1.00 TC=0.00,0.00
R16 0 61 1 TC=1.29M,-1.43U
G61 3 4 61 0 1
G60 0 61 TABLE { V(3, 4) } ((0, 0)(1.00,750E-18)(1.8,670U)(2.65,700U)(3.3,730U)(4.4,755U)(5.5,780U))
* CMRR/PSRR
C130 137 130 {C1a_CMR}
G130 0 130 1 0 {G1_CMR}
R130A 130 0 1 Noiseless
R130 137 130 {R1a_CMR} Noiseless
R130B 137 0 {R2a_CMR} Noiseless
C110 118 110 {C1a_PSRn}
G110 0 110 3 0 {G1_PSRn}
R110A 110 0 1 Noiseless
R110 118 110 {R1a_PSRn} Noiseless
R110B 118 0 {R2a_PSRn} Noiseless
C120 128 120 {C1a_PSRn}
G120 0 120 4 0 {G1_PSRn}
R120A 120 0 1 Noiseless
R120 128 120 {R1a_PSRn} Noiseless
R120B 128 0 {R2a_PSRn} Noiseless
* OP Amp Output Gain / Response
G3A 0 30A IVR 2 1
RG3A 30A 0 1
G3 0 30 30A 0 1
R3 30 0 1.00K
G6 0 33 30 0 1m
R6 33 0 1K
R7 34 0 1K
C7 34 0 {Cfp1}
BSR 0 34 I=Uplim(Dnlim(V(33)*635m, {Isink},1m),{Isrc},1m)
C_30 30 0 1f
C_33 33 0 1f
G8 0 37 34 0 1m
R8 37 0 1K
C8 37 0 5.89P
G9 0 38 37 0 1m
R9 39 0 1K
L9 38 39 159N
R_GRL9 38 39 {1/100U} Noiseless
B_E9 0 35 I={1/Zo_dc}*V(38);+V(118)+V(128)+V(141)
R_E9 0 35 {Zo_dc} Noiseless
* Output Impedance / Saturation / Current Limit
B1 0 N001 I=Uplim(Dnlim({G1_Zo}* V(35,57), {Izon}, 25m), {Izop}, 25m)
R_B1 N001 0 1 Noiseless
RX 57 N001 {Rx_Zo} Noiseless
RDUMMY 57 0 {Rdummy_Zo} Noiseless
R23 50 0 100MEG
VR15 57 96 0
R15X 57 96 1G
F1 0 50 VR15 1
C_CGD8 55 57 .1P
C_CGD9 56 57 .1P
E3 55 0 VALUE { 0.00 + V(3) * 1 + V(51) * -15.2M }
E4 56 0 VALUE { 0.00 + V(4) * 1 + V(52) * -13.0M }
R12 51 0 1k
R13 52 0 1k
GD12 50 51 VALUE={( IF( (V(50,51))>0,V(50,51)/0.002,V(50,51)/1E9 ) ) }
GD13 50 52 VALUE={( IF( (V(50,52))>0,V(50,52)/1E9,V(50,52)/0.002 ) ) }
G21 3 0 VALUE { 0 + V(51) * 1M }
G22 0 4 VALUE { 0 + V(52) * -1M }
R_96_5 96 5 1m
S_D4 3 5 5 3 ESDO
S_D3 5 4 4 5 ESDO
* Shutdown
V1000 1000A 0 1.45
S1000 1003 0 1001 1000A SSHUT
S1000X 30A 4X 1004 0 SSHUT2
V1000X 0 4X 48.7
V1001 1002 0 1
S1001 5X 5 1004 0 SOUT
C_S1001 5X 5 .1P
S1002 61 0 1004 0 SCAP
C1000 1004 0 100n IC=0
R1000A 1004 0 1G
E1000 1001 0 6 4 1
SD1002 1004 1002 1004 1002 SDIODE
SD1003 0 1004 0 1004 SDIODE
G1000 1004 0 1002 1003 33.3M
G1001 0 1004 1003 0 33.3M
R1000 6 4 2.5MEG
R1001 1002 1003 1k
DOP Vsatp 57 DO
COP 57 Vsatp 1f
DON 57 Vsatn DO
CON 57 Vsatn 1f
GSATP 0 Vsatp 55 0 1k
RSATP Vsatp 0 1m
GSATN 0 Vsatn 56 0 1k
RSATN Vsatn 0 1m
CSATP Vsatp 0 1n
CSATN Vsatn 0 1n
DGP N007 34 DG
DGN 34 N008 DG
GRP 0 N007 GRpi 0 1k
GRN 0 N008 GRni 0 1k
RRP N007 0 1m Noiseless
RRN N008 0 1m Noiseless
RGRP GRpi 0 1k Noiseless
RGRN GRni 0 1k Noiseless
CGRN GRni 0 10p
CGRP GRpi 0 10p
CGP 34 N007 1f
CGN 34 N008 1f
BGRP 0 GRpi I=1m*({Zo_max}* {Iscp}+V(3))
BGRN 0 GRni I=1m*({Zo_max}* {Iscn}+V(4))
* Models
.MODEL ESDO SW (Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
.MODEL SSHUT SW RON=1m ROFF=100MEG VT=0 VH=-10m
.MODEL SSHUT2 SW RON=1m ROFF=1G VT=500m VH=-5m
.MODEL SOUT SW RON=1G ROFF=1m VT=500m VH=-5m
.MODEL SCAP SW RON=1.46m ROFF=1G VT=500m VH=-5m
.MODEL SDIODE SW RON=10m ROFF=1G VT=0 VH=-5m
.MODEL DO D(Vfwd=1k Vrev=0 Revepsilon=0.1 Ron=1m Noiseless)
.MODEL DN1 D IS=1P KF=240P AF=1
.MODEL DIDL2 D()
.MODEL DG D(Vfwd=10k Vrev=0 Revepsilon=0.5 Noiseless Ron=1m)
.MODEL DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.MODEL REXP RES TCE= 4.62816
.param Vcm_min=-0.1 Vcm_max=0.1
.param Zo_dc=100
.param Cfp1=4.82u
.param SRp=8 SRn=-8
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
.param beta_Zo=1.13
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_max={Zo_dc}
.param Iscp=50m Iscn=-50m
.param IZop={Rx_Zo*Iscp} IZon={Rx_Zo*Iscn}
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param G2_CMR = {1/actual1_CMR}
.param Rej_dc_CMR=93
.param R1a_CMR=1G
.param fz1_CMR=1.2k
.param fp1_CMR=300k
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param G2_PSRn = {1/actual1_PSRn}
.param Rej_dc_PSRn=93
.param R1a_PSRn=1G
.param fz1_PSRn=1.9k
.param fp1_PSRn=10Meg
*
.ENDS MAX40111