385 lines
12 KiB
Plaintext
385 lines
12 KiB
Plaintext
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
|
|
*
|
|
.subckt ADA4895 1 2 3 4 5 6
|
|
C1 Clamp COM {Cfp1}
|
|
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}*V(Aol1,COM), {Isink},1m),{Isrc},1m)
|
|
G2 0 Vcc_Int N051 0 1
|
|
G3 0 Vee_Int N053 0 1
|
|
R6 Vcc_Int 0 1 Temp=-273.15
|
|
R7 Vee_Int 0 1 Temp=-273.15
|
|
R8 N049 Vcc_Int 1Meg Temp=-273.15
|
|
R9 N049 Vee_Int 1Meg Temp=-273.15
|
|
C2 N049 0 1
|
|
R25 Aol2 COM 1Meg Temp=-273.15
|
|
G7 COM Aol2 Clamp COM 1µ
|
|
C14 Vcc_Int 0 1n
|
|
C15 Vee_Int 0 1n
|
|
R1 N003 N019 {Rser} Temp=-273.15
|
|
R82 N053 4 1µ Temp=-273.15
|
|
A1 Inn1 Inp1 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
|
|
R47 N051 3 1µ Temp=-273.15
|
|
R45 Vimon COM 1k Temp=-273.15
|
|
C34 COM 0 1n
|
|
G30 N051 N053 Vimon COM 1
|
|
C38 Aol2 COM {Cfp2}
|
|
Vimon N016 5 0
|
|
F1 COM Vimon Vimon 1m
|
|
DGP N045 Clamp DG
|
|
DGN Clamp N046 DG
|
|
B10 Vee_Int Satn I=1m*Max(Mn*(-V(Vimon,COM)) +OSn,OSn)
|
|
C19 Satn Vee_Int 1n
|
|
R21 Satn Vee_Int 1k Temp=-273.15
|
|
S1 Cap2R Cap2L OL COM OL
|
|
F2 COM OLp VGP 1m
|
|
A2 OLp OLn COM COM COM COM OL COM OR Ref=100u Vh=50u Trise=10n
|
|
R3 OLp COM 1k
|
|
F3 COM OLn VGN -1m
|
|
R33 OLn COM 1k
|
|
C20 OLp COM 10n
|
|
C21 OLn COM 10n
|
|
C22 OL COM 10p
|
|
VGN N046 N048 0
|
|
VGP N045 N047 0
|
|
G18 N020 Inp1 N041 N040 1m
|
|
R51 Inp1 N020 1k Temp=-273.15
|
|
C32 N038 N039 {C1a_PSRp}
|
|
G19 COM N039 VCC_Int COM {G1_PSRp}
|
|
R52 N039 COM 1 Temp=-273.15
|
|
R55 N038 N039 {R1a_PSRp} Temp=-273.15
|
|
R56 N038 COM {R2a_PSRp} Temp=-273.15
|
|
C33 N025 N024 {C1a_PSRn}
|
|
G20 COM N024 VEE_Int COM {G1_PSRn}
|
|
R57 N024 COM 1 Temp=-273.15
|
|
R58 N025 N024 {R1a_PSRn} Temp=-273.15
|
|
R59 N025 COM {R2a_PSRn} Temp=-273.15
|
|
C35 N027 N026 {C1b_PSRn}
|
|
R60 N026 COM 1 Temp=-273.15
|
|
R61 N027 N026 {R1b_PSRn} Temp=-273.15
|
|
R63 N027 COM {R2b_PSRn} Temp=-273.15
|
|
G21 COM N028 N027 COM {G2_PSRn}
|
|
G23 COM N026 N025 COM 1
|
|
R68 N037 N036 {R1b_PSRp} Temp=-273.15
|
|
R69 N036 COM {R2b_PSRp} Temp=-273.15
|
|
G26 COM N035 N036 COM {G2_PSRp}
|
|
C37 N036 N037 {C1b_PSRp}
|
|
G27 COM N037 N038 COM 1
|
|
R70 N037 COM 1 Temp=-273.15
|
|
G29 COM I_np N056 COM 1
|
|
RI_np I_np COM 1 Temp=-273.15
|
|
R76 N009 N012 1k Temp=-273.15
|
|
B17 N012 N009 I=1m*{Vos+Drift* (Temp-27)}
|
|
G32 N010 N011 N002 COM 1m
|
|
R77 N011 N010 1k Temp=-273.15
|
|
R79 N010 N009 1k Temp=-273.15
|
|
G33 N009 N010 E_n COM 1m
|
|
C39 N002 N001 {C1a_CMR}
|
|
G34 COM N001 N003 COM {G1_CMR}
|
|
R80 N002 N001 {R1a_CMR} Temp=-273.15
|
|
R81 N002 COM {R2a_CMR} Temp=-273.15
|
|
R83 N001 COM 1 Temp=-273.15
|
|
G35 COM IVR N003 COM 1m
|
|
G36 COM Inn1 N044 COM 1k
|
|
R84 COM IVR 1k Temp=-273.15
|
|
R85 COM Inn1 1m Temp=-273.15
|
|
C40 Inn1 COM 1.59n
|
|
C41 IVR COM 1.59f
|
|
Ibn N044 COM {Ib-Ios}
|
|
G37 N003 COM I_np COM 1
|
|
G38 N044 COM I_nn COM 1
|
|
R2 N044 N043 {Rser} Temp=-273.15
|
|
Cinp COM N003 {Ccm}
|
|
Cinn N044 COM {Ccm}
|
|
Rinn N044 COM {Rcm} Temp=-273.15
|
|
Rinp COM N003 {Rcm} Temp=-273.15
|
|
G28 COM N020 N011 COM 1k
|
|
R72 COM N020 1m Temp=-273.15
|
|
C42 N020 COM 1.59n
|
|
C43 Aol1 COM 1.59e-18
|
|
G15 COM N047 GRpi COM 1k
|
|
G16 COM N048 GRni COM 1k
|
|
R11 N047 COM 1m Temp=-273.15
|
|
R12 N048 COM 1m Temp=-273.15
|
|
R37 GRpi COM 1k Temp=-273.15
|
|
R44 GRni COM 1k Temp=-273.15
|
|
C6 GRni COM 10p
|
|
C7 GRpi COM 10p
|
|
S2 3 5 5 3 ESDO
|
|
S3 5 4 4 5 ESDO
|
|
DOP Vsatp N016 DO
|
|
DON N016 Vsatn DO
|
|
G5 COM Vsatp Satp COM 1k
|
|
R92 Vsatp COM 1m
|
|
G6 COM Vsatn Satn COM 1k
|
|
R93 Vsatn COM 1m
|
|
C10 Vimon COM 1.59f
|
|
S4 3 N012 N012 3 ESDI
|
|
S5 3 Inn1 Inn1 3 ESDI
|
|
S6 N012 4 4 N012 ESDI
|
|
S7 Inn1 4 4 Inn1 ESDI
|
|
C9 N016 Vsatp 1f
|
|
C16 N016 Vsatn 1f
|
|
C27 Clamp N047 1f
|
|
C44 Clamp N048 1f
|
|
Cdiff N003 N044 {Cdiff}
|
|
C17 Vsatp COM 1n
|
|
C23 Vsatn COM 1n
|
|
E1 COM 0 N049 0 1
|
|
R10 COM 0 1Meg Temp=-273.15
|
|
C8 I_np COM 1.59p
|
|
C51 N040 COM 1.59p
|
|
C52 N041 COM 1.59p
|
|
R16 N019 1 1m Temp=-273.15
|
|
R17 N043 2 1m Temp=-273.15
|
|
B3 COM CMpi I=1m*(V(3,COM)+{Vcm_max}) Cpar=1n
|
|
G17 COM CMp CMpi COM 1k
|
|
R53 COM CMp 1m Temp=-273.15
|
|
B8 COM CMni I=1m*(V(4,COM)+{Vcm_min}) Cpar=1n
|
|
G22 COM CMn CMni COM 1k
|
|
R54 COM CMn 1m Temp=-273.15
|
|
R62 CMpi COM 1k Temp=-273.15
|
|
R88 CMni COM 1k Temp=-273.15
|
|
DIP CMp IVR DI
|
|
DIN IVR CMn DI
|
|
C54 IVR CMn 1f
|
|
C48 IVR CMp 1f
|
|
G14 COM N012 IVR COM 1k
|
|
R14 COM N012 1m Temp=-273.15
|
|
C49 N012 COM 1.59n
|
|
Rdiff N003 N044 {Rdiff} Temp=-273.15
|
|
Rx N016 N015 {Rx_Zo} Temp=-273.15
|
|
Rdummy N016 COM {Rdummy_Zo} Temp=-273.15
|
|
G4 COM Cap2L N023 N016 {G1_Zo}
|
|
R4 Cap2L COM 1 Temp=-273.15
|
|
R5 Cap2L Cap2R {R1a_Zo} Temp=-273.15
|
|
R13 Cap2R COM {R2a_Zo} Temp=-273.15
|
|
G8 COM N004 Cap2R COM {G2_Zo}
|
|
C3 Cap2R Cap2L {C1a_Zo}
|
|
B11 COM N015 I=Uplim(Dnlim({G5_Zo}* V(ZoF,COM), {Izon}, 25m), {Izop}, 25m)
|
|
R23 N006 COM 1 Temp=-273.15
|
|
R24 N008 ZoF {R1e_Zo} Temp=-273.15
|
|
R26 ZoF COM {R2e_Zo} Temp=-273.15
|
|
C4 ZoF N008 {C1e_Zo}
|
|
R27 N004 COM 1 Temp=-273.15
|
|
R28 N004 N005 {R1b_Zo} Temp=-273.15
|
|
R29 N005 COM {R2b_Zo} Temp=-273.15
|
|
G25 COM N006 N005 COM {G3_Zo}
|
|
C5 N005 N004 {C1b_Zo}
|
|
R30 N006 N007 {R2d_Zo} Temp=-273.15
|
|
R31 N007 N021 {R1d_Zo} Temp=-273.15
|
|
C18 COM N021 {C1d_Zo}
|
|
Gb1 COM N008 N007 COM 1
|
|
R32 N008 COM 1 Temp=-273.15
|
|
R43 N035 N034 {R1b_PSRp} Temp=-273.15
|
|
R46 N034 COM {R2b_PSRp} Temp=-273.15
|
|
G11 COM N033 N034 COM {G2_PSRp}
|
|
C28 N034 N035 {C1b_PSRp}
|
|
R48 N033 COM 1 Temp=-273.15
|
|
R86 N033 N032 {R1c_PSRp} Temp=-273.15
|
|
R87 N032 COM {R2c_PSRp} Temp=-273.15
|
|
G12 COM N041 N032 COM {G3_PSRp}
|
|
C29 N032 N033 {C1c_PSRp}
|
|
R34 N035 COM 1 Temp=-273.15
|
|
R35 N041 COM 1 Temp=-273.15
|
|
R89 N028 COM 1 Temp=-273.15
|
|
C30 N029 N028 {C1b_PSRn}
|
|
R90 N029 N028 {R1b_PSRn} Temp=-273.15
|
|
R91 N029 COM {R2b_PSRn} Temp=-273.15
|
|
G13 COM N030 N029 COM {G2_PSRn}
|
|
R100 N030 COM 1 Temp=-273.15
|
|
C31 N031 N030 {C1c_PSRn}
|
|
R101 N031 N030 {R1c_PSRn} Temp=-273.15
|
|
R102 N031 COM {R2c_PSRn} Temp=-273.15
|
|
G39 COM N040 N031 COM {G3_PSRn}
|
|
R103 N040 COM 1 Temp=-273.15
|
|
A6 COM COM COM COM COM COM N054 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={fAe}/(freq**{Me})
|
|
R36 N054 COM 100k Temp=-273.15
|
|
A7 COM N054 COM COM COM COM E_n COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={BBe}
|
|
R39 E_n COM 100k Temp=-273.15
|
|
A3 COM COM COM COM COM COM N055 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={fAi}/(freq**{Mi})
|
|
R40 N055 COM 100k Temp=-273.15
|
|
A8 COM N055 COM COM COM COM N056 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={BBi}
|
|
R41 N056 COM 100k Temp=-273.15
|
|
G1 COM I_nn N058 COM 1
|
|
RI_nn I_nn COM 1 Temp=-273.15
|
|
C24 I_nn COM 1.59p
|
|
A4 COM COM COM COM COM COM N057 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={fAi}/(freq**{Mi})
|
|
R42 N057 COM 100k Temp=-273.15
|
|
A5 COM N057 COM COM COM COM N058 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={BBi}
|
|
R64 N058 COM 100k Temp=-273.15
|
|
B2 Satp Vcc_Int I=1m*Max(Mp*(V(Vimon,COM)) +OSp,OSp)
|
|
C11 Satp Vcc_Int 1n
|
|
R18 Satp Vcc_Int 1k Temp=-273.15
|
|
G9 COM Vs 3 4 1m
|
|
R19 Vs COM 1k Temp=-273.15
|
|
A9 Vs COM COM COM COM COM VminGD COM SCHMITT Vt={Vsmin-50m} Vh=10m Trise=5n
|
|
A10 Vs COM COM COM COM VmaxGD COM COM SCHMITT Vt={Vsmax+50m} Vh=10m Trise=5n
|
|
A11 VminGD COM COM ENgd VmaxGD COM EN COM AND Trise=5n
|
|
R20 EN COM 1G Temp=-273.15
|
|
R65 VmaxGD COM 1G Temp=-273.15
|
|
R66 COM VminGD 1G Temp=-273.15
|
|
A12 6 3 COM COM COM COM ENgd COM SCHMITT Vt={-ENVt} Vh={ENVh} Trise={ENTon*2} Tfall={ENToff*2}
|
|
S8 COM Clamp EN COM ENA
|
|
S9 COM Aol1 EN COM ENA
|
|
S10 COM N015 EN COM ENZ
|
|
Biq N051 N053 I=IF(V(EN,COM)>0.5, {Iq_on},{Iq_off})
|
|
I2 GRni COM 198m
|
|
I3 COM GRpi 198m
|
|
Gb2 COM N013 Aol2 COM 1
|
|
R71 N013 N014 {R1f_Aol} Temp=-273.15
|
|
R73 N014 COM {R2f_Aol} Temp=-273.15
|
|
G24 COM N022 N014 COM {1u*G6_Aol}
|
|
C25 N014 N013 {C1f_Aol}
|
|
R74 N013 COM 1 Temp=-273.15
|
|
R75 N022 COM 1Meg Temp=-273.15
|
|
R78 N023 COM 1Meg Temp=-273.15
|
|
G31 COM N023 N022 COM 1µ
|
|
C26 N022 COM {Cfp3}
|
|
C36 N023 COM {Cfp4}
|
|
BIbp N003 COM I={Ib+Ibd* (Temp-27)}
|
|
Bipd 6 COM I=IF(V(EN,COM)>0.5, {Ipd_on},{Ipd_off})
|
|
D2 6 Vcc_int PD
|
|
R22 Vcc_int 6 1G
|
|
.param Vos=51.28u Drift=15n
|
|
.param Ib=-11u Ios=-9.4n Ibd=1.2n
|
|
.param Vcm_min=0.1 Vcm_max=-0.9
|
|
.param Vsmin=3 Vsmax=10
|
|
.param Iscp=111m Iscn=-116m
|
|
.param Iq_on=3m Iq_off=0.1m
|
|
.param IZop={Rx_Zo*Iscp} IZon={Rx_Zo*Iscn}
|
|
.param ENVt=1.25 ENVh=0.75
|
|
.param ENTon=250n ENToff=6u
|
|
.param Ipd_on=-1.1u Ipd_off=-40u
|
|
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
|
|
.model DG D(Vfwd=10k Vrev=0 Revepsilon=0.5 Ron=1m Noiseless )
|
|
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1 Ron=1m Noiseless)
|
|
.model ESDI SW(Ron=50 Roff=1T Vt=700m Vh=-350m Vser=0.1 Noiseless)
|
|
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
|
|
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m Noiseless)
|
|
.model ENA SW(Ron=1Meg Roff=1u Vt=500m Vh=-100m Noiseless)
|
|
.model ENZ SW(Ron=1 Roff=1u Vt=500m Vh=-100m Noiseless)
|
|
.param Aol2_dB = {Aol_PB-40+1}
|
|
.param Aol2 = {pwr(10, (Aol2_dB)/20)}
|
|
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
|
|
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
|
|
.param Cfp3={1 / (2 * pi * fp3 * 1Meg)}
|
|
.param Cfp4={1 / (2 * pi * fp4 * 1Meg)}
|
|
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
|
|
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
|
|
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
|
|
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
|
|
+* R1a_PSRn) - 1)}
|
|
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
|
|
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
|
|
.param C1b_PSRn = {1 / (2 * pi * R1b_PSRn * fz2_PSRn)}
|
|
.param R2b_PSRn = {R1b_PSRn/ ((2 * pi * fp2_PSRn * C1b_PSRn
|
|
+* R1b_PSRn) - 1)}
|
|
.param actual2_PSRn = {R2b_PSRn/ (R1b_PSRn + R2b_PSRn)}
|
|
.param G2_PSRn = {1/actual2_PSRn}
|
|
.param C1c_PSRn = {1 / (2 * pi * R1c_PSRn * fz3_PSRn)}
|
|
.param R2c_PSRn = {R1c_PSRn/ ((2 * pi * fp3_PSRn * C1c_PSRn
|
|
+* R1c_PSRn) - 1)}
|
|
.param actual3_PSRn = {R2c_PSRn/ (R1c_PSRn + R2c_PSRn)}
|
|
.param G3_PSRn = {1/actual3_PSRn}
|
|
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
|
|
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
|
|
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
|
|
+* R1a_PSRp) - 1)}
|
|
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
|
|
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
|
|
.param C1b_PSRp={1 / (2 * pi * R1b_PSRp * fz2_PSRp)}
|
|
.param R2b_PSRp = {R1b_PSRp/ ((2 * pi * fp2_PSRp * C1b_PSRp
|
|
+* R1b_PSRp) - 1)}
|
|
.param actual2_PSRp = {R2b_PSRp / (R1b_PSRp + R2b_PSRp)}
|
|
.param G2_PSRp= {1/actual2_PSRp}
|
|
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
|
|
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
|
|
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
|
|
+* R1a_CMR) - 1)}
|
|
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
|
|
.param G1_CMR = {gain_CMR/actual1_CMR}
|
|
.param beta_Zo=1.13
|
|
.param Rx_Zo = {100 * Zo_max}
|
|
.param Rdummy_Zo = {10 * Zo_max}
|
|
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
|
|
.param Zo_dc=623
|
|
.param Zo_max={Zo_dc}
|
|
.param R1a_Zo=10k
|
|
.param fz1_Zo=8k
|
|
.param fp1_Zo=41k
|
|
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
|
|
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
|
|
+* R1a_Zo) - 1)}
|
|
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
|
|
.param G2_Zo = {1/actual1_Zo}
|
|
.param R1b_Zo=10k
|
|
.param fz2_Zo=15Meg
|
|
.param fp2_Zo=20Meg
|
|
.param C1b_Zo = {1 / (2 * pi * R1b_Zo * fz2_Zo)}
|
|
.param R2b_Zo = {R1b_Zo/ ((2 * pi * fp2_Zo * C1b_Zo
|
|
+* R1b_Zo) - 1)}
|
|
.param actual3_Zo = {R2b_Zo / (R1b_Zo + R2b_Zo)}
|
|
.param G3_Zo = {1/actual3_Zo}
|
|
.param R1e_Zo=10k
|
|
.param fz5_Zo=700Meg
|
|
.param fp5_Zo=100G
|
|
.param C1e_Zo = {1 / (2 * pi * R1e_Zo * fz5_Zo)}
|
|
.param R2e_Zo = {R1e_Zo/ ((2 * pi * fp5_Zo * C1e_Zo
|
|
+* R1e_Zo) - 1)}
|
|
.param actual5_Zo = {R2e_Zo / (R1e_Zo + R2e_Zo)}
|
|
.param G5_Zo = {1/actual5_Zo}
|
|
.param R1d_Zo=10k
|
|
.param fp4_Zo=140Meg
|
|
.param fz4_Zo=900Meg
|
|
.param C1d_Zo = {1 / (fz4_Zo * R1d_Zo * 2 * pi)}
|
|
.param R2d_Zo = {(1 / (fp4_Zo * C1d_Zo * 2 * pi))
|
|
+- R1d_Zo}
|
|
.param Aol_PB=114.26
|
|
.param SRp=2.53k SRn={-SRp}
|
|
.param fp1=8k fp2=15Meg fp3=900Meg fp4=2G
|
|
.param Rser=1m
|
|
.param Ccm=3p Rcm=10Meg
|
|
.param Cdiff=11p Rdiff=10k
|
|
.param Rej_dc_CMR=109
|
|
.param R1a_CMR=1Meg
|
|
.param fz1_CMR=8k
|
|
.param fp1_CMR=200Meg
|
|
.param R1c_PSRp=1Meg
|
|
.param fz3_PSRp=9Meg
|
|
.param fp3_PSRp=50Meg
|
|
.param C1c_PSRp={1 / (2 * pi * R1c_PSRp * fz3_PSRp)}
|
|
.param R2c_PSRp = {R1c_PSRp/ ((2 * pi * fp3_PSRp * C1c_PSRp
|
|
+* R1c_PSRp) - 1)}
|
|
.param actual3_PSRp = {R2c_PSRp / (R1c_PSRp + R2c_PSRp)}
|
|
.param G3_PSRp= {1/actual3_PSRp}
|
|
.param Rej_dc_PSRp=136
|
|
.param R1a_PSRp=1Meg
|
|
.param fz1_PSRp=6k
|
|
.param fp1_PSRp=100Meg
|
|
.param R1b_PSRp=1Meg
|
|
.param fz2_PSRp={fz1_PSRp}
|
|
.param fp2_PSRp=20k
|
|
.param Rej_dc_PSRn=135
|
|
.param R1a_PSRn=1Meg
|
|
.param fz1_PSRn=6k
|
|
.param fp1_PSRn=100Meg
|
|
.param R1b_PSRn=1Meg
|
|
.param fz2_PSRn={fz1_PSRn}
|
|
.param fp2_PSRn=19k
|
|
.param R1c_PSRn=1Meg
|
|
.param fz3_PSRn=15Meg
|
|
.param fp3_PSRn=50Meg
|
|
.param BBe=1n fCe=26 Me=0.5 fAe={BBe*(fCe**Me)}
|
|
.param BBi=1.55p fCi=1.05k Mi=0.48 fAi={BBi*(fCi**Mi)}
|
|
.param Mp=4.45 OSp=20m
|
|
.param Mn=2.76 OSn=20m
|
|
.param R1f_Aol=10k
|
|
.param fz6_Aol=34Meg
|
|
.param fp6_Aol=10G
|
|
.param C1f_Aol = {1 / (2 * pi * R1f_Aol * fz6_Aol)}
|
|
.param R2f_Aol = {R1f_Aol/ ((2 * pi * fp6_Aol * C1f_Aol
|
|
+* R1f_Aol) - 1)}
|
|
.param actual6_Aol = {R2f_Aol / (R1f_Aol + R2f_Aol)}
|
|
.param G6_Aol = {1/actual6_Aol}
|
|
.model PD D(Ron=0.5 Epsilon=0.1 Noiseless)
|
|
.ends ADA4895
|