377 lines
12 KiB
Plaintext
377 lines
12 KiB
Plaintext
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
|
|
*
|
|
.subckt ADA4077 1 2 3 4 5
|
|
R1 Inn1 2 {Rser} Temp=-273.15
|
|
C1 Clamp COM {Cfp1}
|
|
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}* V(Aol1,COM), {Isink}-V(OL,COM)* 0.2, 20m), {Isrc}+V(OL,COM)*0.2, 20m)
|
|
A1 Inn2 Inp2 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
|
|
G2 0 VCC_Int N045 0 1
|
|
G3 0 Vee_Int N058 0 1
|
|
R6 VCC_Int 0 1 Temp=-273.15
|
|
R7 Vee_Int 0 1 Temp=-273.15
|
|
R8 N041 VCC_Int 1Meg Temp=-273.15
|
|
R9 N041 Vee_Int 1Meg Temp=-273.15
|
|
C2 N041 0 1
|
|
E1 COM 0 N041 0 1
|
|
R10 COM 0 1Meg Temp=-273.15
|
|
R25 Aol2 COM 1Meg Temp=-273.15
|
|
C7 Aol2 COM {Cfp2}
|
|
G7 COM Aol2 Clamp COM 1µ
|
|
Cinp COM Inp1 {Ccm}
|
|
Cinn Inn1 COM {Ccm}
|
|
Cdiff Inp1 Inn1 {Cdiff}
|
|
Rinn Inn1 COM {Rcm} Temp=-273.15
|
|
Ibp Inp1 COM {Ib}
|
|
Ibn Inn1 COM {Ib-Ios}
|
|
R26 N015 N018 1k Temp=-273.15
|
|
B3 N018 N015 I=1m*{Vos+Drift* (Temp-25)}
|
|
G6 N022 Inp2 N032 N036 1m
|
|
R28 Inp2 N022 1k Temp=-273.15
|
|
C8 N032 N033 {C1a_PSRp}
|
|
G8 COM N033 VCC_Int COM {G1_PSRp}
|
|
R29 N033 COM 1 Temp=-273.15
|
|
R30 N032 N033 {R1a_PSRp} Temp=-273.15
|
|
R31 N032 COM {R2a_PSRp} Temp=-273.15
|
|
G12 N016 N017 N007 COM 1m
|
|
R39 N017 N016 1k Temp=-273.15
|
|
Vimon N014 5 0
|
|
BIq N045 N058 I=IF(V(EN,COM)>0.5, {Iq_on},{Iq_off})
|
|
G1 COM N018 Inp1 COM 1k
|
|
G14 COM Inn2 Inn1 COM 1k
|
|
R5 COM N018 1m Temp=-273.15
|
|
R43 COM Inn2 1m Temp=-273.15
|
|
C12 Inn2 COM 1p
|
|
C13 N018 COM 1p
|
|
DIP N034 Inp2 DI
|
|
DIN Inp2 N035 DI
|
|
C14 VCC_Int 0 1n
|
|
C15 Vee_Int 0 1n
|
|
DOP Vsatp N013 DO
|
|
DON N013 Vsatn DO
|
|
DGP N037 Clamp DGP
|
|
DGN Clamp N038 DGN
|
|
S2 Cap2R Cap2L OL COM OL
|
|
F1 COM OLp VGP 1m
|
|
A4 OLp OLn COM COM COM COM OL COM OR Ref=100u Vh=50u Trise=10n
|
|
R44 OLp COM 1k
|
|
F2 COM OLn VGN -1m
|
|
R45 OLn COM 1k
|
|
C16 OLp COM 1n
|
|
C17 OLn COM 1n
|
|
DOI N013 N014 LIM
|
|
COI N014 N013 1p
|
|
G15 COM Vsatp Vsatpi COM 1
|
|
R48 Vsatp COM 1
|
|
C21 Vsatp COM 1n
|
|
G16 COM Vsatn Vsatni COM 1
|
|
R49 Vsatn COM 1
|
|
C22 Vsatn COM 1n
|
|
S3 3 N018 N018 3 ESDI
|
|
S4 3 Inn2 Inn2 3 ESDI
|
|
S5 N018 4 4 N018 ESDI
|
|
S6 Inn2 4 4 Inn2 ESDI
|
|
C24 N013 Vsatp 1f
|
|
C25 N013 Vsatn 1f
|
|
S7 3 5 5 3 ESDO
|
|
S8 5 4 4 5 ESDO
|
|
C26 OL COM 1p
|
|
B6 COM N039 I=1m*({Zo_max}* {Iscp}+V(3,COM)) Rpar=1k Cpar=1n
|
|
G18 COM GRp N039 COM 1
|
|
R51 GRp COM 1
|
|
G19 COM GRn N040 COM 1
|
|
R52 GRn COM 1
|
|
B7 COM N040 I=1m*({Zo_max}* {Iscn}+V(4,COM)) Rpar=1k Cpar=1n
|
|
VGP N037 GRp 0
|
|
VGN N038 GRn 0
|
|
G17 COM Vs 3 4 1m
|
|
R50 Vs COM 1k Temp=-273.15
|
|
A5 Vs COM COM COM COM COM VminGD COM SCHMITT Vt={Vsmin-50m} Vh=10m Trise=5n
|
|
A6 Vs COM COM COM COM VmaxGD COM COM SCHMITT Vt={Vsmax-50m} Vh=10m Trise=5n
|
|
A7 VminGD COM COM COM VmaxGD COM EN COM AND Trise=5n
|
|
R53 EN COM 1G Temp=-273.15
|
|
R54 VmaxGD COM 1G Temp=-273.15
|
|
R55 COM VminGD 1G Temp=-273.15
|
|
S9 COM Aol1 EN COM ENA
|
|
S10 COM Clamp EN COM ENA
|
|
Rx N013 N019 {Rx_Zo} Temp=-273.15
|
|
Rdummy N013 COM {Rdummy_Zo} Temp=-273.15
|
|
G20 COM Cap2L N025 N013 {G1_Zo}
|
|
R3 Cap2L COM 1 Temp=-273.15
|
|
R4 Cap2L Cap2R {R1a_Zo} Temp=-273.15
|
|
R17 Cap2R COM {R2a_Zo} Temp=-273.15
|
|
G21 COM N008 Cap2R COM {G2_Zo}
|
|
C20 Cap2R Cap2L {C1a_Zo}
|
|
R56 N010 COM 1 Temp=-273.15
|
|
R57 N010 N011 {R2c_Zo} Temp=-273.15
|
|
R58 N011 N023 {R1c_Zo} Temp=-273.15
|
|
C23 COM N023 {C1c_Zo}
|
|
Gb3 COM N012 N011 COM 1
|
|
R59 N019 COM 1 Temp=-273.15
|
|
B8 COM N019 I=Uplim(Dnlim({G4_Zo}*V(ZoF,COM), {IZon}, 25m), {IZop}, 25m)
|
|
R60 N012 COM 1 Temp=-273.15
|
|
R61 N012 ZoF {R1d_Zo} Temp=-273.15
|
|
R62 ZoF COM {R2d_Zo} Temp=-273.15
|
|
C27 ZoF N012 {C1d_Zo}
|
|
R63 N008 COM 1 Temp=-273.15
|
|
R64 N008 N009 {R1b_Zo} Temp=-273.15
|
|
R65 N009 COM {R2b_Zo} Temp=-273.15
|
|
G22 COM N010 N009 COM {G3_Zo}
|
|
C28 N009 N008 {C1b_Zo}
|
|
R11 N024 COM 1Meg Temp=-273.15
|
|
C29 N024 COM {Cfp2}
|
|
G24 COM N024 Aol2 COM 1µ
|
|
R16 N025 COM 1Meg Temp=-273.15
|
|
C30 N025 COM {Cfp2}
|
|
G25 COM N025 N024 COM 1µ
|
|
C3 N002 N001 {C1a_CMR}
|
|
G4 COM N001 Inp1 COM {G1_CMR}
|
|
R13 N002 N001 {R1a_CMR} Temp=-273.15
|
|
R14 N002 COM {R2a_CMR} Temp=-273.15
|
|
R15 N003 N004 {R1b_CMR} Temp=-273.15
|
|
R18 N004 COM {R2b_CMR} Temp=-273.15
|
|
G5 COM N005 N004 COM {G2_CMR}
|
|
C4 N004 N003 {C1b_CMR}
|
|
R19 N003 COM 1
|
|
G23 COM N003 N002 COM 1
|
|
R20 N005 N006 {R1c_CMR} Temp=-273.15
|
|
R21 N006 COM {R2c_CMR} Temp=-273.15
|
|
G26 COM N007 N006 COM {G3_CMR}
|
|
C5 N006 N005 {C1c_CMR}
|
|
R22 N005 COM 1 Temp=-273.15
|
|
R23 N007 COM 1
|
|
R12 N001 COM 1 Temp=-273.15
|
|
C6 N027 N026 {C1a_PSRn}
|
|
G9 COM N026 VEE_Int COM {G1_PSRn}
|
|
R32 N026 COM 1 Temp=-273.15
|
|
R33 N027 N026 {R1a_PSRn} Temp=-273.15
|
|
R34 N027 COM {R2a_PSRn} Temp=-273.15
|
|
C9 N029 N028 {C1b_PSRn}
|
|
R35 N028 COM 1 Temp=-273.15
|
|
R40 N029 N028 {R1b_PSRn} Temp=-273.15
|
|
R41 N029 COM {R2b_PSRn} Temp=-273.15
|
|
G10 COM N030 N029 COM {G2_PSRn}
|
|
R42 N036 COM 1 Temp=-273.15
|
|
G13 COM N028 N027 COM 1
|
|
C11 N031 N030 {C1c_PSRn}
|
|
R66 N030 COM 1 Temp=-273.15
|
|
R67 N031 N030 {R1c_PSRn} Temp=-273.15
|
|
R68 N031 COM {R2c_PSRn} Temp=-273.15
|
|
G27 COM N036 N031 COM {G3_PSRn}
|
|
A8 COM COM COM COM COM COM N052 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={fA}/(freq**{M})
|
|
R36 N046 COM 1 Temp=-273.15
|
|
R37 N048 N049 {R1a_E_n} Temp=-273.15
|
|
R38 N049 COM {R2a_E_n} Temp=-273.15
|
|
G11 COM N050 N049 COM {G1_E_n}
|
|
C10 N049 N048 {C1a_E_n}
|
|
R69 N050 COM 1 Temp=-273.15
|
|
R70 N050 N051 {R1a_E_n} Temp=-273.15
|
|
R71 N051 COM {R2a_E_n} Temp=-273.15
|
|
G28 COM N054 N051 COM {1u*G1_E_n}
|
|
C31 N051 N050 {C1a_E_n}
|
|
R72 N054 COM 1Meg Temp=-273.15
|
|
C32 N054 COM {CEn}
|
|
G29 COM N055 N054 COM 1µ
|
|
R73 N055 COM 1Meg Temp=-273.15
|
|
G30 COM E_np N056 COM 1µ
|
|
R74 E_np COM 1Meg Temp=-273.15
|
|
R75 N052 COM 100k Temp=-273.15
|
|
G31 COM N046 N053 COM 1
|
|
R76 N046 N047 {R1a_E_n} Temp=-273.15
|
|
R77 N047 COM {R2a_E_n} Temp=-273.15
|
|
G32 COM N048 N047 COM {G1_E_n}
|
|
C33 N047 N046 {C1a_E_n}
|
|
R78 N048 COM 1 Temp=-273.15
|
|
A9 COM N052 COM COM COM COM N053 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={Enp}
|
|
R79 N053 COM 100k Temp=-273.15
|
|
C35 E_np COM 15f
|
|
G33 COM N056 N055 COM 1µ
|
|
R80 N056 COM 1Meg Temp=-273.15
|
|
R81 N016 N015 1k Temp=-273.15
|
|
G34 N015 N016 E_np COM 1m
|
|
B2 COM N042 I=1m*(V(3,COM)+{Vcm_max}) Rpar=1k Cpar=1n
|
|
G36 COM CMp N042 COM 1
|
|
R24 CMp COM 1
|
|
B9 COM N043 I=1m*(V(4,COM)+{Vcm_min}) Rpar=1k Cpar=1n
|
|
G37 COM CMn N043 COM 1
|
|
R27 CMn COM 1
|
|
VIP N034 CMp 0
|
|
VIN CMn N035 0
|
|
A10 COM COM COM COM COM COM N059 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={fAi}/(freq**{Mi})
|
|
R83 N059 COM 100k Temp=-273.15
|
|
A11 COM N059 COM COM COM COM N060 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={BBi}
|
|
R84 N060 COM 100k Temp=-273.15
|
|
F3 Inp1 COM V_I_n 1
|
|
Gb1 COM N061 N060 COM 1
|
|
R85 N062 COM 1 Temp=-273.15
|
|
V_I_n N061 N062 0
|
|
F4 Inn1 COM V_I_n 1
|
|
R86 Vsatp2 3 1k
|
|
C37 Vsatp2 3 1n
|
|
B10 4 Vsatn1 I=1m*Max(Mn*(-I(Vimon))+OSn,40u)
|
|
R87 Vsatn1 4 1k
|
|
C38 Vsatn1 4 1n
|
|
B11 4 Vsatn2 I=1m*(An+((Bn*(-I(Vimon)**Cn))/((Dn**Cn)+(-I(Vimon)**Cn))))
|
|
R88 Vsatn2 4 1k
|
|
C39 Vsatn2 4 1n
|
|
B12 COM Vsatni I=1m*IF(-I(Vimon)>15m, V(Vsatn2,COM), V(Vsatn1,COM))
|
|
R89 Vsatpi COM 1k
|
|
C40 Vsatpi COM 1n
|
|
B13 Vsatp1 3 I=1m*Max(Mp*(I(Vimon))+OSp,40u)
|
|
R90 Vsatp1 3 1k
|
|
C41 Vsatp1 3 1n
|
|
B14 COM Vsatpi I=1m*IF(I(Vimon)>16m, V(Vsatp2,COM), V(Vsatp1,COM))
|
|
R91 Vsatni COM 1k
|
|
C42 Vsatni COM 1n
|
|
B15 Vsatp2 3 I=1m*Max(Ap+((Bp*(I(Vimon)**Cp))/((Dp**Cp)+(I(Vimon)**Cp))),40u)
|
|
G35 COM N022 N017 COM 1k
|
|
R46 COM N022 1m Temp=-273.15
|
|
Rinp COM Inp1 {Rcm} Temp=-273.15
|
|
R2 Inp1 1 {Rser} Temp=-273.15
|
|
F5 N045 N058 Vimon 1
|
|
C18 N055 COM {CEn}
|
|
C19 N056 COM {CEn}
|
|
R47 N045 3 1µ
|
|
R82 N058 4 1µ
|
|
.param Vos=-1.94u Drift=0.1u
|
|
.param Ib=-0.4n Ios=0.1n
|
|
.param Vcm_min=1.2 Vcm_max=-2
|
|
.param Vsmin=3 Vsmax=36
|
|
.param Iscp=22m Iscn=-22m
|
|
.param Iq_on=400u Iq_off=1u
|
|
.param IZop={2*Rx_Zo*Iscp} IZon={2*Rx_Zo*Iscn}
|
|
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
|
|
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1)
|
|
.model LIM D(Vfwd=1n Vrev=1n Ron=1m Roff=1m Ilimit={Iscp} Revilimit={-Iscn} Epsilon=1u)
|
|
.model DGP D(Vfwd=1k Vrev=0 Revepsilon=0.5)
|
|
.model DGN D(Vfwd=1k Vrev=0 Revepsilon=0.5)
|
|
.model ESDI SW(Ron=50 Roff=1T Vt=31.6 Vh=-500m Vser=0.1)
|
|
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n)
|
|
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m)
|
|
.model ENA SW(Ron=1Meg Roff=1u Vt=500m Vh=-100m Noiseless)
|
|
.model ENZ SW(Ron=1 Roff=1u Vt=500m Vh=-100m Noiseless)
|
|
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
|
|
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
|
|
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
|
|
+* R1a_PSRp) - 1)}
|
|
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
|
|
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
|
|
.param beta_Zo=1.14
|
|
.param Rx_Zo = {100 * Zo_max}
|
|
.param Rdummy_Zo = {10 * Zo_max}
|
|
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
|
|
.param Zo_dc=1.58k
|
|
.param Zo_max=1.58k
|
|
.param R1a_Zo=10k
|
|
.param fz1_Zo=0.96
|
|
.param fp1_Zo=9.8
|
|
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
|
|
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
|
|
+* R1a_Zo) - 1)}
|
|
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
|
|
.param G2_Zo = {1/actual1_Zo}
|
|
.param R1c_Zo=10k
|
|
.param fp3_Zo=7.1Meg
|
|
.param fz3_Zo=12.5Meg
|
|
.param C1c_Zo = {1 / (fz3_Zo * R1c_Zo * 2 * pi)}
|
|
.param R2c_Zo = {(1 / (fp3_Zo * C1c_Zo * 2 * pi))
|
|
+- R1c_Zo}
|
|
.param R1b_Zo=10k
|
|
.param fz2_Zo=33.5k
|
|
.param fp2_Zo=45.5k
|
|
.param C1b_Zo = {1 / (2 * pi * R1b_Zo * fz2_Zo)}
|
|
.param R2b_Zo = {R1b_Zo/ ((2 * pi * fp2_Zo * C1b_Zo
|
|
+* R1b_Zo) - 1)}
|
|
.param actual3_Zo = {R2b_Zo / (R1b_Zo + R2b_Zo)}
|
|
.param G3_Zo = {1/actual3_Zo}
|
|
.param R1d_Zo=10k
|
|
.param fz4_Zo=96Meg
|
|
.param fp4_Zo=100G
|
|
.param C1d_Zo = {1 / (2 * pi * R1d_Zo * fz4_Zo)}
|
|
.param R2d_Zo = {R1d_Zo/ ((2 * pi * fp4_Zo * C1d_Zo
|
|
+* R1d_Zo) - 1)}
|
|
.param actual4_Zo = {R2d_Zo / (R1d_Zo + R2d_Zo)}
|
|
.param G4_Zo = {1/actual4_Zo}
|
|
.param Aol_PB=135.06
|
|
.param SRp=1.3 SRn=-1.3
|
|
.param fp1=0.695 fp2=21.15Meg
|
|
.param Rser=1m
|
|
.param Ccm=5p Rcm=70G
|
|
.param Cdiff=3p ;Rdiff=100T
|
|
.param Aol2_dB = {Aol_PB-40+1}
|
|
.param Aol2 = {pwr(10, (Aol2_dB)/20)}
|
|
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
|
|
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
|
|
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
|
|
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
|
|
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
|
|
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
|
|
+* R1a_CMR) - 1)}
|
|
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
|
|
.param G1_CMR = {gain_CMR/actual1_CMR}
|
|
.param Rej_dc_CMR=149.5
|
|
.param R1a_CMR=1Meg
|
|
.param fz1_CMR=70m
|
|
.param fp1_CMR=10
|
|
.param R1b_CMR=1Meg
|
|
.param fz2_CMR=6k
|
|
.param fp2_CMR=200k
|
|
.param C1b_CMR = {1 / (2 * pi * R1b_CMR * fz2_CMR)}
|
|
.param R2b_CMR = {R1b_CMR/ ((2 * pi * fp2_CMR * C1b_CMR
|
|
+* R1b_CMR) - 1)}
|
|
.param actual2_CMR = {R2b_CMR / (R1b_CMR + R2b_CMR)}
|
|
.param G2_CMR = {1/actual2_CMR}
|
|
.param R1c_CMR=1Meg
|
|
.param fz3_CMR=300k
|
|
.param fp3_CMR=10Meg
|
|
.param C1c_CMR = {1 / (2 * pi * R1c_CMR * fz3_CMR)}
|
|
.param R2c_CMR = {R1c_CMR/ ((2 * pi * fp3_CMR * C1c_CMR
|
|
+* R1c_CMR) - 1)}
|
|
.param actual3_CMR = {R2c_CMR / (R1c_CMR + R2c_CMR)}
|
|
.param G3_CMR = {1/actual3_CMR}
|
|
.param Rej_dc_PSRp=128
|
|
.param R1a_PSRp=100Meg
|
|
.param fz1_PSRp=1.6
|
|
.param fp1_PSRp=4Meg
|
|
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
|
|
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
|
|
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
|
|
+* R1a_PSRn) - 1)}
|
|
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
|
|
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
|
|
.param Rej_dc_PSRn=128
|
|
.param R1a_PSRn=1Meg
|
|
.param fz1_PSRn=0.35
|
|
.param fp1_PSRn=10
|
|
.param C1b_PSRn = {1 / (2 * pi * R1b_PSRn * fz2_PSRn)}
|
|
.param R2b_PSRn = {R1b_PSRn/ ((2 * pi * fp2_PSRn * C1b_PSRn
|
|
+* R1b_PSRn) - 1)}
|
|
.param actual2_PSRn = {R2b_PSRn/ (R1b_PSRn + R2b_PSRn)}
|
|
.param G2_PSRn = {1/actual2_PSRn}
|
|
.param R1b_PSRn=1Meg
|
|
.param fz2_PSRn=950
|
|
.param fp2_PSRn=4.1Meg
|
|
.param C1c_PSRn = {1 / (2 * pi * R1c_PSRn * fz3_PSRn)}
|
|
.param R2c_PSRn = {R1c_PSRn/ ((2 * pi * fp3_PSRn * C1c_PSRn
|
|
+* R1c_PSRn) - 1)}
|
|
.param actual3_PSRn = {R2c_PSRn/ (R1c_PSRn + R2c_PSRn)}
|
|
.param G3_PSRn = {1/actual3_PSRn}
|
|
.param R1c_PSRn=1Meg
|
|
.param fz3_PSRn=200k
|
|
.param fp3_PSRn={fp2_PSRn}
|
|
.param R1a_E_n=1Meg
|
|
.param fz1_E_n=2.2Meg
|
|
.param fp1_E_n=5.2Meg
|
|
.param C1a_E_n = {1 / (2 * pi * R1a_E_n * fz1_E_n)}
|
|
.param R2a_E_n = {R1a_E_n/ ((2 * pi * fp1_E_n * C1a_E_n
|
|
+* R1a_E_n) - 1)}
|
|
.param actual1_E_n = {R2a_E_n / (R1a_E_n + R2a_E_n)}
|
|
.param G1_E_n = {1/actual1_E_n}
|
|
.param Enp=6.9n CEn=22f
|
|
.param BB=6.9n fC=2.7 M=0.58 fA={BB*(fC**M)}
|
|
.param BBi=0.16p fCi=5 Mi=0.75 fAi={BBi*(fCi**Mi)}
|
|
.param Mp=14.12 OSp=0.96
|
|
.param Ap=1.08 Bp=1.71 Cp=8.54 Dp=2.2e-2
|
|
.param Mn=20 OSn=1
|
|
.param An=1.11 Bn=2.33 Cn=6.86 Dn=2.13e-2
|
|
.ends ADA4077
|