initial commit

This commit is contained in:
Joseph Hopfmüller
2023-01-23 08:17:09 +01:00
commit 1d8dca1c6c
11733 changed files with 1219458 additions and 0 deletions

View File

@@ -0,0 +1,14 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005. All rights reserved.
*
.subckt 2ndOrderAllpass 1 2
G1 0 N002 1 0 {2/R1}
L2 N002 0 {L1} Rpar={R1} Cpar={C1}
G2 0 N003 1 0 {1/R1}
G3 N003 0 N002 0 {1/R1}
R1 N003 0 {R1}
G4 0 2 N003 0 {10*H}
R2 2 0 .1
.param R1=1k
.param C1=Q/(2*pi*f0*R1)
.param L1= 1/(C1*(2*pi*f0)**2)
.ends 2ndOrderAllpass

View File

@@ -0,0 +1,13 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005. All rights reserved.
*
.subckt 2ndOrderBandpass 1 2
L1 N003 0 {L1} Cpar={C1}
G1 0 N002 1 0 {2/R1}
R1 N002 0 {R1/2}
R2 N003 N002 {R1/2}
G2 0 2 N003 0 {10*H}
R3 2 0 .1
.param R1=1k
.param L1=1/(C1*(2*pi*f0)**2)
.param C1=Q/(R1*2*pi*f0)
.ends 2ndOrderBandpass

View File

@@ -0,0 +1,20 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005. All rights reserved.
*
.subckt 2ndOrderComplexzero 1 2
G1 0 N002 1 0 {2*f0**2/(R1*fn**2)}
R2 N002 0 {R1/2}
G2 0 N003 N002 N005 {2m*K1}
R4 N003 0 1k
L1 N005 N006 {L1}
R1 N002 N005 {R1/2}
C2 N006 0 {C1}
G3 0 N003 N005 N006 {1m}
G4 0 N003 N006 0 {1m*K2}
G5 0 2 N003 0 {10*H}
R3 2 0 .1
.param R1=1k
.param K1 = (fn*Q)/(f0*Qn)
.param K2 = (fn/f0)**2
.param L1 = R1*Q/(2*pi*f0)
.param C1 = 1/(L1*(2*pi*f0)**2)
.ends 2ndOrderComplexzero

View File

@@ -0,0 +1,13 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005. All rights reserved.
*
.subckt 2ndOrderHighpass 1 2
L1 N003 0 {L1}
C1 N002 N003 {C1} Rser={R1/2}
G1 0 N002 1 0 {2/R1}
R1 N002 0 {R1/2}
G2 0 2 N003 0 {10*H}
R2 2 0 .1
.param R1=1k
.param L1=R1*Q/(2*pi*f0)
.param C1=1/(L1*(2*pi*f0)**2)
.ends 2ndOrderHighpass

View File

@@ -0,0 +1,13 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005. All rights reserved.
*
.subckt 2ndOrderLowpass 1 2
G1 0 N002 1 0 {2/R1}
R2 N002 0 {R1/2}
R4 2 0 .1
L1 N002 N004 {L1} Rser={R1/2}
C2 N004 0 {C1}
G4 0 2 N004 0 {10*H}
.param R1=1k
.param L1 = R1*Q/(2*pi*f0)
.param C1 = 1/(L1*(2*pi*f0)**2)
.ends 2ndOrderLowpass

14
lib/sub/2ndOrderNotch.sub Normal file
View File

@@ -0,0 +1,14 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005. All rights reserved.
*
.subckt 2ndOrderNotch 1 2
G1 0 N002 1 0 {4/R1}
R1 N002 0 {R1/2}
R2 N003 N002 {R1/2}
R3 N003 0 {R1}
C1 N003 0 {C1} Lser={L1}
G2 0 2 N003 0 {10*H}
R4 2 0 .1
.param R1=1k
.param L1=R1*Q/(4*pi*f0)
.param C1=1/(L1*(2*pi*f0)**2)
.ends 2ndOrderNotch

11
lib/sub/4N25.sub Normal file
View File

@@ -0,0 +1,11 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000. All rights reserved.
*
.subckt 4N25 1 2 3 4 5
R1 N003 2 2
D1 1 N003 LD
G1 3 5 N003 2 .876m
C1 1 2 18p
Q1 3 5 4 [4] NP
.model LD D(Is=1e-20 Cjo=18p)
.model NP NPN(Bf=610 Vaf=140 Ikf=15m Rc=1 Cjc=19p Cje=7p Cjs=7p C2=1e-15)
.ends 4N25

11
lib/sub/4N27.sub Normal file
View File

@@ -0,0 +1,11 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000. All rights reserved.
*
.subckt 4N27 1 2 3 4 5
R1 N003 2 2
D1 1 N003 LD
G1 3 5 N003 2 .582m
C1 1 2 18p
Q1 3 5 4 [4] NP
.model LD D(Is=1e-20 Cjo=18p)
.model NP NPN(Bf=610 Vaf=140 Ikf=15m Rc=1 Cjc=19p Cje=7p Cjs=7p C2=1e-15)
.ends 4N27

BIN
lib/sub/AD3541R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD3542R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD3551R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD3552R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4000.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4001.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4002.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4003.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4004.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4005.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4006.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4007.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4008.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4010.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4011.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4020.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4021.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4022.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4030-24.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4130-8.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4630-16.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4630-24.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4695.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4696.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4697.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4698.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5535Bopamp.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5671R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5672R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5673R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5674R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5675R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5676R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5677R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5679R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5681R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5682R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5683R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5684R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5685R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5686R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5687R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5689R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5691R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5692R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5693R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5694R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5695R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5696R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5697R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5766.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5770R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5772R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5791.sub Normal file

Binary file not shown.

BIN
lib/sub/AD7380.sub Normal file

Binary file not shown.

164
lib/sub/AD8137.lib Normal file
View File

@@ -0,0 +1,164 @@
* AD8137 SPICE Macro-model
* Description: Amplifier
* Generic Desc: Low Power/Cost Diff 10-12 bit ADC Driver
* Developed by: TRW/ADI
* Revision History: 08/10/2012 - Updated to new header style
* 07/06/2021 - Corrected current draw from the supplies
* 4.0 (07/2006)
* Copyright 2006, 2012 by Analog Devices, Inc.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance with the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
* vnoise, not included in this version
* inoise, not included in this version
* distortion is not characterized
* cmrr is not characterized in this version.
*
* Parameters modeled include:
* closed loop gain and phase vs bandwidth
* output current and voltage limiting
* offset voltage (is non-static, will vary with gain)
* ibias (again, is static, will not vary with vcm)
* slew rate and step response performance
* (slew rate is based on 10-90% of step response)
* current on output will be reflected to the supplies
* Vocm is variable and include input typical offset
*
* END Notes:
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output positive
* | | | | | output negative
* | | | | | | vocm input
* | | | | | | |
.SUBCKT AD8137 3a 9 99 50 71b 71 110
*** INPUT STAGE ***
*** POSITIVE INPUT, LEFT SIDE ***
I1 99BUF 5 .4E-3
Q1 50BUF 2 5 QX
VOS 3a 2 -1.95E-3
*** RAIL CLIPPING ***
Dlim+ 75 14b dx
Vlim+ 99BUF 14b 1.55
Dlim 14c 75 dx
Vlim 14c 50BUF 1.55
Dlim- 13b 76 DX
Vlim- 13b 50BUF 1.5
Dlim-B 76 13C dx
Vlim-B 99BUF 13C 1.5
*** VOCM INPUT RAIL CLIPPING ***
DOCMa 100 100A dx
VOCMa 99BUF 100A 2.04
DOCMb 100b 100 DX
VOCMb 100b 50BUF 2.04
*** NEGATIVE INPUT, RIGHT SIDE ***
I2 99BUF 6 .4E-3
Q2 50BUF 9 6 QX
*** INPUT IMPEDANCE ***
Cin 3a 9 1p
*** POLE, ZERO POLE STAGE ***
G1 13 14 5 6 5e-3
C1 14 13 1.7p
C2 13 98 11.5p
C3 14 98 11.5p
R11 13 98 250k
R12 14 98 250k
*** POLE ZERO STAGE (POSITIVE SIDE) ***
GP1 0 75 14 98 1
RP1 75 0 1
CP1 75 0 2e-9
*** POLE ZERO STAGE (NEGATIVE SIDE) ***
GP2 0 76 13 98 1
RP2 76 0 1
CP2 76 0 2e-9
*** OUTPUT STAGE (NEGATIVE SIDE) ***
D17 76 84 DX
VO1 84 70 .177V
VO2 70 85 .177V
D16 85 76 DX
G30 70 99c 99BUF 76 91E-3
G31 98c 70 76 50BUF 91E-3
RO30 70 99c 11
RO31 98c 70 11
VIOUT1 99BUF 99c 0V ;current mon from V+
VIOUT2 50BUF 98c 0V ;current mon from V-
VIOUT3 70 71 0V ;current mon from OUT-
*** OUTPUT STAGE (POSITIVE SIDE) ***
D17b 75 84b DX
VO1b 84b 70b .177V
VO2b 70b 85b .177V
D16b 85b 75 DX
G30b 70b 99d 99BUF 75 91E-3
G31b 98d 70b 75 50BUF 91E-3
RO30b 70b 99d 11
RO31b 98d 70b 11
VIOUTB1 99BUF 99d 0V
VIOUTB2 98d 50BUF 0V
VIOUTB3 70b 71b 0V
*** VOCM STAGE ***
Gocm_a 0 75 100 0 1
Gocm_b 0 76 100 0 1
Rocm1 99BUF 100 70k
Rocm2 100 50BUF 70k
Vocmo 110 100 1e-3
*** REFERENCE STAGE ***
Eref 98 0 poly(2) 99BUF 0 50BUF 0 0 0.5 0.5
*** POWER SUPPLY BUFFER ***
E99 99BUF 0 99 0 1
E50 50BUF 0 50 0 1
*** CURRENT MIRROR TO SUPPLIES
GIQ 99 50 VALUE={2.3m + I(VIOUT3)+ I(VIOUTB3)}
;*** CURRENT MIRROR TO SUPPLIES, POSITIVE SIDE ***
;FO1 0 99 poly(2) VIOUT1 VI1 -1.803E-3 1 -1
;FO2 0 50 poly(2) VIOUT2 VI2 -1.803E-3 1 -1
;FO3 0 400 VIOUT1 1
;VI1 401 0 0
;VI2 0 402 0
;DM1 400 401 DX
;DM2 402 400 DX
;*** CURRENT MIRROR TO SUPPLIES, NEGATIVE SIDE ***
;FO2B 0 50 poly(2) VIOUTB2 VIB2 +200E-6 1 -1
;FO1B 0 99 poly(2) VIOUTB1 VIB1 0 1 -1
;FO3B 0 400B VIOUTB1 1
;VIB1 401B 0 0
;VIB2 0 402B 0
;DMB1 400B 401B DX
;DMB2 402B 400B DX
.MODEL QX PNP (BF=228.57 Is=1E-15)
.MODEL DX D(IS=1E-15)
.ENDS

102
lib/sub/AD8237.lib Normal file
View File

@@ -0,0 +1,102 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt AD8237 1 2 3 4 5 6 7 8
VOS N014 IN+ 37.5e-6
VOS1 N025 REF 37.5e-6
I23 IN- 0 -1e-12
I24 FB 0 -1e-12
I1 IN+ 0 -650e-12
I2 REF 0 -650e-12
G7 0 V+ N016 V+ 1
R4 0 V+ 10E9
G8 0 V- N004 V- 1
R5 0 V- 10E9
G1 0 IN+ N021 N023 1.26e-9
R13 N023 IN+ 10e9
G2 0 IN- N021 N023 1.26e-9
R14 IN- N021 10E9
R16 N023 -Vs 10E9
R15 +Vs N023 10E9
E10 VPOSx 0 +Vs 0 1
E11 VNEGx 0 -Vs 0 1
I3 +Vs -Vs 130E-6
H3 N003 IN- V24 67.3
V24 N001 0 0
R19 N001 0 0.0166
G4 0 Out_inp V- V+ 100E-6
G5 0 Out_inp FB N025 100E-6
R10 Out_inp 0 10E9
R11 Out_inp 0 10E9
G6 0 sub_out 0 Out_inp 1
R1 0 sub_out 10E9
C1 N020 sub_out 85E-12
C2 N019 N020 25E-12
D7 V+ N012 D
D8 N018 V+ D
V3 VPOSx N012 0.55
V4 N018 VNEGx 0.6
D9 V- N002 D
D10 N006 V- D
V5 VPOSx N002 0.55
V6 N006 VNEGx 0.6
EPSRR+ N015 N014 N100 N200 1
E1 N100 0 N024 0 1
R6 N100 N200 1
R7 N200 0 1E6
C3 N200 0 0.3E-6
R9 N024 0 1E6
C4 +Vs N024 100e-6
EPSRR- N004 N003 N300 N400 1
E2 N300 0 N026 0 1
R12 N300 N400 0.5
R17 N400 0 1E6
C5 N400 0 0.5E-6
R18 N026 0 1E6
C6 -Vs N026 100e-6
D16 N9999 N009 DX
D18 N017 N9999 DX
V1 N017 N022 0.7
V13 N005 N009 0.7
H1 VPOSx N005 POLY(1) V_current 0 -29.4 5880.5 -500000000
H2 N022 VNEGx POLY(1) V_current 0 50 -18820 590000000
V_current VOUT N9999 0
ECMRR N016 N015 cmrr_out 0 1
L2 N028 0 15
R24 N028 cmrr_out 500
G12 0 cmrr_out VCM 0 8E-10
R22 IN+ VCM 10e9
R23 IN- VCM 10e9
G11 IN+ IN- IN+ IN- -0.5e-8
S1 N020 N019 BW 0 SW
G9 0 N013 sub_out 0 0.0023
R21 N013 0 500
C7 N013 0 2e-9
C8 IN- 0 10e-12
C10 IN+ 0 10e-12
E3 N010 V- VPOSX N007 1
E4 V- N011 VPOSX N008 1
D1 V+ N010 D
D2 N011 V+ D
V7 N007 VNEGX 1.6
V8 N008 VNEGX 1.6
G3 0 REF N027 N029 1.26e-9
R8 FB N027 10e9
R20 REF N027 10e9
G10 0 FB N027 N029 1.26e-9
R2 N029 +Vs 10e9
R3 N029 -Vs 10e9
R28 Out_inp N019 10k
R9999 N9999 N013 0.01
R25 +Vs 5 1<> Noiseless
R26 IN+ 2 1<> Noiseless
R27 IN- 3 1<> Noiseless
R29 REF 6 1<> Noiseless
R30 -Vs 4 1<> Noiseless
R31 BW 1 1<> Noiseless
R32 8 VOUT 1<> Noiseless
R33 7 FB 1<> Noiseless
I4 BW 0 1f
.model SW Vswitch (Ron=1e-3 Roff=1e9 Von=-2.5 Voff=+2.5 Vh=0)
.model D D
.model DX D IS=1E-14 EG=0.6
.ends AD8237

493
lib/sub/AD8253.lib Normal file
View File

@@ -0,0 +1,493 @@
* AD8253 SPICE Macromodel Rev H. 11/2021
* Function: PGIA
* Description:
* This spice model covers the AD8253 Programmable Gain Instrumentation Amplifier (PGIA).
* Gain options are 1, 10, 100, and 1000
* Revision History:
* Rev D. Prior releases, 5/2011
* Rev E. 10/2013 - Relocates .ends for AD8253 subcircuit to before the digital section to
* accommodate spice errors in some SPICE packages. (Where Sub circuit nesting is not allowed)
* Rev F. 7/2015 - Replace flipflops and gates with equivalent MOSFET circuit to package the model without any more additional subcircuit.
* Rev G. 9/2018 - Fixed Gain mode bug on LTSPICE platform.
* Rev. H 11/2021 - Fixed input bias current.
* Developed by: ADI
*
* Spice model Copyright 2013 Analog Devices Inc
*
* Temperature variations for the AD8250 are NOT included
* in this model.
*
* Voltage Noise parameters for this model will closely model
* typical AD8253 characteristics. Current Noise parameters
* will be slightly higher than typical AD8253 characteristics
* due to modeling limitations.
*
* Node Assignments
* inverting input
* | digital ground
* | | negative supply
* | | | A0 (digital gain control)
* | | | | A1 (digital gain control)
* | | | | | Digital Write
* | | | | | | output
* | | | | | | | positive supply
* | | | | | | | | reference
* | | | | | | | | | non-inverting input
*$
.SUBCKT AD8253 -IN DGND -Vs A0 A1 WR OUT +Vs REF +IN
*
*Power Supply
*
*Analog Power Supply
R6 0 90 0.0001
R5 0 AGND_1 0.0001
I2 90 -Vs 0.0045
I1 +Vs AGND_1 0.0046
EV6 50 90 -Vs 90 1
EV5 99 AGND_1 +Vs AGND_1 1
*
*Digital power supply
VDD1 D99 0 5
*
*power consumption correction
ICORR_P1 99 0 1.6m
ICORR_N1 0 50 1.5m
*
*Internal Voltage Reference
EREF1 98 0 40 0 1
CREF1 40 0 5e-006
RREF2 40 50 500000
RREF1 99 40 500000
*
*
*GAIN CONTROL
*
*gain of 1000
Rfb9 104 116 49.95k
Rfb8 116 115 100
Rfb7 103 115 49.95k
SGC16 116 72 A1int 0 SW1
SGC15 72 Rg+ A0int 0 SW1
SGC14 13 115 A1int 0 SW1
SGC13 Rg- 13 A0int 0 SW1
*
*gain of 100
Rfb6 104 112 19.8k
Rfb5 112 111 400
Rfb4 103 111 19.8k
SGC12 114 Rg+ A0barint 0 SW1
SGC11 112 114 A1int 0 SW1
SGC10 6 111 A1int 0 SW1
SGC9 Rg- 6 A0barint 0 SW1
*
*Gain of 10
Rfb3 104 108 6750
Rfb2 108 107 1.5k
Rfb1 103 107 6750
SGC8 110 Rg+ A0int 0 SW1
SGC7 108 110 A1barint 0 SW1
SGC6 5 107 A1barint 0 SW1
SGC5 Rg- 5 A0int 0 SW1
*
*Gain of 1
SGC4 104 134 A1barint 0 SW1
SGC3 134 Rg+ A0barint 0 SW1
SGC2 7 103 A1barint 0 SW1
SGC1 Rg- 7 A0barint 0 SW1
*
*Switches for bypassing flipflops
*If WR is less than -3V, flipflops are
*bypassed and A0 and A1 are passed
*directly through
*
SBP4 A1bar A1barint 0 WR SW2
SBP3 A1 A1int 0 WR SW2
MN2 A1bar A1 D99 D99 PMOS L=3e-006 W=1.5e-005
MI2 A1bar A1 DGND DGND NMOS L=3e-006 W=6e-006
SBP2 A0bar A0barint 0 WR SW2
SBP1 A0 A0int 0 WR SW2
MN1 A0bar A0 D99 D99 PMOS L=3e-006 W=1.5e-005
MI1 A0bar A0 DGND DGND NMOS L=3e-006 W=6e-006
*
*
*Switches for latched mode
*falling clock edge data latches with
*switches. If WR is higher than -1.5V,
*switches pass latched data through, which
*is latched on falling clock edge
*
Vcntlin1 cntlV 0 3
*
*DFF for A1
*
SLAT4 A1bLAT A1barint WR cntlV SW1
SLAT3 A1LAT A1int WR cntlV SW1
*
MN70 FFWRb_1 WR D99 D99 PMOS L=3e-006 W=1.5e-005
MI6 FFWRb_1 WR DGND DGND NMOS L=3e-006 W=6e-006
MN69 FFDb_1 A1 D99 D99 PMOS L=3e-006 W=1.5e-005
MI5 FFDb_1 A1 DGND DGND NMOS L=3e-006 W=6e-006
MN68 A1bLAT A1LAT D99 D99 PMOS L=3e-006 W=1.5e-005
MN67 A1bLAT 132 D99 D99 PMOS L=3e-006 W=1.5e-005
MN66 123 132 DGND DGND NMOS L=3e-006 W=6e-006
MN65 A1bLAT A1LAT 123 DGND NMOS L=3e-006 W=6e-006
MN64 132 FFWRb_1 D99 D99 PMOS L=3e-006 W=1.5e-005
MN63 132 130 D99 D99 PMOS L=3e-006 W=1.5e-005
MN62 122 130 DGND DGND NMOS L=3e-006 W=6e-006
MN61 132 FFWRb_1 122 DGND NMOS L=3e-006 W=6e-006
MN60 A1LAT A1bLAT D99 D99 PMOS L=3e-006 W=1.5e-005
MN59 A1LAT 135 D99 D99 PMOS L=3e-006 W=1.5e-005
MN58 124 135 DGND DGND NMOS L=3e-006 W=6e-006
MN57 A1LAT A1bLAT 124 DGND NMOS L=3e-006 W=6e-006
MN56 135 FFWRb_1 D99 D99 PMOS L=3e-006 W=1.5e-005
MN55 135 131 D99 D99 PMOS L=3e-006 W=1.5e-005
MN54 121 131 DGND DGND NMOS L=3e-006 W=6e-006
MN53 135 FFWRb_1 121 DGND NMOS L=3e-006 W=6e-006
MN52 130 131 D99 D99 PMOS L=3e-006 W=1.5e-005
MN51 130 136 D99 D99 PMOS L=3e-006 W=1.5e-005
MN50 125 136 DGND DGND NMOS L=3e-006 W=6e-006
MN49 130 131 125 DGND NMOS L=3e-006 W=6e-006
MN48 136 WR D99 D99 PMOS L=3e-006 W=1.5e-005
MN47 136 FFDb_1 D99 D99 PMOS L=3e-006 W=1.5e-005
MN46 120 FFDb_1 DGND DGND NMOS L=3e-006 W=6e-006
MN45 136 WR 120 DGND NMOS L=3e-006 W=6e-006
MN44 131 130 D99 D99 PMOS L=3e-006 W=1.5e-005
MN43 131 129 D99 D99 PMOS L=3e-006 W=1.5e-005
MN42 126 129 DGND DGND NMOS L=3e-006 W=6e-006
MN41 131 130 126 DGND NMOS L=3e-006 W=6e-006
MN40 129 WR D99 D99 PMOS L=3e-006 W=1.5e-005
MN39 129 A1 D99 D99 PMOS L=3e-006 W=1.5e-005
MN38 119 A1 DGND DGND NMOS L=3e-006 W=6e-006
MN37 129 WR 119 DGND NMOS L=3e-006 W=6e-006
MN36 FFWRb WR D99 D99 PMOS L=3e-006 W=1.5e-005
*
*DFF for A0
*
SLAT2 A0bLAT A0barint WR cntlV SW1
SLAT1 A0LAT A0int WR cntlV SW1
*
MI4 FFWRb WR DGND DGND NMOS L=3e-006 W=6e-006
MN35 FFDb A0 D99 D99 PMOS L=3e-006 W=1.5e-005
MI3 FFDb A0 DGND DGND NMOS L=3e-006 W=6e-006
MN34 A0bLAT A0LAT D99 D99 PMOS L=3e-006 W=1.5e-005
MN33 A0bLAT 4 D99 D99 PMOS L=3e-006 W=1.5e-005
MN32 91 4 DGND DGND NMOS L=3e-006 W=6e-006
MN31 A0bLAT A0LAT 91 DGND NMOS L=3e-006 W=6e-006
MN30 4 FFWRb D99 D99 PMOS L=3e-006 W=1.5e-005
MN29 4 12 D99 D99 PMOS L=3e-006 W=1.5e-005
MN28 64 12 DGND DGND NMOS L=3e-006 W=6e-006
MN27 4 FFWRb 64 DGND NMOS L=3e-006 W=6e-006
MN26 A0LAT A0bLAT D99 D99 PMOS L=3e-006 W=1.5e-005
MN25 A0LAT 127 D99 D99 PMOS L=3e-006 W=1.5e-005
MN24 94 127 DGND DGND NMOS L=3e-006 W=6e-006
MN23 A0LAT A0bLAT 94 DGND NMOS L=3e-006 W=6e-006
MN22 127 FFWRb D99 D99 PMOS L=3e-006 W=1.5e-005
MN21 127 11 D99 D99 PMOS L=3e-006 W=1.5e-005
MN20 61 11 DGND DGND NMOS L=3e-006 W=6e-006
MN19 127 FFWRb 61 DGND NMOS L=3e-006 W=6e-006
MN18 12 11 D99 D99 PMOS L=3e-006 W=1.5e-005
MN17 12 128 D99 D99 PMOS L=3e-006 W=1.5e-005
MN16 118 128 DGND DGND NMOS L=3e-006 W=6e-006
MN15 12 11 118 DGND NMOS L=3e-006 W=6e-006
MN14 128 WR D99 D99 PMOS L=3e-006 W=1.5e-005
MN13 128 FFDb D99 D99 PMOS L=3e-006 W=1.5e-005
MN12 27 FFDb DGND DGND NMOS L=3e-006 W=6e-006
MN11 128 WR 27 DGND NMOS L=3e-006 W=6e-006
MN10 11 12 D99 D99 PMOS L=3e-006 W=1.5e-005
MN9 11 3 D99 D99 PMOS L=3e-006 W=1.5e-005
MN8 10 3 DGND DGND NMOS L=3e-006 W=6e-006
MN7 11 12 10 DGND NMOS L=3e-006 W=6e-006
MN6 3 WR D99 D99 PMOS L=3e-006 W=1.5e-005
MN5 3 A0 D99 D99 PMOS L=3e-006 W=1.5e-005
MN4 20 A0 DGND DGND NMOS L=3e-006 W=6e-006
MN3 3 WR 20 DGND NMOS L=3e-006 W=6e-006
*
*Resistor fb Network, output op amp
R4 201 OUT 10000
R3 103 201 10000
R2 202 REF 10000
R1 104 202 10000
*
* OUTPUT AMPLIFIER
*+PS perturbation stage output amp
EPSC2 34 98 99 0 1
RPSC4 98 37 0.29
CPSC2 37 34 5.2e-010
RPSC3 37 34 100000
*
*CM voltage stage output amp
ECMC3 109 98 +IN 98 1
RCMC2 98 81 0.29
CCMC1 81 113 2.5e-010
RCMC1 81 113 100000
ECMC2 113 109 -IN 98 1
*
*output stage output amp
VMO9 100 OUT 0
VMO8 102 50 0
VMO7 99 101 0
ROUT6 102 100 10
ROUT5 100 101 10
GOUT6 102 100 95 50 0.1
GOUT5 100 101 99 95 0.1
*
*Current limiting output amp
VILIM6 97 100 0.415
VILIM5 100 96 0.415
DILIM6 97 95 DIODE4
DILIM5 95 96 DIODE3
*
*Supply current adjustment output amp
FADJ4 0 99 VLIM6 1
FADJ3 50 0 VLIM5 1
*
*voltage limiting circuitry output amp
VLIM6 99 92 1.96
VLIM5 93 50 2.1
DOUT6 93 89 DIODE6
DOUT5 89 92 DIODE5
*
*Intermediate gain stage output amp
RP6 98 95 1000
GP5 95 98 89 98 0.001
CP4 95 98 1e-011
*
*Gain stage with dominant pole = 13 Hz output amp
GP6 89 98 52 83 1
CP3 89 98 2.1e-007
RP5 98 89 10000000
*
*-PS perturbation output amp
EPSC1 88 98 50 0 1
RPSC2 87 88 100000
CPSC1 87 88 2e-008
RPSC1 98 87 0.39
*
*Voltage Noise stage output amp
VN3 86 98 0.618
DN3 86 85 DIODE1
RNOI6 98 85 0.0004
VMEASC1 85 98 0
F3 84 98 VMEASC1 1
RNOI5 98 84 1
*
*Offset V, CM, PS, voltage noise introduction
D6 202 99 DIODE2
D5 50 202 DIODE2
EPSRC_P1 202 82 37 98 1
VOSC1 80 79 0.0006425
ENOISC1 106 80 84 98 1
ECMC1 82 106 81 98 1
EPSRC_N1 201 117 87 98 1
VPSRC1 117 78 5.85e-005
*
*Input stage output amplifier
Q5 52 78 133 PNP
Q6 83 79 55 PNP
RC6 50 52 5750
RC5 50 83 5750
RE6 59 133 175
RE5 59 55 175
IBIASC1 99 59 0.001
CC1 52 83 7e-013
*
*COMP AMPLIFIER 2
*
*Output stage comp amp 2
VMO6 68 104 0
VMO5 70 50 0
VMO4 99 69 0
ROUT4 70 68 10
ROUT3 68 69 10
GOUT4 70 68 65 50 0.1
GOUT3 68 69 99 65 0.1
*
*Current limiting comp amp 2
VILIM4 67 68 0.415
VILIM3 68 66 0.415
DILIM4 67 65 DIODE4
DILIM3 65 66 DIODE3
*
*Voltage limiting circuitry comp amp 2
VLIM4 99 62 1.5
VLIM3 63 50 1.75
DOUT4 63 60 DIODE6
DOUT3 60 62 DIODE5
*
*Supply Current adjustment amp2
FADJ6 50 0 VLIM3 1
FADJ5 0 99 VLIM4 1
*
*Gain stage with dominant pole=0.8Hz comp amp 2
GP4 60 98 44 56 1
RP3 98 60 10000000
CP2 60 98 5e-008
*
*Intermediate gain stage comp amp 2
GP3 65 98 60 98 0.001
RP4 98 65 1000
*
*+PS Perturbation stage comp amp 2
EPSB1 77 98 99 0 1
RPSB2 74 77 100000
CPSB1 74 77 1e-017
RPSB1 98 74 0.1
*
*Voltage noise stage comp amp 2
VN2 58 98 0.623
DN2 58 57 DIODE1
RNOI4 98 57 0.000135
VMEASB1 57 98 0
F2 51 98 VMEASB1 1
RNOI3 98 51 1
*
*Common mode voltage stage comp amp 2
ECMB3 73 98 -IN 98 1
RCMB2 98 76 0.19
*RCMB2 98 76 0.05
CCMB1 76 54 5e-011
RCMB1 76 54 100000
ECMB2 54 73 +IN 98 1
*
*CM, +PS, Noise introduction
D4 +IN 99 DIODE2
D3 50 +IN DIODE2
ECMB1 +IN 1 76 98 1
EPSRB1 75 49 74 98 1
ENOISB1 1 75 51 98 1
*
*Bias Current Compensation
FBIASCMPB1 +IN 0 VBIASMONB1 0.9988
VBIASMONB1 49 48 0
IBIASP +IN 0 8.68375u
*
*Input stage compare amplifier 2
Q3 44 Rg+ 43 PNP
Q4 56 48 45 PNP
RC4 47 44 5000
RC3 47 56 5000
RE4 46 43 415
RE3 46 45 415
IBIASB1 99 46 0.001
VADJB1 50 47 1.5
*
*COMP AMPLIFIER 1
*Output stage comp amp 1
VMO3 39 103 0
VMO2 41 50 0
VMO1 99 42 0
ROUT2 41 39 10
ROUT1 39 42 10
GOUT2 41 39 36 50 0.1
GOUT1 39 42 99 36 0.1
*
*Current limiting comp amp 1
VILIM2 38 39 0.415
VILIM1 39 35 0.415
DILIM2 38 36 DIODE4
DILIM1 36 35 DIODE3
*
*Supply current adjustment comp amp 1
FADJ2 0 99 VLIM2 1
FADJ1 50 0 VLIM1 1
*
*Voltage limiting circuitry comp amp 1
VLIM2 99 29 1.5
VLIM1 33 50 1.75
DOUT2 33 32 DIODE6
DOUT1 32 29 DIODE5
*
*Intermediate gain stage comp amp 1
GP1 36 98 32 98 0.001
RP2 98 36 1000
*
*Gain stage with dominant pole=0.8Hz comp amp 1
GP2 32 98 18 16 1
CP1 32 98 5e-008
RP1 98 32 10000000
*
*-PS Perturbation stage comp amp 1
EPSA1 31 98 50 0 1
RPSA2 30 98 0.15
CPSA1 31 30 4.5e-010
RPSA1 31 30 100000
*
*Voltage noise stage comp amp 1
VN1 26 98 0.623
DN1 26 24 DIODE1
RNOI2 98 24 0.000135
VMEASA1 24 98 0
F1 28 98 VMEASA1 1
RNOI1 98 28 1
*
* noise, -PS offset V introduction
D2 -IN 99 DIODE2
D1 50 -IN DIODE2
VPSRA_N1 23 A9 0.0001408
EPSRA_N1 Rg- 23 98 30 1
VOSA1 25 19 0.000158
ENOISA1 -IN 25 28 98 1
*
*Bias Current Compensation
FBIASCMPA1 -IN 0 VBIASMONA1 0.9988
VBIASMONA1 19 2 0
IBIASN -IN 0 8.688756u
*
*Input stage compare amplifier 1
Q1 18 A9 15 PNP
Q2 16 2 8 PNP
RC2 21 18 5000
RC1 21 16 5000
RE2 22 15 415
RE1 22 8 415
IBIASA1 99 22 0.001
VADJA1 50 21 1.5
*
.model PMOS pmos
+ (
+ Level=2 VTO=-0.738861 KP=2.7e-005 GAMMA=0.58 PHI=0.6 LAMBDA=0.0612279
+ PB=0.64 CGSO=4.3e-010 CGDO=4.3e-010 RSH=120.6 CJ=0.0005 MJ=0.5052
+ CJSW=1.349e-010 MJSW=0.2417 TOX=2e-007 LD=1.5e-007 U0=261.977
+ NSUB=4.3318e+015 TPG=-1 NSS=100000000000 DELTA=1.79192 UEXP=0.323932
+ UCRIT=65719.8 VMAX=25694 XJ=2.5e-007 NEFF=1.001 NFS=1000000000000
+ )
.model NMOS nmos
+ (
+ Level=2 VTO=0.743469 KP=8.00059e-005 GAMMA=0.543 PHI=0.6 LAMBDA=0.0367072
+ PB=0.58 CGSO=4.3e-010 CGDO=4.3e-010 RSH=70 CJ=0.0003 MJ=0.6585
+ CJSW=8e-010 MJSW=0.2402 TOX=2e-007 LD=1.5e-007 U0=655.881 NSUB=5.36726e+015
+ TPG=1 NSS=100000000000 DELTA=2.39824 UEXP=0.157282 UCRIT=31443.8
+ VMAX=55260.9 XJ=2.5e-007 NEFF=1.001 NFS=1000000000000
+ )
.model DIODE4 D
+ (
+ IS=5e-012
+ )
.model DIODE3 D
+ (
+ IS=5e-012
+ )
.model DIODE6 D
+ (
+ IS=5e-012
+ )
.model DIODE5 D
+ (
+ IS=5e-012
+ )
.model DIODE1 D
+ (
+ KF=2e-010 AF=1.5
+ )
.model DIODE2 D
+ (
+ IS=1e-016
+ )
.model PNP PNP
+ (
+ Level=1 VAF=100
+ )
.model sw1 vswitch(Von=1.5 Voff=1.2 Ron=0.01 Roff=100000000)
.model sw2 vswitch(Von=3 Voff=2.7 Ron=0.01 Roff=100000000)
.ENDS AD8253

106
lib/sub/AD8310.lib Normal file
View File

@@ -0,0 +1,106 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt AD8310 1 2 3 4 5 6 7 8
R1 8 CM_IN 500
R2 1 CM_IN 500
C1 8 1 1.4p
E13 N022 2 GC6_out 2 1
R5 GC1_out N016 1k
C2 GC1_out 2 0.18p
R6 GC2_out N017 1k
C3 GC2_out 2 0.08p
R7 GC3_out N018 1k
C4 GC3_out 2 0.08p
R8 GC4_out N019 1k
C5 GC4_out 2 0.108p
R9 GC5_out N020 1k
C6 GC5_out 2 0.085p
R10 GC6_out N021 1k
C7 GC6_out 2 0.085p
R25 DET_out 2 3.075k
R26 6 N001 3k
R27 N014 2 1k
R28 N006 N014 3k
E10 AMP1 2 6 N014 1000
C22 6 2 2.1p
I<EFBFBD>G20 DET_out 2 45<34>
R4 1 N028 1e8
R3 8 N028 1e8
B_GC1 N016 2 V={I_GC1*T_GC1}*tanh((V(GC1_in)-V(OFFS))/{denom})
B_GC2 N017 2 V={I_GC2*T_GC2}*tanh((V(GC1_out)-V(2))/{denom})
B_GC3 N018 2 V={I_GC3*T_GC3}*tanh((V(GC2_out)-V(2))/{denom})
B_GC4 N019 2 V={I_GC4*T_GC4}*tanh((V(GC3_out)-V(2))/{denom})
B_GC5 N020 2 V={I_GC5*T_GC5}*tanh((V(GC4_out)-V(2))/{denom})
B_GC6 N021 2 V={I_GC6*T_GC6}*tanh((V(GC5_out)-V(2))/{denom})
B_D2 2 N008 I={I_D2}*(COSH((V(GC1_out)-V(2))/{denom})-1)/(COSH((V(GC1_out)-V(2))/{denom})+1)
C8 N008 2 0.6p
R11 DET_out N008 2k
B_D3 2 N009 I={I_D3}*(COSH((V(GC2_out)-V(2))/{denom})-1)/(COSH((V(GC2_out)-V(2))/{denom})+1)
C9 N009 2 0.6p
R12 DET_out N009 2k
B_D4 2 N010 I={I_D4}*(COSH((V(GC3_out)-V(2))/{denom})-1)/(COSH((V(GC3_out)-V(2))/{denom})+1)
C10 N010 2 0.6p
R13 DET_out N010 2k
B_D5 2 N011 I={I_D5}*(COSH((V(GC4_out)-V(2))/{denom})-1)/(COSH((V(GC4_out)-V(2))/{denom})+1)
C11 N011 2 0.6p
R14 DET_out N011 2k
B_D6 2 N012 I={I_D6}*(COSH((V(GC5_out)-V(2))/{denom})-1)/(COSH((V(GC5_out)-V(2))/{denom})+1)
C12 N012 2 0.6p
R15 DET_out N012 2k
B_D7 2 N013 I={I_D7}*(COSH((V(GC6_out)-V(2))/{denom})-1)/(COSH((V(GC6_out)-V(2))/{denom})+1)
C13 N013 2 0.6p
R16 DET_out N013 2k
B_D1a 2 N007 I={I_D1a}*(COSH(1.2*(V(GC1_in)-V(2))/{denom})-1)/(COSH(1.2*(V(GC1_in)-V(2))/{denom})+1)
C14 N007 2 0.8p
R17 DET_out N007 400
R18 GC1_in 2 1e8
B_EN GC1_in 2 V={Ain}*(V(8)-V(1))*(V(7)-V(2)>2.3)
B1 5 2 I=(8m-0.05u)*(V(7)-V(2)>2.3)*(V(5)-V(2)>2.6)*(V(5)-V(2)<=7.5)+0.05u
B_GC7 OFFS 2 V=15m*tanh((V(INT_FLT)-V(2))/15m)
B2 N001 2 V=(V(DET_out)<=V(REF_p66))*(V(DET_out)-V(REF_p66))+V(REF_p66)-V(2)
B3 N006 2 V=(V(AMP2)<=V(REF_4p75))*(V(AMP2)-V(REF_4p75))+V(REF_4p75)-V(2)
B4 AMP2 2 V=(V(AMP1)>=V(REF_p4))*(V(AMP1)-V(REF_p4))+V(REF_p4)-V(2)
R19 AMP1 2 100k
R20 AMP2 2 100k
B_D1b 2 N007 I={I_D1b}*(COSH(0.25*(V(GC1_in)-V(2))/{denom})-1)/(COSH(0.25*(V(GC1_in)-V(2))/{denom})+1)
B_D1c 2 N007 I={I_D1c}*(COSH(45m*(V(GC1_in)-V(2))/{denom})-1)/(COSH(45m*(V(GC1_in)-V(2))/{denom})+1)
R30 7 2 85.7k
XU1 N006 N004 VCC_INT 2 N004 level2 Avol=1Meg GBW=25Meg Slew=100Meg ilimit=5m rail=0 Vos=0 phimargin=45 En=0 Enk=0 In=0 Ink=0 Rin=500Meg
R33 4 N004 0.05
R31 INT_FLT N022 7.1e7
R32 2 OFFS 1e8
C18 INT_FLT 2 33p
S1 5 VCC_INT CTRL 2 vcc_switch
B_OFLT1 CTRL 2 V=(V(7)-V(2)>2.3)*(V(5)-V(2)>2.6)*(V(5)-V(2)<=7.5)
R24 VCC_INT 2 1e8
B_0p4 REF_p4 2 V=0.4*(V(CTRL)>0.5)
B_0p66 REF_p66 2 V=0.66*(V(CTRL)>0.5)
B_4p75 REF_4p75 2 V=4.75*(V(CTRL)>0.5)
V1 CM_IN 2 3.2578
V5 3 INT_FLT 1.75
.param I_GC1=998.692u
.param I_GC2=904.1875u
.param I_GC3=903.975u
.param I_GC4=801.8u
.param I_GC5=896.75u
.param I_GC6=977.5u
.param T_GC1=TEMP+287.775
.param T_GC2=TEMP+287.334488
.param T_GC3=TEMP+287.7372
.param T_GC4=TEMP+301.1642
.param T_GC5=TEMP+301.1642
.param T_GC6=TEMP+273.2804
.param I_D1a=7.132n*TEMP + 27.5784u
.param I_D1b=4.7n*TEMP + 26.8338u
.param I_D1c=9.564n*TEMP + 31.8017u
.param I_D2 =7.76n*TEMP + 29.8147u
.param I_D3 =.9885n*TEMP + 29.70868u
.param I_D4 =.9885n*TEMP + 29.70868u
.param I_D5 =3.954n*TEMP + 29.6286u
.param I_D6 =7.908n*TEMP + 29.5219u
.param I_D7 =37.46n*TEMP + 57.0747u
.param denom=172.5u*(TEMP+274.15)
.param Ain=1.58
.model vcc_switch SW(Ron=1m, Roff=1e9, Vt=0.5)
.lib UniversalOpAmp2.lib
.ends AD8310

196
lib/sub/AD8422.lib Normal file
View File

@@ -0,0 +1,196 @@
* AD8422 SPICE Macro-model
* Description: Amplifier
* Generic Desc: 36V Bipolar Low Power, Rail to Rail Output, High Performance In-Amp
* Developed by: ADI - LPG
*
* Revision History:
* 1.0 (05/2013) - OQ (Initial Rev)
* 2.0 (1/2015) - SH (Added missing .ENDS statement, improved compatibility, added parameters to model, organized netlist)
* Copyright 2015 by Analog Devices.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance with the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
* Temperature effects
* PSRR
*
* Parameters Modeled Include:
* Gain error, Vos, Ibias
* Bandwidth
* Voltage and current noise with 1/f noise
* CMRR vs frequency
* Supply current incl preamp and output load currents
* Output clamp vs load
* Input range and internal voltage limitations
* Slew Rate
* Pulse response vs cap load
* Input impedance
*
* Typical Specifications from <20>15V Table Used in Model
*
* END Notes
*
* Node Assignments
* inverting input
* | RG
* | | RG
* | | | non_inverting input
* | | | | negative supply
* | | | | | ref
* | | | | | | output
* | | | | | | | positive supply
* | | | | | | | |
.SUBCKT AD8422 IN- RG- RG+ IN+ -Vs REF VOUT +Vs
*** INPUT STAGE ***
FIBIAS1 IN- 0 POLY(1) V21 600.0E-12 9.0E-5
H3 4 IN- V24 6.645
G4 0 5 4 0 2.64E-3
R10 5 0 378.788
D7 5 9 D
D8 10 5 D
V7 10 VNEGx 1.24
V8 VPOSx 9 1.24
E8 22 0 5 0 1
FIBIAS2 IN+ 0 POLY(1) V23 400.0E-12 9.0E-5
VOSI 7 IN+ -25.0E-6
G5 0 8 7 0 2.64E-3
R11 8 0 378.788
D9 8 9 D
D10 10 8 D
E9 15 0 8 0 1
G1 IN+ 0 POLY(2) (IN+, VMID) (IN+, IN-) 0 2.5E-12 5.0E-12
G2 IN- 0 POLY(2) (IN-, VMID) (IN-, IN+) 0 2.5E-12 5.0E-12
CCM1 IN+ 0 1.0E-12
CCM2 IN- 0 1.0E-12
CDIFF IN+ IN- 1.5E-12
*
*** PREAMPLIFIER STAGE ***
GN1 Pos_Fdbk 16 15 16 778.8E-6
VSH1 RG+ 16 -0.474
C4 RG+ 0 3.688E-12
R6 RG+ 17 9802.94
VCS2 noninverting_out 17 0
I1 VBIAS Pos_Fdbk 20.0E-6
R23 Pos_Fdbk VBIAS 1E9
G7 0 18 VBIAS Pos_Fdbk 1
R8 18 0 10E9
C2 noninverting_out Pos_Fdbk 10.19E-12
R25 19 18 100
D5 19 20 D
D6 21 19 D
V5 21 VNEGx 0.19
V6 VPOSx 20 0.19
GN2 Inv_Fdbk 23 22 23 778.8E-6
VSH2 RG- 23 -0.474
C3 RG- 0 3.692E-12
R5 RG- 24 9802.94
VCS1 Inverting_Out 24 0
I2 VBIAS Inv_Fdbk 20.0E-6
R18 VBIAS Inv_Fdbk 1E9
G6 0 25 VBIAS Inv_Fdbk 1
R7 25 0 10E9
C1 Inverting_Out Inv_Fdbk 10.31E-12
R24 26 25 100
D3 26 20 D
D4 21 26 D
V1 VBIAS +Vs 20
D40 Inv_Fdbk VBIAS D
D41 Pos_Fdbk VBIAS D
D42 VBIAS Inv_Fdbk D
D43 VBIAS Pos_Fdbk D
*
*** SUBTRACTOR STAGE ***
E4 Inverting_Out 0 26 0 1
E5 noninverting_out 0 19 0 1
R1 31 sub_neg 10000.0
R2 sub_neg 24 9999.05
R3 sub_pos 17 9998.85
R4 REF sub_pos 10000.0
VCS3 sub_out 31 0
G8 0 sub_out sub_pos sub_neg 1E3
R9 sub_out 0 10E6
D13 REF 38 D
D14 39 REF D
V13 39 VNEGx 0.3
V14 VPOSx 38 0.3
D15 sub_pos 36 D
D16 37 sub_pos D
V15 37 VNEGx 0.05
V16 VPOSx 36 1.05
R22 sub_out_cl sub_out 100
D1 sub_out_cl 45 D
D2 46 sub_out_cl D
H4 VX sub_out_cl V25 71.74
*
*** SLEW RATE AND OUTPUT STAGE ***
G11 0 VZ VX VY 1e-3
R26 VZ 0 100E6
D21 40 VZ DSLEWP
D22 40 0 DSLEWN
G12 0 VY VZ 0 40.0E-6
C7 VY 0 1E-9
R30 VY 0 10e9
G9 0 41 VY 42 1
R12 41 0 1e10
C5 41 0 56.15E-9
G10 0 42 41 0 1.0E-3
R17 42 0 1000.0
C6 42 0 87.03E-12
R27 43 42 0.1
D11 43 45 D
D12 46 43 D
H1 VPOSx 45 POLY(1) VSRC 0.15 0 3E3
H2 46 VNEGx POLY(1) VSNK 0.15 0 3E3
VOSO VOUT 43 157.0E-6
*
*** NOISE ***
V24 60 0 0
R19 60 0 .0166
D17 61 60 DN
V18 61 0 0.2
V25 64 0 0
R20 64 0 .0166
D19 65 64 DN
V20 65 0 0.209
V21 70 0 0
R28 70 0 .0166
D38 71 70 DIN
V22 71 0 0.2
V23 72 0 0
R29 72 0 .0166
D39 73 72 DIN
V27 73 0 0.2
*
*** SUPPLY CURRENT AND BIASING ***
GSUP +Vs -Vs POLY(1) (+Vs,-Vs) 268E-6 1.0E-6
FSUP1 56 0 VOSO -1
D24 90 +Vs DZ
D25 -Vs 52 DZ
D20 90 95 D
VSRC 95 56 0
D23 55 52 D
VSNK 56 55 0
FSUP2 57 0 VCS1 1
D26 90 57 D
D27 57 52 D
FSUP3 58 0 VCS2 1
D30 90 58 D
D31 58 52 D
FSUP4 59 0 VCS3 1
D34 90 59 D
D35 59 52 D
E10 VPOSx 0 +Vs 0 1
E11 VNEGx 0 -Vs 0 1
EMID VMID 0 POLY(2) (+Vs, 0) (-Vs, 0) 0 0.5 0.5
*
*
.MODEL D D(IS=1e-15 N=0.1 RS=1e-3)
.MODEL DN D(IS=1e-15 KF=3.142E-7)
.MODEL DIN D(IS=1e-15 KF=6.221E-6)
.MODEL DZ D(IS=1e-15 BV=50 RS=1)
.MODEL DSLEWP D(IS=1e-15 BV=19.5 RS=0.1)
.MODEL DSLEWN D(IS=1e-15 BV=19.5 RS=0.1)
.ENDS AD8422

BIN
lib/sub/AD8452.sub Normal file

Binary file not shown.

147
lib/sub/AD8475.lib Normal file
View File

@@ -0,0 +1,147 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt AD8475 -IN0.8X -IN0.4X +VS VOCM +OUT -OUT -VS +IN0.4X +IN0.8X
R1 N004 +IN0.8X 1.25e3
R2 N016 -IN0.8X 1.25e3
R17 +IN0.8X +IN0.4X 1.25e3
R18 -IN0.8X -IN0.4X 1.25e3
VISENSE2 VX2 N131 0
R14 N131 N016 1.00077741736e3
VISENSE1 VX1 N130 0
R15 N130 N004 1.00022262661e3
DC1 N004 N110 DX
V6 +VS N110 1.2
DC2 N111 N004 DX
V7 N111 -VS 0.4
G1 N013 N018 N004 N016 -.034349
R16 N013 N018 1e9
G3 0 VX1 VMID N013 .253192
G4 0 VX2 VMID N018 .253192
C1 N009 N013 3.2e-12
C2 N023 N018 3.2e-12
R19 VX1 N009 200
R20 VX2 N023 200
R11 VX1 0 1e9
R12 0 VX2 1e9
E5_VOCM_ERROR N032 VOCM VOCM 0 .2e-3
R7 +VS N032 200e3
R8 N032 -VS 200e3
V3 N031 N032 -10e-6
E1_balance N030 N031 +OUT -OUT 99.7927e-6
R5 N015 VX2 1e6
R6 VX1 N015 1e6
G2 0 N018 N015 N030 .00015
R9 N018 0 1e9
C3 N018 0 1e-18
G5 0 N013 N015 N030 .00015
R10 N013 0 1e9
C4 N013 0 1e-18
V_Noise N001 0 0
R13 N001 0 .0166
DN1 N002 N001 DN
VN1 0 N002 0.2
H1_Noise -OUT N008 V_Noise -2.5
H2_Noise +OUT N027 V_Noise 2.5
R34 N040 0 2
C11 N040 N039 1e-9
R35 8 0 2
C12 8 N041 1e-9
E11 N039 0 N042 0 1
R36 N040 N039 1000
E12 N041 0 N040 0 1
R37 8 N041 1000
R38 N044 0 2
C13 N044 N043 1e-9
R39 6 0 2
C14 6 N045 1e-9
E13 N043 0 N042 0 1
R40 N044 N043 1000
E14 N045 0 N044 0 1
R41 6 N045 1000
E15 N012 N011 6 0 -8e-3
E16 N026 N025 8 0 8e-3
R42 +IN0.4X N042 1e6
R43 N042 -IN0.4X 1e6
R44 +IN0.8X N042 1e6
R45 N042 -IN0.8X 1e6
R23 N034 0 46
C5 N034 N033 1e-9
R27 4 0 46
C8 4 N035 1e-9
E4 N033 0 +VS -VS 1
R21 N034 N033 1000
E5 N035 0 N034 0 1
R22 4 N035 1000
R24 N037 0 46
C6 N037 N036 1e-9
R25 2 0 46
C7 2 N038 1e-9
E3 N036 0 +VS -VS 1
R26 N037 N036 1000
E6 N038 0 N037 0 1
R28 2 N038 1000
E7 N011 N010 2 0 -8.173e-3
E8 N025 N024 4 0 8.173e-3
I1 +VS -VS 3.2e-3
GIsy +VS -VS VALUE={I(V_current_sense+)-I(V_current_sense-)}
*Fsup1 N100 0 POLY(4) V_Current_Sense+ V_Current_Sense- VISENSE1 VISENSE2 0 -1 -1 1 1
*Dsup1 +VS N101 DX
*DZsup1 N100 N101 DZ
*Dsup2 N102 -VS DX
*DZsup2 N102 N100 DZ
EMID VMID 0 POLY(2) +VS 0 -VS 0 0 0.5 0.5
EVP VP 0 +VS 0 1
EVN 0 VN 0 -VS 1
G10 0 VZ1 VX1 VY1 1e-3
RZ1 0 VZ1 1e9
DSLEW1 VC1 0 DZ
DSLEW2 VC1 VZ1 DZ
GZ1 0 VY1 VZ1 0 1e-6
C10 0 VY1 1e-12
R33 VY1 0 1e9
E9 N006 0 VY1 0 1
G11 0 VZ2 VX2 VY2 1e-3
RZ2 0 VZ2 1e9
DSLEW3 VC2 0 DZ
DSLEW4 VC2 VZ2 DZ
GZ2 0 VY2 VZ2 0 1e-6
C9 0 VY2 1e-12
R31 VY2 0 1e9
E10 N020 0 VY2 0 1
VOS- N010 N006 27.158e-6
VOS+ N024 N020 -27.158e-6
V_Current_Sense- N008 N005 0
V_Current_Sense+ N027 N022 0
D1 N021 N019 DX
D2 N028 N021 DX
D3 P001 N007 DX
D4 N007 P002 DX
V1 P003 N019 .57837
V2 N028 N029 .58737
V4 N003 P002 .57837
V5 P001 N014 .58737
G8 0 N120 N007 N005 1
R50 N120 0 1e9
C50 N120 0 1.18e-9
G9 0 N005 N120 0 8.33e-3
R51 N005 0 120
C51 N005 0 10e-12
G12 0 N121 N021 N022 1
R52 N121 0 1e9
C52 N121 0 1.18e-9
G13 0 N022 N121 0 8.33e-3
R53 N022 0 120
C53 N022 0 10e-12
G6 0 N007 N012 0 1e-3
G7 0 N021 N026 0 1e-3
R29 N007 0 1e3
R30 N021 0 1e3
H1 N029 VN V_Current_Sense+ 13.1
H2 VP P003 V_Current_Sense+ -17.42
H3 N014 VN V_Current_Sense- 13.1
H4 VP N003 V_Current_Sense- -17.42
*R32 NC 0 1e6
.model DX D(IS=1e-15 RS=.1)
.model DN D(IS=1e-15 KF=2.1e-3)
.model DZ D(IS=1e-15 BV=24.5)
.ends AD8475

125
lib/sub/AD8541.lib Normal file
View File

@@ -0,0 +1,125 @@
* AD8541 SPICE Macro-model Typical Values
* Function: CMOS Rail-to-Rail General-Purpose Amplifier
* Developed by: TAM / ADSC
* Revision History:
* 1.0 (06/1998)
* 1.1 (07/2021) -HAG
* Copyright 2021 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Parameters modeled include: Vos, Ibias, Ios, Input CM limits, CMRR, Supply Current, Output Current, Voltage & Current Noise,
* Open-loop Gain and Phase, GBWP, Closed-loop Output Impedance, Large and Small Signal Transient Response, Slew Rate,
*
* Not modeled: Full-power BW, Settling time, Over-temperature characteristics (modeled on 25degC only), VS=2.7V/3.0V
*
* Tested on LTSpice
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AD8541 1 2 99 50 45
*
* INPUT STAGE
*
*Note: min length for MOS level 2 = 2E-6
*
M1 4 1 8 8 PIX L=2.0E-6 W=98E-6
M2 6 7 8 8 PIX L=2.0E-6 W=98E-6
M3 11 1 10 10 NIX L=2.0E-6 W=98E-6
M4 12 7 10 10 NIX L=2.0E-6 W=98E-6
RC1 4 50 20E3
RC2 6 50 20E3
RC3 99 11 20E3
RC4 99 12 20E3
C1 4 6 1.5E-12
C2 11 12 1.5E-12
I1 99 8 1.77E-5
I2 10 50 1.77E-5
V1 99 9 0.2
V2 13 50 0.2
D1 8 9 DX
D2 13 10 DX
EOS 7 2 POLY(3) (22,98) (73,98) (81,0) 1.0E-3 1 1 1
IOS 1 2 0.05E-12
GB1 1 50 POLY(3) (8,1) (4,1) (50,1) 0.5E-12 1E-12 1E-12 1E-12
GB2 7 50 POLY(3) (8,7) (6,7) (50,7) 0.5E-12 1E-12 1E-12 1E-12
GB3 1 50 POLY(3) (10,1) (11,1) (50,1) 0.5E-12 1E-12 1E-12 1E-12
GB4 7 50 POLY(3) (10,7) (12,7) (50,7) 0.5E-12 1E-12 1E-12 1E-12
*
* CMRR 64dB, ZERO AT 20kHz
*
ECM1 21 98 POLY(2) (1,98) (2,98) 0 .5 .5
RCM1 21 22 63E3
CCM1 21 22 30E-12
RCM2 22 98 50
*
* PSRR=68dB, ZERO AT 200Hz
*
RPS1 70 0 1E6
RPS2 71 0 1E6
CPS1 99 70 1E-5
CPS2 50 71 1E-5
EPSY 98 72 POLY(2) (70,0) (0,71) 0 1 1
RPS3 72 73 1.59E6
CPS3 72 73 500E-12
RPS4 73 98 25
*
* VOLTAGE NOISE REFERENCE OF 35nV/rt(Hz)
*
VN1 80 0 0
RN1 80 0 16.45E-3
HN 81 0 VN1 37
RN2 81 0 1
*
* INTERNAL VOLTAGE REFERENCE
*
VFIX 90 98 DC 1
S1 90 91 (50,99) VSY_SWITCH
VSN1 91 92 DC 0
RSY 92 98 1E3
EREF 98 0 POLY(2) (99,0) (50,0) 0 .5 .5
GSY 99 50 POLY(1) (99,50) 0 -32E-6
*
* ADAPTIVE GAIN STAGE
* AT Vsy>+4.2, AVol=45 V/mv
* AT Vsy<+3.8, AVol=450 V/mv
*
G1 98 30 POLY(2) (4,6) (11,12) 0 2.5E-5 2.5E-5
VR1 30 31 DC 0
H1 31 98 POLY(2) VR1 VSN1 0 5.45E6 0 0 49.05E9
CF 45 30 19E-12
D3 30 99 DX
D4 50 30 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=2E-6 W=0.98E-3
M6 45 47 50 50 NOX L=2E-6 W=0.98E-3
EG1 99 46 POLY(1) (98,30) 1.170 1
EG2 47 50 POLY(1) (30,98) 1.170 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=20E-6,VTO=-1,LAMBDA=0.067)
.MODEL NOX NMOS (LEVEL=2,KP=20E-6, VTO=1,LAMBDA=0.067)
.MODEL PIX PMOS (LEVEL=2,KP=20E-6,VTO=-0.1,LAMBDA=0.01,KF=1E-31)
.MODEL NIX NMOS (LEVEL=2,KP=20E-6, VTO=0.1,LAMBDA=0.01,KF=1E-31)
.MODEL DX D(IS=1E-14)
.MODEL VSY_SWITCH VSWITCH(ROFF=100E3,RON=1,VOFF=-4.2,VON=-3.5)
.ENDS AD8541

BIN
lib/sub/AD8561.sub Normal file

Binary file not shown.

72
lib/sub/AD8676.lib Normal file
View File

@@ -0,0 +1,72 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt AD8676 1 2 3 4 5
C1 N005 N004 {Cf}
A1 N008 0 N010 N010 N010 N010 N004 N010 OTA g={Ga} Iout={Islew} en=2.8n enk=4.5 Vhigh=1e308 Vlow=-1e308
D5 N005 3 X1
D6 4 N005 X2
G2 0 N010 3 0 500<30>
R4 N010 0 1k Noiseless
G3 0 N010 4 0 500<30>
S1 N004 N010 4 3 SD
C4 N002 0 {5p*x} Rpar=1k Noiseless
C11 3 2 950f Rpar=1T Noiseless
C18 2 1 8.65p Rpar=1T Noiseless
D8 3 1 1nA m=0.5
C3 3 5 250f
C7 5 4 250f
A2 2 1 0 0 0 0 0 0 OTA g=0 in=.1p ink=1.5k incm=.1p incmk=1.5k
֧A3 N005 3 4 N004 N010 Gm1={Gb} Ibias={Isy}
C2 2 4 950f Rpar=1T Noiseless
C5 3 1 950f Rpar=1T Noiseless
C6 1 4 950f Rpar=1T Noiseless
D1 3 2 1nA m=0.5
B3 N002 0 I=2m*Dnlim(Uplim(V(2),V(3)-2, 0.1), V(4)+2, 0.1)+100n*V(2)
B4 0 N002 I=2m*(Vos+V(PSR)+Dnlim(Uplim(V(1),V(3)-2, 0.1), V(4)+2, .01)+100n*V(1))
D3 N004 N010 IO
R5 5 N005 22
L1 N002 N006 {5<>*x}
L2 N007 N008 {5<>*x}
C10 N008 0 {5p*x} Rpar=1k Noiseless
C8 N006 0 {10p*x}
L3 N006 N007 {5<>*x}
C12 N007 0 {10p*x}
G1 0 PSR VS 0 1<>
R3 PSR 0 1 Noiseless
G4 0 VS 3 4 1m
C13 VS 0 1f Rpar=1k Noiseless
.param Cf = 6p
.param Ro = 5k
.param Avol = 4Meg
.param RL = 2k
.param AVmid = 10
.param FmidA = 1Meg
.param Zomid = 5
.param FmidZ = 1Meg
.param Vslew = 2.5Meg
.param Vmin = 2
.param Roe = 1/(1/RL+1/Ro)
.param Gb = ((FmidZ/FmidA)*(Roe/(AVmid*Zomid))-1)/Roe
.param Ga = 2*pi*FmidZ*Cf/(Zomid*gb)
.param RH = Avol/(Ga*Gb*Roe)
.param Islew = Vslew*Cf*(1+1/(Roe*Gb))
.model X1 D(Ron=1m Roff=1G Vfwd=-50m epsilon=10m Noiseless)
.model X2 D(Ron=1m Roff=1G Vfwd=20m epsilon=10m Noiseless)
.model SD SW(Ron=10m Roff={RH} Vt={-Vmin-100m} Vh=-.1 Noiseless)
.model 1nA D(Ron=500Meg epsilon=.5 Ilimit=1n Noiseless)
.model IO D(Ron=2k Roff=1T Vfwd={Isc/Gb} Vrev={Isc/Gb} revepsilon=.1 epsilon=.1 Noiseless)
.param X=.6
.param Vos=-18u
.param Isc=37.1m
.param Isy=2.7m
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param Rej_dc_PSRp=120
.param R1a_PSRp=1Meg
.param fz1_PSRp=1k
.param fp1_PSRp=10Meg
.ends AD8676

376
lib/sub/ADA4077.lib Normal file
View File

@@ -0,0 +1,376 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4077 1 2 3 4 5
R1 Inn1 2 {Rser} Temp=-273.15
C1 Clamp COM {Cfp1}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}* V(Aol1,COM), {Isink}-V(OL,COM)* 0.2, 20m), {Isrc}+V(OL,COM)*0.2, 20m)
A1 Inn2 Inp2 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
G2 0 VCC_Int N045 0 1
G3 0 Vee_Int N058 0 1
R6 VCC_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N041 VCC_Int 1Meg Temp=-273.15
R9 N041 Vee_Int 1Meg Temp=-273.15
C2 N041 0 1
E1 COM 0 N041 0 1
R10 COM 0 1Meg Temp=-273.15
R25 Aol2 COM 1Meg Temp=-273.15
C7 Aol2 COM {Cfp2}
G7 COM Aol2 Clamp COM 1<>
Cinp COM Inp1 {Ccm}
Cinn Inn1 COM {Ccm}
Cdiff Inp1 Inn1 {Cdiff}
Rinn Inn1 COM {Rcm} Temp=-273.15
Ibp Inp1 COM {Ib}
Ibn Inn1 COM {Ib-Ios}
R26 N015 N018 1k Temp=-273.15
B3 N018 N015 I=1m*{Vos+Drift* (Temp-25)}
G6 N022 Inp2 N032 N036 1m
R28 Inp2 N022 1k Temp=-273.15
C8 N032 N033 {C1a_PSRp}
G8 COM N033 VCC_Int COM {G1_PSRp}
R29 N033 COM 1 Temp=-273.15
R30 N032 N033 {R1a_PSRp} Temp=-273.15
R31 N032 COM {R2a_PSRp} Temp=-273.15
G12 N016 N017 N007 COM 1m
R39 N017 N016 1k Temp=-273.15
Vimon N014 5 0
BIq N045 N058 I=IF(V(EN,COM)>0.5, {Iq_on},{Iq_off})
G1 COM N018 Inp1 COM 1k
G14 COM Inn2 Inn1 COM 1k
R5 COM N018 1m Temp=-273.15
R43 COM Inn2 1m Temp=-273.15
C12 Inn2 COM 1p
C13 N018 COM 1p
DIP N034 Inp2 DI
DIN Inp2 N035 DI
C14 VCC_Int 0 1n
C15 Vee_Int 0 1n
DOP Vsatp N013 DO
DON N013 Vsatn DO
DGP N037 Clamp DGP
DGN Clamp N038 DGN
S2 Cap2R Cap2L OL COM OL
F1 COM OLp VGP 1m
A4 OLp OLn COM COM COM COM OL COM OR Ref=100u Vh=50u Trise=10n
R44 OLp COM 1k
F2 COM OLn VGN -1m
R45 OLn COM 1k
C16 OLp COM 1n
C17 OLn COM 1n
DOI N013 N014 LIM
COI N014 N013 1p
G15 COM Vsatp Vsatpi COM 1
R48 Vsatp COM 1
C21 Vsatp COM 1n
G16 COM Vsatn Vsatni COM 1
R49 Vsatn COM 1
C22 Vsatn COM 1n
S3 3 N018 N018 3 ESDI
S4 3 Inn2 Inn2 3 ESDI
S5 N018 4 4 N018 ESDI
S6 Inn2 4 4 Inn2 ESDI
C24 N013 Vsatp 1f
C25 N013 Vsatn 1f
S7 3 5 5 3 ESDO
S8 5 4 4 5 ESDO
C26 OL COM 1p
B6 COM N039 I=1m*({Zo_max}* {Iscp}+V(3,COM)) Rpar=1k Cpar=1n
G18 COM GRp N039 COM 1
R51 GRp COM 1
G19 COM GRn N040 COM 1
R52 GRn COM 1
B7 COM N040 I=1m*({Zo_max}* {Iscn}+V(4,COM)) Rpar=1k Cpar=1n
VGP N037 GRp 0
VGN N038 GRn 0
G17 COM Vs 3 4 1m
R50 Vs COM 1k Temp=-273.15
A5 Vs COM COM COM COM COM VminGD COM SCHMITT Vt={Vsmin-50m} Vh=10m Trise=5n
A6 Vs COM COM COM COM VmaxGD COM COM SCHMITT Vt={Vsmax-50m} Vh=10m Trise=5n
A7 VminGD COM COM COM VmaxGD COM EN COM AND Trise=5n
R53 EN COM 1G Temp=-273.15
R54 VmaxGD COM 1G Temp=-273.15
R55 COM VminGD 1G Temp=-273.15
S9 COM Aol1 EN COM ENA
S10 COM Clamp EN COM ENA
Rx N013 N019 {Rx_Zo} Temp=-273.15
Rdummy N013 COM {Rdummy_Zo} Temp=-273.15
G20 COM Cap2L N025 N013 {G1_Zo}
R3 Cap2L COM 1 Temp=-273.15
R4 Cap2L Cap2R {R1a_Zo} Temp=-273.15
R17 Cap2R COM {R2a_Zo} Temp=-273.15
G21 COM N008 Cap2R COM {G2_Zo}
C20 Cap2R Cap2L {C1a_Zo}
R56 N010 COM 1 Temp=-273.15
R57 N010 N011 {R2c_Zo} Temp=-273.15
R58 N011 N023 {R1c_Zo} Temp=-273.15
C23 COM N023 {C1c_Zo}
Gb3 COM N012 N011 COM 1
R59 N019 COM 1 Temp=-273.15
B8 COM N019 I=Uplim(Dnlim({G4_Zo}*V(ZoF,COM), {IZon}, 25m), {IZop}, 25m)
R60 N012 COM 1 Temp=-273.15
R61 N012 ZoF {R1d_Zo} Temp=-273.15
R62 ZoF COM {R2d_Zo} Temp=-273.15
C27 ZoF N012 {C1d_Zo}
R63 N008 COM 1 Temp=-273.15
R64 N008 N009 {R1b_Zo} Temp=-273.15
R65 N009 COM {R2b_Zo} Temp=-273.15
G22 COM N010 N009 COM {G3_Zo}
C28 N009 N008 {C1b_Zo}
R11 N024 COM 1Meg Temp=-273.15
C29 N024 COM {Cfp2}
G24 COM N024 Aol2 COM 1<>
R16 N025 COM 1Meg Temp=-273.15
C30 N025 COM {Cfp2}
G25 COM N025 N024 COM 1<>
C3 N002 N001 {C1a_CMR}
G4 COM N001 Inp1 COM {G1_CMR}
R13 N002 N001 {R1a_CMR} Temp=-273.15
R14 N002 COM {R2a_CMR} Temp=-273.15
R15 N003 N004 {R1b_CMR} Temp=-273.15
R18 N004 COM {R2b_CMR} Temp=-273.15
G5 COM N005 N004 COM {G2_CMR}
C4 N004 N003 {C1b_CMR}
R19 N003 COM 1
G23 COM N003 N002 COM 1
R20 N005 N006 {R1c_CMR} Temp=-273.15
R21 N006 COM {R2c_CMR} Temp=-273.15
G26 COM N007 N006 COM {G3_CMR}
C5 N006 N005 {C1c_CMR}
R22 N005 COM 1 Temp=-273.15
R23 N007 COM 1
R12 N001 COM 1 Temp=-273.15
C6 N027 N026 {C1a_PSRn}
G9 COM N026 VEE_Int COM {G1_PSRn}
R32 N026 COM 1 Temp=-273.15
R33 N027 N026 {R1a_PSRn} Temp=-273.15
R34 N027 COM {R2a_PSRn} Temp=-273.15
C9 N029 N028 {C1b_PSRn}
R35 N028 COM 1 Temp=-273.15
R40 N029 N028 {R1b_PSRn} Temp=-273.15
R41 N029 COM {R2b_PSRn} Temp=-273.15
G10 COM N030 N029 COM {G2_PSRn}
R42 N036 COM 1 Temp=-273.15
G13 COM N028 N027 COM 1
C11 N031 N030 {C1c_PSRn}
R66 N030 COM 1 Temp=-273.15
R67 N031 N030 {R1c_PSRn} Temp=-273.15
R68 N031 COM {R2c_PSRn} Temp=-273.15
G27 COM N036 N031 COM {G3_PSRn}
A8 COM COM COM COM COM COM N052 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={fA}/(freq**{M})
R36 N046 COM 1 Temp=-273.15
R37 N048 N049 {R1a_E_n} Temp=-273.15
R38 N049 COM {R2a_E_n} Temp=-273.15
G11 COM N050 N049 COM {G1_E_n}
C10 N049 N048 {C1a_E_n}
R69 N050 COM 1 Temp=-273.15
R70 N050 N051 {R1a_E_n} Temp=-273.15
R71 N051 COM {R2a_E_n} Temp=-273.15
G28 COM N054 N051 COM {1u*G1_E_n}
C31 N051 N050 {C1a_E_n}
R72 N054 COM 1Meg Temp=-273.15
C32 N054 COM {CEn}
G29 COM N055 N054 COM 1<>
R73 N055 COM 1Meg Temp=-273.15
G30 COM E_np N056 COM 1<>
R74 E_np COM 1Meg Temp=-273.15
R75 N052 COM 100k Temp=-273.15
G31 COM N046 N053 COM 1
R76 N046 N047 {R1a_E_n} Temp=-273.15
R77 N047 COM {R2a_E_n} Temp=-273.15
G32 COM N048 N047 COM {G1_E_n}
C33 N047 N046 {C1a_E_n}
R78 N048 COM 1 Temp=-273.15
A9 COM N052 COM COM COM COM N053 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={Enp}
R79 N053 COM 100k Temp=-273.15
C35 E_np COM 15f
G33 COM N056 N055 COM 1<>
R80 N056 COM 1Meg Temp=-273.15
R81 N016 N015 1k Temp=-273.15
G34 N015 N016 E_np COM 1m
B2 COM N042 I=1m*(V(3,COM)+{Vcm_max}) Rpar=1k Cpar=1n
G36 COM CMp N042 COM 1
R24 CMp COM 1
B9 COM N043 I=1m*(V(4,COM)+{Vcm_min}) Rpar=1k Cpar=1n
G37 COM CMn N043 COM 1
R27 CMn COM 1
VIP N034 CMp 0
VIN CMn N035 0
A10 COM COM COM COM COM COM N059 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={fAi}/(freq**{Mi})
R83 N059 COM 100k Temp=-273.15
A11 COM N059 COM COM COM COM N060 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={BBi}
R84 N060 COM 100k Temp=-273.15
F3 Inp1 COM V_I_n 1
Gb1 COM N061 N060 COM 1
R85 N062 COM 1 Temp=-273.15
V_I_n N061 N062 0
F4 Inn1 COM V_I_n 1
R86 Vsatp2 3 1k
C37 Vsatp2 3 1n
B10 4 Vsatn1 I=1m*Max(Mn*(-I(Vimon))+OSn,40u)
R87 Vsatn1 4 1k
C38 Vsatn1 4 1n
B11 4 Vsatn2 I=1m*(An+((Bn*(-I(Vimon)**Cn))/((Dn**Cn)+(-I(Vimon)**Cn))))
R88 Vsatn2 4 1k
C39 Vsatn2 4 1n
B12 COM Vsatni I=1m*IF(-I(Vimon)>15m, V(Vsatn2,COM), V(Vsatn1,COM))
R89 Vsatpi COM 1k
C40 Vsatpi COM 1n
B13 Vsatp1 3 I=1m*Max(Mp*(I(Vimon))+OSp,40u)
R90 Vsatp1 3 1k
C41 Vsatp1 3 1n
B14 COM Vsatpi I=1m*IF(I(Vimon)>16m, V(Vsatp2,COM), V(Vsatp1,COM))
R91 Vsatni COM 1k
C42 Vsatni COM 1n
B15 Vsatp2 3 I=1m*Max(Ap+((Bp*(I(Vimon)**Cp))/((Dp**Cp)+(I(Vimon)**Cp))),40u)
G35 COM N022 N017 COM 1k
R46 COM N022 1m Temp=-273.15
Rinp COM Inp1 {Rcm} Temp=-273.15
R2 Inp1 1 {Rser} Temp=-273.15
F5 N045 N058 Vimon 1
C18 N055 COM {CEn}
C19 N056 COM {CEn}
R47 N045 3 1<>
R82 N058 4 1<>
.param Vos=-1.94u Drift=0.1u
.param Ib=-0.4n Ios=0.1n
.param Vcm_min=1.2 Vcm_max=-2
.param Vsmin=3 Vsmax=36
.param Iscp=22m Iscn=-22m
.param Iq_on=400u Iq_off=1u
.param IZop={2*Rx_Zo*Iscp} IZon={2*Rx_Zo*Iscn}
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1)
.model LIM D(Vfwd=1n Vrev=1n Ron=1m Roff=1m Ilimit={Iscp} Revilimit={-Iscn} Epsilon=1u)
.model DGP D(Vfwd=1k Vrev=0 Revepsilon=0.5)
.model DGN D(Vfwd=1k Vrev=0 Revepsilon=0.5)
.model ESDI SW(Ron=50 Roff=1T Vt=31.6 Vh=-500m Vser=0.1)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n)
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m)
.model ENA SW(Ron=1Meg Roff=1u Vt=500m Vh=-100m Noiseless)
.model ENZ SW(Ron=1 Roff=1u Vt=500m Vh=-100m Noiseless)
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param beta_Zo=1.14
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=1.58k
.param Zo_max=1.58k
.param R1a_Zo=10k
.param fz1_Zo=0.96
.param fp1_Zo=9.8
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
+* R1a_Zo) - 1)}
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
.param G2_Zo = {1/actual1_Zo}
.param R1c_Zo=10k
.param fp3_Zo=7.1Meg
.param fz3_Zo=12.5Meg
.param C1c_Zo = {1 / (fz3_Zo * R1c_Zo * 2 * pi)}
.param R2c_Zo = {(1 / (fp3_Zo * C1c_Zo * 2 * pi))
+- R1c_Zo}
.param R1b_Zo=10k
.param fz2_Zo=33.5k
.param fp2_Zo=45.5k
.param C1b_Zo = {1 / (2 * pi * R1b_Zo * fz2_Zo)}
.param R2b_Zo = {R1b_Zo/ ((2 * pi * fp2_Zo * C1b_Zo
+* R1b_Zo) - 1)}
.param actual3_Zo = {R2b_Zo / (R1b_Zo + R2b_Zo)}
.param G3_Zo = {1/actual3_Zo}
.param R1d_Zo=10k
.param fz4_Zo=96Meg
.param fp4_Zo=100G
.param C1d_Zo = {1 / (2 * pi * R1d_Zo * fz4_Zo)}
.param R2d_Zo = {R1d_Zo/ ((2 * pi * fp4_Zo * C1d_Zo
+* R1d_Zo) - 1)}
.param actual4_Zo = {R2d_Zo / (R1d_Zo + R2d_Zo)}
.param G4_Zo = {1/actual4_Zo}
.param Aol_PB=135.06
.param SRp=1.3 SRn=-1.3
.param fp1=0.695 fp2=21.15Meg
.param Rser=1m
.param Ccm=5p Rcm=70G
.param Cdiff=3p ;Rdiff=100T
.param Aol2_dB = {Aol_PB-40+1}
.param Aol2 = {pwr(10, (Aol2_dB)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Rej_dc_CMR=149.5
.param R1a_CMR=1Meg
.param fz1_CMR=70m
.param fp1_CMR=10
.param R1b_CMR=1Meg
.param fz2_CMR=6k
.param fp2_CMR=200k
.param C1b_CMR = {1 / (2 * pi * R1b_CMR * fz2_CMR)}
.param R2b_CMR = {R1b_CMR/ ((2 * pi * fp2_CMR * C1b_CMR
+* R1b_CMR) - 1)}
.param actual2_CMR = {R2b_CMR / (R1b_CMR + R2b_CMR)}
.param G2_CMR = {1/actual2_CMR}
.param R1c_CMR=1Meg
.param fz3_CMR=300k
.param fp3_CMR=10Meg
.param C1c_CMR = {1 / (2 * pi * R1c_CMR * fz3_CMR)}
.param R2c_CMR = {R1c_CMR/ ((2 * pi * fp3_CMR * C1c_CMR
+* R1c_CMR) - 1)}
.param actual3_CMR = {R2c_CMR / (R1c_CMR + R2c_CMR)}
.param G3_CMR = {1/actual3_CMR}
.param Rej_dc_PSRp=128
.param R1a_PSRp=100Meg
.param fz1_PSRp=1.6
.param fp1_PSRp=4Meg
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param Rej_dc_PSRn=128
.param R1a_PSRn=1Meg
.param fz1_PSRn=0.35
.param fp1_PSRn=10
.param C1b_PSRn = {1 / (2 * pi * R1b_PSRn * fz2_PSRn)}
.param R2b_PSRn = {R1b_PSRn/ ((2 * pi * fp2_PSRn * C1b_PSRn
+* R1b_PSRn) - 1)}
.param actual2_PSRn = {R2b_PSRn/ (R1b_PSRn + R2b_PSRn)}
.param G2_PSRn = {1/actual2_PSRn}
.param R1b_PSRn=1Meg
.param fz2_PSRn=950
.param fp2_PSRn=4.1Meg
.param C1c_PSRn = {1 / (2 * pi * R1c_PSRn * fz3_PSRn)}
.param R2c_PSRn = {R1c_PSRn/ ((2 * pi * fp3_PSRn * C1c_PSRn
+* R1c_PSRn) - 1)}
.param actual3_PSRn = {R2c_PSRn/ (R1c_PSRn + R2c_PSRn)}
.param G3_PSRn = {1/actual3_PSRn}
.param R1c_PSRn=1Meg
.param fz3_PSRn=200k
.param fp3_PSRn={fp2_PSRn}
.param R1a_E_n=1Meg
.param fz1_E_n=2.2Meg
.param fp1_E_n=5.2Meg
.param C1a_E_n = {1 / (2 * pi * R1a_E_n * fz1_E_n)}
.param R2a_E_n = {R1a_E_n/ ((2 * pi * fp1_E_n * C1a_E_n
+* R1a_E_n) - 1)}
.param actual1_E_n = {R2a_E_n / (R1a_E_n + R2a_E_n)}
.param G1_E_n = {1/actual1_E_n}
.param Enp=6.9n CEn=22f
.param BB=6.9n fC=2.7 M=0.58 fA={BB*(fC**M)}
.param BBi=0.16p fCi=5 Mi=0.75 fAi={BBi*(fCi**Mi)}
.param Mp=14.12 OSp=0.96
.param Ap=1.08 Bp=1.71 Cp=8.54 Dp=2.2e-2
.param Mn=20 OSn=1
.param An=1.11 Bn=2.33 Cn=6.86 Dn=2.13e-2
.ends ADA4077

119
lib/sub/ADA4091.lib Normal file
View File

@@ -0,0 +1,119 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.SUBCKT ADA4091 1 2 99 50 45
I1 99 7 8.00E-06
Q1 6 4 7A QP
Q2 5 3 7B QP
RE1 7A 7 7.774E+02
RE2 7B 7 7.774E+02
D1 3 99 DX
D2 4 99 DX
D3 50 3 DX
D4 50 4 DX
D5 3 4 DX
D6 4 3 DX
R1 3 8 5E+03
R2 4 2 5E+03
R3 5 50 7.500E4;
R4 6 50 7.500E4;
Cph 5 5A 0.235E-12
Rph 5A 6 300
VOS 8 8A -50.48u
EPSRp 8A 1 99 50 495.4n
IOS 3 4 -50E-12
CDiff 1 2 2.5E-12
Cin1 1 50 2E-12
Cin2 2 50 2E-12
*
* INPUT PROTECTION NETWORK
*
X_in1 1 50 Diac1
X_in2 2 50 Diac1
X_in3 1 99 Diac1
X_in4 2 99 Diac1
*
*
RS1 99 39 400.0E3
RS2 39 50 400.0E3
EREF 98 0 (39,0) 1
*
* 1ST GAIN STAGE
*
G1 9 98 (6,5) 1.0E-06
R7 9 98 1E6
*
* 2ND GAIN STAGE AND DOMINANT POLE
*
R8 12 98 1.094E+08
G2 12 98 (98,9) 3.881E-06
D7 12 13 DX
D8 14 12 DX
V1 13 98 +0.2; source
V2 14 98 -0.2; sink
*
* Provision for second pole
*
G3 18 98 (98,12) 1E-05
R11 18 98 1E5
*
* CMRR=90dB, Pole at 1100 Hz
*
ECM 21 98 POLY(2) (1,98) (2,98) 0 1.318E-01 1.318E-01
R10 21 22 1.326E+05
R20 22 98 1.592E+01
C10 21 22 1E-9
*
* PSRR=85dB, POLE AT 300 Hz
*
EPSY 72 98 POLY(1) (99,50) +0.1E-1 1.770E+01
RPS1 72 73 7.958E+02
RPS2 73 98 3.183E-03
CPS1 72 73 1.00E-06
*
* VOLTAGE NOISE REFERENCE OF 24nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 96.300E-3
HN 81 98 VN1 2.397E+01
RN2 81 98 1
*
* FLICKER NOISE CORNER = 300 Hz
*
DFN 82 98 DNOISE
VFN 82 98 DC 0.6551
HFN 83 98 POLY(1) VFN 1.00E-03 1.00E+00
RFN 83 98 1
*
* OUTPUT STAGE
*
Q3 451 41 99 POUT
RB1 40 41 1.5E+03
EB1 99 40 POLY(1) (98,18) 6.190E-01 1E-0;
Q4 451 43 50 NOUT
RB2 42 43 2.0E+03
EB2 42 50 POLY(1) (18,98) 6.155E-01 1E-0;
Lout 45 451 10E-10
RZ 45 453 100
CZ 453 12 4.67E-12
*
GSY 99 50 POLY(1) (99 50) 106.2E-6 -0.89E-06
*
* MODELS
*
.MODEL QP PNP(BF=80, IS=1.00E-16, VA=130)
.MODEL POUT PNP (BF=80,IS=2.8E-15,VA=130,IK=6E+00,BR=15,VAR=14.4, RC=30)
.MODEL NOUT NPN (BF=120,IS=3.2E-15,VA=250,IK=11E+00,BR=30, VAR=20.0, RC=7)
.MODEL DW D(IS=1E-18)
.MODEL DX D()
.MODEL DY D(IS=1E-9)
.MODEL DZ D(IS=1E-6)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=8.640E-12)
*
.SUBCKT Diac1 1 2
Done 1 3 DZ42hh
Dtwo 2 3 DZ42hh
.MODEL DZ42hh D(IS=3.3179E-6, N=2.0, RS=1.0000E-3, CJO=10.00E-12, M=.31349, VJ=.3905, ISR=2.9061E-9, BV=42.0, IBV=5.0E-03, TT=300.0E-9)
.ENDS Diac1
*
*
.ENDS ADA4091

255
lib/sub/ADA4096.lib Normal file
View File

@@ -0,0 +1,255 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4096 1 2 3 4 5
R1 Inn1 2 {Rsern} Temp=-273.15
R2 Inp1 1 {Rserp} Temp=-273.15
R3 Aol1 COM 1Meg Temp=-273.15
R4 Clamp COM 1Meg Temp=-273.15
C1 Clamp COM {Cfp1a}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}* V(Aol1,COM), {Isink}-V(OL,COM)* 0.2, 20m), {Isrc}+V(OL,COM)*0.2, 20m)
A1 Inn2 Inp2 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k En={En} Enk={Enk}
G2 0 VCC_Int 3 0 1
G3 0 Vee_Int 4 0 1
R6 VCC_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N032 VCC_Int 1Meg Temp=-273.15
R9 N032 Vee_Int 1Meg Temp=-273.15
C2 N032 0 1
E1 COM 0 N032 0 1
R10 COM 0 1Meg Temp=-273.15
Rx N008 N013 {Rx_Zo} Temp=-273.15
Rdummy N008 COM {Rdummy_Zo} Temp=-273.15
G4 COM N003 Aol2 N008 {G1_Zo}
R11 Cap2L COM 1 Temp=-273.15
R12 Cap2L Cap2R {R1a_Zo} Temp=-273.15
R13 Cap2R COM {R2a_Zo} Temp=-273.15
G5 COM N005 Cap2R COM {G2_Zo}
C3 Cap2R Cap2L {C1a_Zo}
R14 N003 COM 1 Temp=-273.15
R15 N003 N004 {R2b_Zo} Temp=-273.15
R16 N004 Cap1 {R1b_Zo} Temp=-273.15
C4 COM Cap1 {C1b_Zo}
Gb1 COM Cap2L N004 COM 1
R17 N013 COM 1 Temp=-273.15
B2 COM N013 I=Uplim(Dnlim({G3_Zo}* V(ZoF,COM), {Izon}, 25m), {Izop}, 25m)
R18 N007 COM 1 Temp=-273.15
R19 N007 ZoF {R1c_Zo} Temp=-273.15
R20 ZoF COM {R2c_Zo} Temp=-273.15
C5 ZoF N007 {C1c_Zo}
R21 N005 COM 1 Temp=-273.15
R22 N005 N006 {R2d_Zo} Temp=-273.15
R23 N006 N018 {R1d_Zo} Temp=-273.15
C6 COM N018 {C1d_Zo}
Gb2 COM N007 N006 COM 1
R25 Aol2 COM 1Meg Temp=-273.15
C7 Aol2 COM {Cfp2}
G7 COM Aol2 Clamp COM 1<>
Cinp COM Inp1 {Cinp}
Cinn Inn1 COM {Cinn}
Cdiff Inp1 Inn1 {Cdiff}
Rinn Inn1 COM {Rinn} Temp=-273.15
Rinp COM Inp1 {Rinp} Temp=-273.15
R24 Inn2 N027 1m Temp=-273.15
Ibp Inp1 COM {Ib}
Ibn Inn1 COM {Ib-Ios}
R26 N010 N012 1k Temp=-273.15
A2 COM Inp1 COM COM COM COM COM COM OTA G=1u In={Inp} Ink={Inkp}
A3 COM Inn1 COM COM COM COM COM COM OTA G=0 In={Inn} Ink={Inkn}
B3 N012 N010 I=1m*{Vos+Drift* (Temp-27)}
R27 N017 N011 1m Temp=-273.15
G6 N017 Inp2 N025 N020 1m
R28 Inp2 N017 1k Temp=-273.15
C8 N023 N024 {C1a_PSRp}
G8 COM N024 VCC_Int COM {G1_PSRp}
R29 N024 COM 1 Temp=-273.15
R30 N023 N024 {R1a_PSRp} Temp=-273.15
R31 N023 COM {R2a_PSRp} Temp=-273.15
C9 N021 N022 {C1b_PSRp}
R32 N021 COM {R2b_PSRp} Temp=-273.15
R33 N021 N022 {R1b_PSRp} Temp=-273.15
G9 COM N022 N023 COM 1
R34 N022 COM 1 Temp=-273.15
G10 COM N025 N021 COM {G2_PSRp}
R35 N025 COM 1 Temp=-273.15
C10 N020 N019 {C1a_PSRn}
G11 COM N019 VEE_Int COM {G1_PSRn}
R36 N019 COM 1 Temp=-273.15
R37 N020 N019 {R1a_PSRn} Temp=-273.15
R38 N020 COM {R2a_PSRn} Temp=-273.15
G12 N010 N011 N002 COM 1m
R39 N011 N010 1k Temp=-273.15
C11 N002 N001 {C1a_CMR}
G13 COM N001 Inp1 COM {G1_CMR}
R40 N001 COM 1 Temp=-273.15
R41 N002 N001 {R1a_CMR} Temp=-273.15
R42 N002 COM {R2a_CMR} Temp=-273.15
Vimon N009 5 0
BIq 3 4 I={Iq_on} +I(VImon)
G1 COM N012 Inp1 COM 1k
G14 COM N027 Inn1 COM 1k
R5 COM N012 1m Temp=-273.15
R43 COM N027 1m Temp=-273.15
C12 N027 COM 1p
C13 N012 COM 1p
DIP 3 Inp2 DIP
DIN Inp2 4 DIN
C14 VCC_Int 0 1n
C15 Vee_Int 0 1n
DOP Vsatp N008 DO
DON N008 Vsatn DO
DGP N028 Clamp DGP
DGN Clamp N029 DGN
S1 COM Cap1 OL COM OL
S2 Cap2R Cap2L OL COM OL
F1 COM OLp VGP 1m
A4 OLp OLn COM COM COM COM OL COM OR Ref=100u Vh=50u Trise=10n
R44 OLp COM 1k
F2 COM OLn VGN -1m
R45 OLn COM 1k
C16 OLp COM 1n
C17 OLn COM 1n
DOI N008 N009 LIM
COI N009 N008 1p
R46 Vsatni 4 1k
R47 Vsatpi 3 1k
C18 Vsatpi 3 1n
C19 Vsatni 4 1n
B4 4 Vsatni I=Max(Ap*(Bp**(-I(Vimon)*1k))* (-(I(Vimon)*1k)**Cp),40u)
B5 Vsatpi 3 I=Max(Ap*(Bp**(I(Vimon)*1k))* ((I(Vimon)*1k)**Cp),40u)
G15 COM Vsatp Vsatpi COM 1
R48 Vsatp COM 1
C21 Vsatp COM 1n
G16 COM Vsatn Vsatni COM 1
R49 Vsatn COM 1
C22 Vsatn COM 1n
S3 3 Inp1 Inp1 3 ESDI
S4 3 Inn1 Inn1 3 ESDI
S5 Inp1 4 4 Inp1 ESDI
S6 Inn1 4 4 Inn1 ESDI
C24 N008 Vsatp 10p
C25 N008 Vsatn 10p
S7 3 5 5 3 ESDO
S8 5 4 4 5 ESDO
C26 OL COM 1p
B6 COM N030 I=1m*({Zo_max}* {Iscp}+V(3,COM)) Rpar=1k Cpar=1n
G18 COM GRp N030 COM 1
R51 GRp COM 1
G19 COM GRn N031 COM 1
R52 GRn COM 1
B7 COM N031 I=1m*({Zo_max}* {Iscn}+V(4,COM)) Rpar=1k Cpar=1n
VGP N028 GRp 0
VGN N029 GRn 0
DIP1 3 Inn2 DIP
DIN1 Inn2 4 DIN
.param En=27n Enk=1.2
.param Inp=0.2p Inkp=100
.param Inn=0.2p Inkn=100
.param Vos=-18.175u Drift=1u
.param Ib=10n Ios=1.5n
.param Vcm_min=0 Vcm_max=0
.param Vsmin=3 Vsmax=36
.param Iscp=10m Iscn=-10m
.param Torp=5u Torn=5u
.param Iq_on=47u Iq_off=5u
.param Ap=1.17e-5 Bp=1.17 Cp=1.76
.param Mor=0.7036 Bor=1.4284 Wor=0.16
.param IZop={2*Rx_Zo*Iscp} IZon={2*Rx_Zo*Iscn}
.model DIP D(Vfwd={Vsmax} Vrev={Vcm_max} Revepsilon=0.1)
.model DIN D(Vfwd={Vsmax} Vrev={-Vcm_min} Revepsilon=0.1)
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1)
.model LIM D(Vfwd=1n Vrev=1n Ron=1m Roff=1m Ilimit={Iscp} Revilimit={-Iscn} Epsilon=1u)
.model DGP D(Vfwd=1k Vrev=0 Revepsilon=0.5)
.model DGN D(Vfwd=1k Vrev=0 Revepsilon=0.5)
.model ESDI SW(Ron=50 Roff=1T Vt=31.6 Vh=-500m Vser=0.1)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n)
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m)
.param Rsern=10m Rserp=10m
.param Rinp=1T Cinp=7p
.param Rinn=1T Cinn=7p
.param Cdiff=2.5p
.param Aol=111 RL_dc=10k
.param SRp=0.38 SRn=-0.38
.param fp1=450 fp2=13.5Meg fp3=100G
.param Aol_v= {pwr(10, (Aol/20))}
.param Aol_adj = {(Aol_v/RL_dc)*(Zo_dc + RL_dc)}
.param Aol_adj_dB = {20*log10(Aol_adj)}
.param Aol2 = {pwr(10, (Aol_adj_dB - 40)/20)}
.param Cfp1 = {1 / (2 * pi * fp1 * Aol2)}
.param A=8.85e-1 B=5.56e-2 C=1.06 D=2.99m
.param ratio = {Zo_dc/RL_dc}
.param Cfp1a = {Cfp1*((A+B*ratio)/(1+C*ratio+D*ratio**2))}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Isrc = {Cfp1a * SRp * 1Meg} Isink = {Cfp1a * SRn * 1Meg}
.param beta_Zo=1.04
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=874
.param Zo_max=2k
.param R1a_Zo=10k
.param fz1_Zo=3.5
.param fp1_Zo=170
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
+* R1a_Zo) - 1)}
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
.param G2_Zo = {1/actual1_Zo}
.param R1b_Zo=10k
.param fp2_Zo=1m
.param fz2_Zo=90m
.param C1b_Zo = {1 / (fz2_Zo * R1b_Zo * 2 * pi)}
.param R2b_Zo = {(1 / (fp2_Zo * C1b_Zo * 2 * pi))
+- R1b_Zo}
.param R1c_Zo=10k
.param fz3_Zo=1.5Meg
.param fp3_Zo=100G
.param C1c_Zo = {1 / (2 * pi * R1c_Zo * fz3_Zo)}
.param R2c_Zo = {R1c_Zo/ ((2 * pi * fp3_Zo * C1c_Zo
+* R1c_Zo) - 1)}
.param actual3_Zo = {R2c_Zo / (R1c_Zo + R2c_Zo)}
.param G3_Zo = {1/actual3_Zo}
.param R1d_Zo=10k
.param fp4_Zo=250k
.param fz4_Zo=600k
.param C1d_Zo = {1 / (fz4_Zo * R1d_Zo * 2 * pi)}
.param R2d_Zo = {(1 / (fp4_Zo * C1d_Zo * 2 * pi))
+- R1d_Zo}
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param Rej_dc_PSRp=106
.param R1a_PSRp=100k
.param fz1_PSRp=220
.param fp1_PSRp=750k
.param C1b_PSRp = {1 / (2 * pi * R1b_PSRp * fz2_PSRp)}
.param R2b_PSRp = {R1b_PSRp/ ((2 * pi * fp2_PSRp * C1b_PSRp
+* R1b_PSRp) - 1)}
.param actual2_PSRp = {R2b_PSRp / (R1b_PSRp + R2b_PSRp)}
.param G2_PSRp = {1/actual2_PSRp}
.param R1b_PSRp=100k
.param fz2_PSRp=15k
.param fp2_PSRp=750k
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param Rej_dc_PSRn=105
.param R1a_PSRn=1Meg
.param fz1_PSRn=3.5
.param fp1_PSRn=750k
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Rej_dc_CMR=103
.param R1a_CMR=1Meg
.param fz1_CMR=3.5
.param fp1_CMR=550k
.ends ADA4096

109
lib/sub/ADA4097-1.lib Normal file
View File

@@ -0,0 +1,109 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4097-1 1 2 3 4 5 6
B1 0 N006 I=10u*dnlim(uplim(V(1),V(4)+69.3,.1), V(4)-.15, .1)+1n*V(1)-10.72254n
B2 N006 0 I=10u*dnlim(uplim(V(2),V(4)+69.3,.1), V(4)-.16, .1)+1n*V(2)
C10 N006 0 50f Rpar=100K noiseless
M1 N019 NG 4 4 NI temp=27
C2 3 5 1p IC=0 Rpar=1g
D5 NG 4 DLIMN1
M2 P001 N007 N004 N004 PI temp=27
A3 N014 N016 4 4 4 4 N007 4 OTA g=2u ref=-.305 linear vlow=-1e308 vhigh=1e308
C11 5 4 1p IC=0 Rpar=1g
D6 NG 4 DLIMN2
C16 N016 5 52p
A5 N012 0 N014 N014 N014 N014 N016 N014 OTA g=40u isource=5.05u Vlow=-1e308 Vhigh=1e308
G1 4 NG N016 N014 140n
D9 N016 N014 DLIM
C7 2 0 3p Rser=1k Rpar=100G noiseless
C13 3 4 10p
C1 N009 0 280f
G2 0 N014 4 0 .5m
G4 0 N014 3 0 .5m
C18 N014 0 200p Rpar=1K noiseless
C6 1 0 3p Rser=1k Rpar=100G noiseless
D3 3 N004 DSBD
C5 3 N004 100f Rpar=10Meg noiseless
D4 N004 N007 DLIMP
D2 N009 0 DLIM0
D1 4 5 DESD
D8 4 1 DESD
D10 4 2 DESD
A2 N015 0 0 0 0 0 0 0 OTA g=0 in=0.5p ink=15
D11 5 N019 DNR
C15 N019 4 100f Rpar=10Meg noiseless
D7 N007 3 DLIMPR
A6 4 3 M M M M N005 M OTA g=2u iout=1u ref=-2.5 Rout=1Meg Cout=100f vlow=-1e308 vhigh=1e308
S4 N021 4 N005 0 SBiasN
D13 3 N013 DBiasDrop
C14 N021 4 100f
S2 N004 N007 0 N005 SHUT
S3 NG 4 0 N005 SHUT
D16 2 1 D10Meg
C17 N010 0 2250f noiseless Rser=2.7Meg Rpar=1Meg
G3 0 N010 N009 0 1<>
D17 0 N009 DNLIN
G5 0 N011 N010 0 1<>
S5 N014 N016 4 5 SGK
C3 3 N007 .9p Rser=700k noiseless
C12 NG 4 .9p Rser=700k noiseless
D14 2 N013 DBiasOTT
D15 1 N021 DBiasOTT
S1 0 N008 3 2 SNOI
A7 N008 0 0 0 0 0 0 0 OTA g=0 in=17.25p ink=5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=0f ink=15
GNOI_I 1 2 N015 0 1<>
S6 0 N015 3 2 SNOI
A4 0 N006 0 0 0 0 N009 0 OTA g=1u linear en=53n*(1+freq/160e3) enk=0.98 Vhigh=1e308 Vlow=-1e308
GNOI_V N006 0 N008 0 10n
S9 3 4 N017 0 SP
S10 3 N007 N017 0 SHUT2
S11 NG 4 N017 0 SHUT2
S7 5 0 N017 0 SHUT2
S8 P001 5 0 N017 SHUT3
S13 N018 4 0 N017 SHUT3
G6 0 M 3 0 500<30>
R1 M 0 1k noiseless
G7 0 M 4 0 500<30>
R2 N024 0 58 noiseless
C4 N025 N024 10n Rpar=47.9K noiseless
R3 N025 0 1 noiseless
G8 0 N025 1 0 5.25m
G9 0 N025 2 0 5.25m
G10 0 N025 0 3 5.25m
G11 0 N025 0 4 5.25m
G12 0 N006 0 N024 1<>
D12 3 N018 DP
S12 N013 N021 0 N017 SHUT3
C20 N012 0 330f Rpar=1Meg noiseless
G13 0 N012 N011 0 1<>
C19 N011 0 125.26f noiseless Rser=2.667Meg Rpar=1Meg
D18 4 6 DSHUT1
C8 6 0 100f
A8 6 4 0 0 0 0 N017 0 SCHMITT Vt=1.5 Vh=1m Trise=1u Tfall=20u IC=0
I1 0 2 125p
.model DP D(Ron=1k Roff=1G Vfwd=2.5 epsilon=100m ilimit=6.5u noiseless)
.model SP SW(Ron=100 Roff=1G vt=.5 vh=10m ilimit=15u noiseless)
.model DESD D(Ron=1k Roff=1G vfwd=700m epsilon=100m noiseless)
.model SNOI SW(Ron=1 Roff=1Meg vt=1.2 vh=-100m noiseless)
.model NI VDMOS(Vto=361.95m Kp=69.6m Mtriode=.9 lambda=.01)
.model PI VDMOS(Vto=-361.95m Kp=174m lambda=.01 pchan is=0)
.model DLIM0 D(Ron=10 Roff=10Meg Vfwd=1 epsilon=100m Vrev=1 epsilon=100m noiseless)
.model DNLIN D(Roff=1.8Meg Ron=800k vfwd=0 epsilon=10m noiseless)
.model DLIM D(Ron=100 Roff=4.755Meg Vfwd=700m Vrev=100m epsilon=10m revepsilon=10 noiseless)
.model SHUT SW(level=2 Ron=10k Roff=100G vt=-.5 vh=-.2 noiseless)
.model DSHUT1 D(Ron=1000 Roff=0.823E6 Vfwd=1 epsilon=100m Vrev=1 epsilon=100m ilimit=100n revilimit=0.1n noiseless)
.model DSBD D( Ron=15 Roff=100Meg Vfwd=-70m epsilon=50m Vrev=100 revepsilon=10m noiseless)
.model DNR D(Ron=1 Roff=100Meg Vfwd=-16m epsilon=300m noiseless)
.model DLIMN1 D(Ron=200k Roff=415Meg Vfwd=1.378 Vrev=-330m epsilon=.1 noiseless)
.model DLIMN2 D(Ron=5Meg Roff=1G Vfwd=-20m epsilon=50m ilimit=44n noiseless)
.model DLIMP D(Ron=100k Roff=100Meg Vfwd=0.805 epsilon=10m noiseless)
.model DLIMPR D(Ron=5Meg Roff=1G Vfwd=100m epsilon=10m noiseless)
.model SGK SW(level=2 Ron=65k Roff=100G vt=-260m vh=150m oneway epsilon=10m noiseless)
.model SBiasN SW(level=2 Ron=5k Roff=1g vt=.5 vh=-.2 ilimit=0.2u noiseless)
.model DBiasDrop D(Ron=1k Roff=1G vfwd=0.31 epsilon=200m noiseless)
.model DBiasOTT D(Ron=500 Roff=1G vfwd=700m epsilon=200m noiseless)
.model D10Meg D(Ron=10Meg Roff=10Meg vfwd=0 vrev=0 ilimit=10n revilimit=10n noiseless)
.model SHUT3 SW(Ron=10 Roff=10G vt=-0.5 vh=100m noiseless)
.model SHUT2 SW(Ron=10 Roff=10G vt=0.5 vh=100m noiseless)
.ends ADA4097-1

109
lib/sub/ADA4097-2.lib Normal file
View File

@@ -0,0 +1,109 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4097-2 1 2 3 4 5 6
B1 0 N006 I=10u*dnlim(uplim(V(1),V(4)+69.3,.1), V(4)-.15, .1)+1n*V(1)-10.72254n
B2 N006 0 I=10u*dnlim(uplim(V(2),V(4)+69.3,.1), V(4)-.16, .1)+1n*V(2)
C10 N006 0 50f Rpar=100K noiseless
M1 N019 NG 4 4 NI temp=27
C2 3 5 1p Rpar=1g noiseless
D5 NG 4 DLIMN1
M2 P001 N007 N004 N004 PI temp=27
A3 N014 N016 4 4 4 4 N007 4 OTA g=2u ref=-.305 linear vlow=-1e308 vhigh=1e308
C11 5 4 1p Rpar=1g noiseless
D6 NG 4 DLIMN2
C16 N016 5 52p
A5 N012 0 N014 N014 N014 N014 N016 N014 OTA g=40u isource=5.05u Vlow=-1e308 Vhigh=1e308
G1 4 NG N016 N014 140n
D9 N016 N014 DLIM
C7 2 0 3p Rser=1k Rpar=100G noiseless
C13 3 4 10p
C1 N009 0 280f
G2 0 N014 4 0 .5m
G4 0 N014 3 0 .5m
C18 N014 0 200p Rpar=1K noiseless
C6 1 0 3p Rser=1k Rpar=100G noiseless
D3 3 N004 DSBD
C5 3 N004 100f Rpar=10Meg noiseless
D4 N004 N007 DLIMP
D2 N009 0 DLIM0
D1 4 5 DESD
D8 4 1 DESD
D10 4 2 DESD
A2 N015 0 0 0 0 0 0 0 OTA g=0 in=0.5p ink=15
D11 5 N019 DNR
C15 N019 4 100f Rpar=10Meg noiseless
D7 N007 3 DLIMPR
A6 4 3 M M M M N005 M OTA g=2u iout=1u ref=-2.5 Rout=1Meg Cout=100f vlow=-1e308 vhigh=1e308
S4 N021 4 N005 0 SBiasN
D13 3 N013 DBiasDrop
C14 N021 4 100f
S2 N004 N007 0 N005 SHUT
S3 NG 4 0 N005 SHUT
D16 2 1 D10Meg
C17 N010 0 2250f noiseless Rser=2.7Meg Rpar=1Meg
G3 0 N010 N009 0 1<>
D17 0 N009 DNLIN
G5 0 N011 N010 0 1<>
S5 N014 N016 4 5 SGK
C3 3 N007 .9p Rser=700k noiseless
C12 NG 4 .9p Rser=700k noiseless
D14 2 N013 DBiasOTT
D15 1 N021 DBiasOTT
S1 0 N008 3 2 SNOI
A7 N008 0 0 0 0 0 0 0 OTA g=0 in=17.25p ink=5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=0f ink=15
GNOI_I 1 2 N015 0 1<>
S6 0 N015 3 2 SNOI
A4 0 N006 0 0 0 0 N009 0 OTA g=1u linear en=53n*(1+freq/160e3) enk=0.98 Vhigh=1e308 Vlow=-1e308
GNOI_V N006 0 N008 0 10n
S9 3 4 N017 0 SP
S10 3 N007 N017 0 SHUT2
S11 NG 4 N017 0 SHUT2
S7 5 0 N017 0 SHUT2
S8 P001 5 0 N017 SHUT3
S13 N018 4 0 N017 SHUT3
G6 0 M 3 0 500<30>
R1 M 0 1k noiseless
G7 0 M 4 0 500<30>
R2 N024 0 58 noiseless
C4 N025 N024 10n Rpar=47.9K noiseless
R3 N025 0 1 noiseless
G8 0 N025 1 0 5.25m
G9 0 N025 2 0 5.25m
G10 0 N025 0 3 5.25m
G11 0 N025 0 4 5.25m
G12 0 N006 0 N024 1<>
D12 3 N018 DP
S12 N013 N021 0 N017 SHUT3
C20 N012 0 330f Rpar=1Meg noiseless
G13 0 N012 N011 0 1<>
C19 N011 0 125.26f noiseless Rser=2.667Meg Rpar=1Meg
D18 4 6 DSHUT1
C8 6 0 100f
A8 6 4 0 0 0 0 N017 0 SCHMITT Vt=1.5 Vh=1m Trise=1u Tfall=20u
I1 0 2 125p
.model DP D(Ron=1k Roff=1G Vfwd=2.5 epsilon=100m ilimit=6.5u noiseless)
.model SP SW(Ron=100 Roff=1G vt=.5 vh=10m ilimit=15u noiseless)
.model DESD D(Ron=1k Roff=1G vfwd=700m epsilon=100m noiseless)
.model SNOI SW(Ron=1 Roff=1Meg vt=1.2 vh=-100m noiseless)
.model NI VDMOS(Vto=361.95m Kp=69.6m Mtriode=.9 lambda=.01)
.model PI VDMOS(Vto=-361.95m Kp=174m lambda=.01 pchan is=0)
.model DLIM0 D(Ron=10 Roff=10Meg Vfwd=1 epsilon=100m Vrev=1 epsilon=100m noiseless)
.model DNLIN D(Roff=1.8Meg Ron=800k vfwd=0 epsilon=10m noiseless)
.model DLIM D(Ron=100 Roff=4.755Meg Vfwd=700m Vrev=100m epsilon=10m revepsilon=10 noiseless)
.model SHUT SW(level=2 Ron=10k Roff=100G vt=-.5 vh=-.2 noiseless)
.model DSHUT1 D(Ron=1000 Roff=0.823E6 Vfwd=1 epsilon=100m Vrev=1 epsilon=100m ilimit=100n revilimit=0.1n noiseless)
.model DSBD D( Ron=15 Roff=100Meg Vfwd=-70m epsilon=50m Vrev=100 revepsilon=10m noiseless)
.model DNR D(Ron=1 Roff=100Meg Vfwd=-16m epsilon=300m noiseless)
.model DLIMN1 D(Ron=200k Roff=415Meg Vfwd=1.378 Vrev=-330m epsilon=.1 noiseless)
.model DLIMN2 D(Ron=5Meg Roff=1G Vfwd=-20m epsilon=50m ilimit=44n noiseless)
.model DLIMP D(Ron=100k Roff=100Meg Vfwd=0.805 epsilon=10m noiseless)
.model DLIMPR D(Ron=5Meg Roff=1G Vfwd=100m epsilon=10m noiseless)
.model SGK SW(level=2 Ron=65k Roff=100G vt=-260m vh=150m oneway epsilon=10m noiseless)
.model SBiasN SW(level=2 Ron=5k Roff=1g vt=.5 vh=-.2 ilimit=0.2u noiseless)
.model DBiasDrop D(Ron=1k Roff=1G vfwd=0.31 epsilon=200m noiseless)
.model DBiasOTT D(Ron=500 Roff=1G vfwd=700m epsilon=200m noiseless)
.model D10Meg D(Ron=10Meg Roff=10Meg vfwd=0 vrev=0 ilimit=10n revilimit=10n noiseless)
.model SHUT3 SW(Ron=10 Roff=10G vt=-0.5 vh=100m noiseless)
.model SHUT2 SW(Ron=10 Roff=10G vt=0.5 vh=100m noiseless)
.ends ADA4097-2

113
lib/sub/ADA4098-1.lib Normal file
View File

@@ -0,0 +1,113 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4098-1 1 2 3 4 5 6
B1 0 N004 I=10u*dnlim(uplim(V(1),V(4)+69.3,.1), V(4)-.15, .1)+1n*V(1)-10.72254n
B2 N004 0 I=10u*dnlim(uplim(V(2),V(4)+69.3,.1), V(4)-.16, .1)+1n*V(2)
C10 N004 0 50f Rpar=100K noiseless
M1 N018 NG 4 4 NI temp=27
C2 3 5 1p Rpar=1g noiseless
D5 NG N021 DLIMN1
M2 P001 N005 N002 N002 PI temp=27
A3 N013 N015 4 4 4 4 N005 4 OTA g=2u ref=-.305 linear vlow=-1e308 vhigh=1e308
C11 5 4 1p Rpar=1g noiseless
D6 NG 4 DLIMN2
C16 N015 5 12p
A5 N010 0 N013 N013 N013 N013 N015 N013 OTA g=70u isource=10.3u Vlow=-1e308 Vhigh=1e308
G1 4 NG N015 N013 140n
D9 N015 N013 DLIM
C7 2 0 2.7p Rser=1k Rpar=100G noiseless
C13 3 4 10p
C1 N007 0 30f
G2 0 N013 4 0 .5m
G4 0 N013 3 0 .5m
C18 N013 0 200p Rpar=1K noiseless
C6 1 0 2.7p Rser=1k Rpar=100G noiseless
D3 3 N002 DSBD
C5 3 N002 100f Rpar=10Meg noiseless
D4 N002 N005 DLIMP
D2 N007 0 DLIM0
A2 N014 0 0 0 0 0 0 0 OTA g=0 in=1.8p ink=15
D11 5 N018 DNR
C15 N018 4 100f Rpar=10Meg noiseless
D7 N005 3 DLIMPR
A6 4 3 M M M M N003 M OTA g=2u iout=1u ref=-2.5 Rout=1Meg Cout=100f vlow=-1e308 vhigh=1e308
S4 N020 N022 N003 0 SBiasN
D13 3 N012 DBiasDrop
C14 N020 4 100f
S2 N002 N005 0 N003 SHUT
S3 NG 4 0 N003 SHUT
D16 2 1 D1Meg
C17 N008 0 174.26f noiseless Rser=2.667Meg Rpar=1Meg
G3 0 N008 N007 0 1<>
D17 0 N007 DNLIN
C20 N010 0 47f Rpar=1Meg noiseless
G5 0 N010 N009 0 1<>
S5 N013 N015 4 5 SGK
C3 3 N005 .9p Rser=700k noiseless
C12 NG 4 .9p Rser=700k noiseless
D14 2 N012 DBiasOTT
D15 1 N020 DBiasOTT
S1 0 N006 3 2 SNOI
A7 N006 0 0 0 0 0 0 0 OTA g=0 in=17.25p ink=5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=145f ink=6
GNOI_I 1 2 N014 0 1<>
S6 0 N014 3 2 SNOI
A4 0 N004 0 0 0 0 N007 0 OTA g=1u linear en=16.95n*(1+freq/12e5) enk=3.3 Vhigh=1e308 Vlow=-1e308
GNOI_V N004 0 N006 0 10n
I1 0 1 1.76n
S9 3 4 N016 0 SP
S10 3 N005 N016 0 SHUT2
S11 NG 4 N016 0 SHUT2
A8 6 4 0 0 0 0 N016 0 SCHMITT Vt=1.5 Vh=1m Trise=1u Tfall=100u
S7 5 0 N016 0 SHUT2
S8 P001 5 0 N016 SHUT3
S13 N017 4 0 N016 SHUT3
G6 0 M 3 0 500<30>
R1 M 0 1k noiseless
G7 0 M 4 0 500<30>
R2 N025 0 48 noiseless
C4 N026 N025 10n Rpar=47.9K noiseless
R3 N026 0 1 noiseless
G8 0 N026 1 0 5.25m
G9 0 N026 2 0 5.25m
G10 0 N026 0 3 5.25m
G11 0 N026 0 4 5.25m
G12 0 N004 0 N025 1<>
D12 3 N017 DP
S12 N012 N020 0 N016 SHUT3
C9 6 0 100f
C19 N009 0 174.26f noiseless Rser=3.667Meg Rpar=1Meg
G13 0 N009 N008 0 1<>
S14 N022 4 0 N016 SHUT3
S15 N021 4 0 N016 SHUT3
I2 0 2 2.04n
D1 4 6 DSHUT1
D18 4 5 DESD
S16 2 4 4 2 ESDI
S18 1 4 4 1 ESDI
.model DP D(Ron=1k Roff=1G Vfwd=2.5 epsilon=100m ilimit=1.4u noiseless)
.model SP SW(Ron=100 Roff=1G vt=.5 vh=10m ilimit=17u noiseless)
.model DESD D(Ron=1k Roff=1G vfwd=700m epsilon=100m noiseless)
.model SNOI SW(Ron=1 Roff=1Meg vt=1.2 vh=-100m noiseless)
.model NI VDMOS(Vto=325.5m kp=72.3m Mtriode=.9 lambda=.01)
.model PI VDMOS(Vto=-325.5m Kp=341m lambda=.01 pchan is=0)
.model DLIM0 D(Ron=10 Roff=10Meg Vfwd=1 epsilon=100m Vrev=1 epsilon=100m noiseless)
.model DNLIN D(Roff=1.8Meg Ron=800k vfwd=0 epsilon=10m noiseless)
.model DLIM D(Ron=100 Roff=2.949Meg Vfwd=700m Vrev=100m epsilon=10m revepsilon=10 noiseless)
.model SHUT SW(level=2 Ron=10k Roff=100G vt=-.5 vh=-.2 noiseless)
.model DSHUT1 D(Ron=1000 Roff=0.823E6 Vfwd=1 epsilon=100m Vrev=1 epsilon=100m ilimit=100n revilimit=0.1n noiseless)
.model DSBD D( Ron=15 Roff=100Meg Vfwd=-58.5m epsilon=50m Vrev=100 revepsilon=10m noiseless)
.model DNR D(Ron=1 Roff=100Meg Vfwd=-6.5m epsilon=300m noiseless)
.model DLIMN1 D(Ron=200k Roff=415Meg Vfwd=1.378 Vrev=-330m epsilon=.1 noiseless)
.model DLIMN2 D(Ron=5Meg Roff=1G Vfwd=-20m epsilon=50m ilimit=44n noiseless)
.model DLIMP D(Ron=100k Roff=100Meg Vfwd=0.63 epsilon=10m noiseless)
.model DLIMPR D(Ron=5Meg Roff=1G Vfwd=100m epsilon=10m noiseless)
.model SGK SW(level=2 Ron=65k Roff=100G vt=-260m vh=150m oneway epsilon=10m noiseless)
.model SBiasN SW(level=2 Ron=5k Roff=1g vt=.5 vh=-.2 ilimit=8u noiseless)
.model DBiasDrop D(Ron=1k Roff=1G vfwd=2.37 epsilon=200m noiseless)
.model DBiasOTT D(Ron=500 Roff=1G vfwd=700m epsilon=200m noiseless)
.model D1Meg D(Ron=1Meg Roff=1Meg vfwd=0 vrev=0 ilimit=10n revilimit=10n noiseless)
.model SHUT3 SW(Ron=10 Roff=10G vt=-0.5 vh=100m noiseless)
.model SHUT2 SW(Ron=10 Roff=10G vt=0.5 vh=100m noiseless)
.model ESDI SW(Ron=50 Roff=1T Vt=31.6 Vh=-500m Vser=0.1 noiseless)
.ends ADA4098-1

112
lib/sub/ADA4098-2.lib Normal file
View File

@@ -0,0 +1,112 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4098-2 1 2 3 4 5 6
B1 0 N006 I=10u*dnlim(uplim(V(1),V(4)+69.3,.1), V(4)-.15, .1)+1n*V(1)-10.72254n
B2 N006 0 I=10u*dnlim(uplim(V(2),V(4)+69.3,.1), V(4)-.16, .1)+1n*V(2)
C10 N006 0 50f Rpar=100K noiseless
M1 N019 NG 4 4 NI temp=27
C2 3 5 1p Rpar=1g noiseless
D5 NG N022 DLIMN1
M2 P001 N007 N004 N004 PI temp=27
A3 N014 N016 4 4 4 4 N007 4 OTA g=2u ref=-.305 linear vlow=-1e308 vhigh=1e308
C11 5 4 1p Rpar=1g noiseless
D6 NG 4 DLIMN2
C16 N016 5 12p
A5 N012 0 N014 N014 N014 N014 N016 N014 OTA g=70u isource=10.3u Vlow=-1e308 Vhigh=1e308
G1 4 NG N016 N014 140n
D9 N016 N014 DLIM
C7 2 0 2.7p Rser=1k Rpar=100G noiseless
C13 3 4 10p
C1 N009 0 30f
G2 0 N014 4 0 .5m
G4 0 N014 3 0 .5m
C18 N014 0 200p Rpar=1K noiseless
C6 1 0 2.7p Rser=1k Rpar=100G noiseless
D3 3 N004 DSBD
C5 3 N004 100f Rpar=10Meg noiseless
D4 N004 N007 DLIMP
D2 N009 0 DLIM0
D1 4 5 DESD
D8 4 1 DESD
D10 4 2 DESD
A2 N015 0 0 0 0 0 0 0 OTA g=0 in=1.8p ink=15
D11 5 N019 DNR
C15 N019 4 100f Rpar=10Meg noiseless
D7 N007 3 DLIMPR
A6 4 3 M M M M N005 M OTA g=2u iout=1u ref=-2.5 Rout=1Meg Cout=100f vlow=-1e308 vhigh=1e308
S4 N021 N023 N005 0 SBiasN
D13 3 N013 DBiasDrop
C14 N021 4 100f
S2 N004 N007 0 N005 SHUT
S3 NG 4 0 N005 SHUT
D16 2 1 D1Meg
C17 N010 0 174.26f noiseless Rser=2.667Meg Rpar=1Meg
G3 0 N010 N009 0 1<>
D17 0 N009 DNLIN
C20 N012 0 47f Rpar=1Meg noiseless
G5 0 N012 N011 0 1<>
S5 N014 N016 4 5 SGK
C3 3 N007 .9p Rser=700k noiseless
C12 NG 4 .9p Rser=700k noiseless
D14 2 N013 DBiasOTT
D15 1 N021 DBiasOTT
S1 0 N008 3 2 SNOI
A7 N008 0 0 0 0 0 0 0 OTA g=0 in=17.25p ink=5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=145f ink=6
GNOI_I 1 2 N015 0 1<>
S6 0 N015 3 2 SNOI
A4 0 N006 0 0 0 0 N009 0 OTA g=1u linear en=16.95n*(1+freq/12e5) enk=3.3 Vhigh=1e308 Vlow=-1e308
GNOI_V N006 0 N008 0 10n
I1 0 1 1.76n
S9 3 4 N017 0 SP
S10 3 N007 N017 0 SHUT2
S11 NG 4 N017 0 SHUT2
A8 6 4 0 0 0 0 N017 0 SCHMITT Vt=1.5 Vh=1m Trise=1u Tfall=100u
S7 5 0 N017 0 SHUT2
S8 P001 5 0 N017 SHUT3
S13 N018 4 0 N017 SHUT3
G6 0 M 3 0 500<30>
R1 M 0 1k noiseless
G7 0 M 4 0 500<30>
R2 N026 0 48 noiseless
C4 N027 N026 10n Rpar=47.9K noiseless
R3 N027 0 1 noiseless
G8 0 N027 1 0 5.25m
G9 0 N027 2 0 5.25m
G10 0 N027 0 3 5.25m
G11 0 N027 0 4 5.25m
G12 0 N006 0 N026 1<>
D12 3 N018 DP
S12 N013 N021 0 N017 SHUT3
D18 4 6 DSHUT1
C9 6 0 100f
C19 N011 0 174.26f noiseless Rser=3.667Meg Rpar=1Meg
G13 0 N011 N010 0 1<>
S14 N023 4 0 N017 SHUT3
S15 N022 4 0 N017 SHUT3
I2 0 2 2.04n
.model DP D(Ron=1k Roff=1G Vfwd=2.5 epsilon=100m ilimit=1.4u noiseless)
.model SP SW(Ron=100 Roff=1G vt=.5 vh=10m ilimit=17u noiseless)
.model DESD D(Ron=1k Roff=1G vfwd=700m epsilon=100m noiseless)
.model SNOI SW(Ron=1 Roff=1Meg vt=1.2 vh=-100m noiseless)
.model NI VDMOS(Vto=325.5m kp=72.3m Mtriode=.9 lambda=.01)
.model PI VDMOS(Vto=-325.5m Kp=341m lambda=.01 pchan is=0)
.model DLIM0 D(Ron=10 Roff=10Meg Vfwd=1 epsilon=100m Vrev=1 epsilon=100m noiseless)
.model DNLIN D(Roff=1.8Meg Ron=800k vfwd=0 epsilon=10m noiseless)
.model DLIM D(Ron=100 Roff=2.949Meg Vfwd=700m Vrev=100m epsilon=10m revepsilon=10 noiseless)
.model SHUT SW(level=2 Ron=10k Roff=100G vt=-.5 vh=-.2 noiseless)
.model DSHUT1 D(Ron=1000 Roff=0.823E6 Vfwd=1 epsilon=100m Vrev=1 epsilon=100m ilimit=100n revilimit=0.1n noiseless)
.model DSBD D( Ron=15 Roff=100Meg Vfwd=-58.5m epsilon=50m Vrev=100 revepsilon=10m noiseless)
.model DNR D(Ron=1 Roff=100Meg Vfwd=-6.5m epsilon=300m noiseless)
.model DLIMN1 D(Ron=200k Roff=415Meg Vfwd=1.378 Vrev=-330m epsilon=.1 noiseless)
.model DLIMN2 D(Ron=5Meg Roff=1G Vfwd=-20m epsilon=50m ilimit=44n noiseless)
.model DLIMP D(Ron=100k Roff=100Meg Vfwd=0.63 epsilon=10m noiseless)
.model DLIMPR D(Ron=5Meg Roff=1G Vfwd=100m epsilon=10m noiseless)
.model SGK SW(level=2 Ron=65k Roff=100G vt=-260m vh=150m oneway epsilon=10m noiseless)
.model SBiasN SW(level=2 Ron=5k Roff=1g vt=.5 vh=-.2 ilimit=8u noiseless)
.model DBiasDrop D(Ron=1k Roff=1G vfwd=2.37 epsilon=200m noiseless)
.model DBiasOTT D(Ron=500 Roff=1G vfwd=700m epsilon=200m noiseless)
.model D1Meg D(Ron=1Meg Roff=1Meg vfwd=0 vrev=0 ilimit=10n revilimit=10n noiseless)
.model SHUT3 SW(Ron=10 Roff=10G vt=-0.5 vh=100m noiseless)
.model SHUT2 SW(Ron=10 Roff=10G vt=0.5 vh=100m noiseless)
.ends ADA4098-2

112
lib/sub/ADA4099-1.lib Normal file
View File

@@ -0,0 +1,112 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4099-1 1 2 3 4 5 6
B1 0 N006 I=10u*dnlim(uplim(V(1),V(4)+69.1,.1), V(4)-.15, .1)+1n*V(1)-10.72254n
B2 N006 0 I=10u*dnlim(uplim(V(2),V(4)+69.1,.1), V(4)-.16, .1)+1n*V(2)
C10 N006 0 50f Rpar=100K noiseless
M1 N018 NG 4 4 NI temp=27
C2 3 5 1p Rpar=1g noiseless
D5 NG N022 DLIMN1
M2 P001 N007 N004 N004 PI temp=27
A3 N013 N015 4 4 4 4 N007 4 OTA g=2u ref=-.305 linear vlow=-1e308 vhigh=1e308
C11 5 4 1p Rpar=1g noiseless
D6 NG 4 DLIMN2
C16 N015 5 1.8p
A5 N011 0 N013 N013 N013 N013 N015 N013 OTA g=50u iout=9.8u Vlow=-1e308 Vhigh=1e308
G1 4 NG N015 N013 140n
D9 N015 N013 DLIM
C7 2 0 2.7p Rser=1k Rpar=100G noiseless
C13 3 4 10p
C1 N009 0 7f
G2 0 N013 4 0 .5m
G4 0 N013 3 0 .5m
C18 N013 0 200p Rpar=1K noiseless
C6 1 0 2.7p Rser=1k Rpar=100G noiseless
D3 3 N004 DSBD
C5 3 N004 100f Rpar=10Meg noiseless
D4 N004 N007 DLIMP
D2 N009 0 DLIM0
D1 4 5 DESD
D8 4 1 DESD
D10 4 2 DESD
A2 N014 0 0 0 0 0 0 0 OTA g=0 en=8n enk=5 in=5p ink=15
D11 5 N018 DNR
C15 N018 4 100f Rpar=10Meg noiseless
D7 N007 3 DLIMPR
A6 4 3 M M M M N005 M OTA g=2u iout=1u ref=-2.5 Rout=1Meg Cout=100f vlow=-1e308 vhigh=1e308
S4 N020 N021 N005 0 SBiasN
D13 3 N012 DBiasDrop
C14 N020 4 100f
S2 N004 N007 0 N005 SHUT
S3 NG 4 0 N005 SHUT
D16 2 1 D100k
C17 N010 0 80.26f noiseless Rser=2.667Meg Rpar=1Meg
G3 0 N010 N009 0 1<>
D17 0 N009 DNLIN
C19 N011 0 6f Rpar=1Meg noiseless
G5 0 N011 N010 0 1<>
S5 N013 N015 4 5 SGK
C3 3 N007 .9p Rser=700k noiseless
C12 NG 4 .9p Rser=700k noiseless
D14 2 N012 DBiasOTT
D15 1 N020 DBiasOTT
S1 0 N008 3 2 SNOI
A7 N008 0 0 0 0 0 0 0 OTA g=0 in=17.25p ink=5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=500f ink=6
GNOI_I 1 2 N014 0 1<>
S6 0 N014 3 2 SNOI
A4 0 N006 0 0 0 0 N009 0 OTA g=1u linear en=7n*(1+freq/40e6) enk=6 Vhigh=1e308 Vlow=-1e308
GNOI_V N006 0 N008 0 10n
I1 1 0 1.4n
S9 3 4 N016 0 SP
S10 3 N007 N016 0 SHUT2
S11 NG 4 N016 0 SHUT2
A8 6 4 0 0 0 0 N016 0 SCHMITT Vt=1.5 Vh=1m Trise=1u Tfall=12u
S7 5 0 N016 0 SHUT2
S8 P001 5 0 N016 SHUT3
S13 N017 4 0 N016 SHUT3
G6 0 M 3 0 500<30>
R1 M 0 1k noiseless
G7 0 M 4 0 500<30>
R2 N025 0 48 noiseless
C4 N026 N025 10n Rpar=47.9K noiseless
R3 N026 0 1 noiseless
G8 0 N026 1 0 5.25m
G9 0 N026 2 0 5.25m
G10 0 N026 0 3 5.25m
G11 0 N026 0 4 5.25m
G12 0 N006 0 N025 1<>
D12 3 N017 DP
S12 N012 N020 0 N016 SHUT3
S14 N021 4 0 N016 SHUT3
S16 N022 4 0 N016 SHUT3
D18 4 6 DSHUT1
C8 6 0 100f
.model DP D(Ron=1k Roff=1G Vfwd=2.5 epsilon=100m ilimit=0.49m noiseless)
.model SP SW(Ron=100 Roff=1G vt=.5 vh=10m ilimit=24u noiseless)
.model DESD D(Ron=1k Roff=1G vfwd=700m epsilon=100m noiseless)
.model SNOI SW(Ron=1 Roff=1Meg vt=1.2 vh=-100m noiseless)
.model NI VDMOS(Vto=220m kp=60m Mtriode=.9 lambda=.01)
.model PI VDMOS(Vto=-220m Kp=120m lambda=.01 pchan is=0)
.model DLIM0 D(Ron=10 Roff=10Meg Vfwd=1 epsilon=100m Vrev=1 epsilon=100m noiseless)
.model DNLIN D(Roff=1.8Meg Ron=800k vfwd=0 epsilon=10m noiseless)
.model DLIM D(Ron=100 Roff=4.111Meg Vfwd=700m Vrev=100m epsilon=10m revepsilon=10 noiseless)
.model SHUT SW(level=2 Ron=10k Roff=100G vt=-.5 vh=-.2 noiseless)
.model DSHUT1 D(Ron=1000 Roff=0.823E6 Vfwd=1 epsilon=100m Vrev=1 epsilon=100m ilimit=100n revilimit=0.1n noiseless)
.model DSBD D( Ron=15 Roff=100Meg Vfwd=-48.5m epsilon=50m Vrev=100 revepsilon=10m noiseless)
.model DNR D(Ron=1 Roff=100Meg Vfwd=-8.5m epsilon=300m noiseless)
.model DLIMN1 D(Ron=200k Roff=415Meg Vfwd=1.378 Vrev=-330m epsilon=.1 noiseless)
.model DLIMN2 D(Ron=5Meg Roff=1G Vfwd=-20m epsilon=50m ilimit=44n noiseless)
.model DLIMP D(Ron=100k Roff=100Meg Vfwd=0.815 epsilon=10m noiseless)
.model DLIMPR D(Ron=5Meg Roff=1G Vfwd=100m epsilon=10m noiseless)
.model SGK SW(level=2 Ron=65k Roff=100G vt=-260m vh=150m oneway epsilon=10m noiseless)
.model SBiasN SW(level=2 Ron=5k Roff=1g vt=.5 vh=-.2 ilimit=82.5u noiseless)
.model DBiasDrop D(Ron=1k Roff=1G vfwd=2.37 epsilon=200m noiseless)
.model DBiasOTT D(Ron=500 Roff=1G vfwd=700m epsilon=200m noiseless)
.model D100k D(Ron=100k Roff=100k vfwd=0 vrev=0 ilimit=10n revilimit=10n noiseless)
.model 600nA D(Ron=1Meg Roff=1G Ilimit=600n epsilon=1 Vfwd=1 noiseless)
.model 300nA D(Ron=1Meg Roff=1G Ilimit=300n epsilon=1 Vfwd=0 noiseless)
.model SHUT3 SW(Ron=10 Roff=10G vt=-0.5 vh=100m noiseless)
.model SHUT2 SW(Ron=10 Roff=10G vt=0.5 vh=100m noiseless)
.model SHUTD SW(Ron=10 Roff=10G vt=0 vh=100m ilimit=300n noiseless)
.ends ADA4099-1

112
lib/sub/ADA4099-2.lib Normal file
View File

@@ -0,0 +1,112 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4099-2 1 2 3 4 5 6
B1 0 N006 I=10u*dnlim(uplim(V(1),V(4)+69.1,.1), V(4)-.15, .1)+1n*V(1)-10.72254n
B2 N006 0 I=10u*dnlim(uplim(V(2),V(4)+69.1,.1), V(4)-.16, .1)+1n*V(2)
C10 N006 0 50f Rpar=100K noiseless
M1 N018 NG 4 4 NI temp=27
C2 3 5 1p Rpar=1g noiseless
D5 NG N022 DLIMN1
M2 P001 N007 N004 N004 PI temp=27
A3 N013 N015 4 4 4 4 N007 4 OTA g=2u ref=-.305 linear vlow=-1e308 vhigh=1e308
C11 5 4 1p Rpar=1g noiseless
D6 NG 4 DLIMN2
C16 N015 5 1.8p
A5 N011 0 N013 N013 N013 N013 N015 N013 OTA g=50u iout=9.8u Vlow=-1e308 Vhigh=1e308
G1 4 NG N015 N013 140n
D9 N015 N013 DLIM
C7 2 0 2.7p Rser=1k Rpar=100G noiseless
C13 3 4 10p
C1 N009 0 7f
G2 0 N013 4 0 .5m
G4 0 N013 3 0 .5m
C18 N013 0 200p Rpar=1K noiseless
C6 1 0 2.7p Rser=1k Rpar=100G noiseless
D3 3 N004 DSBD
C5 3 N004 100f Rpar=10Meg noiseless
D4 N004 N007 DLIMP
D2 N009 0 DLIM0
D1 4 5 DESD
D8 4 1 DESD
D10 4 2 DESD
A2 N014 0 0 0 0 0 0 0 OTA g=0 en=8n enk=5 in=5p ink=15
D11 5 N018 DNR
C15 N018 4 100f Rpar=10Meg noiseless
D7 N007 3 DLIMPR
A6 4 3 M M M M N005 M OTA g=2u iout=1u ref=-2.5 Rout=1Meg Cout=100f vlow=-1e308 vhigh=1e308
S4 N020 N021 N005 0 SBiasN
D13 3 N012 DBiasDrop
C14 N020 4 100f
S2 N004 N007 0 N005 SHUT
S3 NG 4 0 N005 SHUT
D16 2 1 D100k
C17 N010 0 80.26f noiseless Rser=2.667Meg Rpar=1Meg
G3 0 N010 N009 0 1<>
D17 0 N009 DNLIN
C19 N011 0 6f Rpar=1Meg noiseless
G5 0 N011 N010 0 1<>
S5 N013 N015 4 5 SGK
C3 3 N007 .9p Rser=700k noiseless
C12 NG 4 .9p Rser=700k noiseless
D14 2 N012 DBiasOTT
D15 1 N020 DBiasOTT
S1 0 N008 3 2 SNOI
A7 N008 0 0 0 0 0 0 0 OTA g=0 in=17.25p ink=5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=500f ink=6
GNOI_I 1 2 N014 0 1<>
S6 0 N014 3 2 SNOI
A4 0 N006 0 0 0 0 N009 0 OTA g=1u linear en=7n*(1+freq/40e6) enk=6 Vhigh=1e308 Vlow=-1e308
GNOI_V N006 0 N008 0 10n
I1 1 0 1.4n
S9 3 4 N016 0 SP
S10 3 N007 N016 0 SHUT2
S11 NG 4 N016 0 SHUT2
A8 6 4 0 0 0 0 N016 0 SCHMITT Vt=1.5 Vh=1m Trise=1u Tfall=12u
S7 5 0 N016 0 SHUT2
S8 P001 5 0 N016 SHUT3
S13 N017 4 0 N016 SHUT3
G6 0 M 3 0 500<30>
R1 M 0 1k noiseless
G7 0 M 4 0 500<30>
R2 N025 0 48 noiseless
C4 N026 N025 10n Rpar=47.9K noiseless
R3 N026 0 1 noiseless
G8 0 N026 1 0 5.25m
G9 0 N026 2 0 5.25m
G10 0 N026 0 3 5.25m
G11 0 N026 0 4 5.25m
G12 0 N006 0 N025 1<>
D12 3 N017 DP
S12 N012 N020 0 N016 SHUT3
S14 N021 4 0 N016 SHUT3
S16 N022 4 0 N016 SHUT3
D18 4 6 DSHUT1
C8 6 0 100f
.model DP D(Ron=1k Roff=1G Vfwd=2.5 epsilon=100m ilimit=0.49m noiseless)
.model SP SW(Ron=100 Roff=1G vt=.5 vh=10m ilimit=24u noiseless)
.model DESD D(Ron=1k Roff=1G vfwd=700m epsilon=100m noiseless)
.model SNOI SW(Ron=1 Roff=1Meg vt=1.2 vh=-100m noiseless)
.model NI VDMOS(Vto=220m kp=60m Mtriode=.9 lambda=.01)
.model PI VDMOS(Vto=-220m Kp=120m lambda=.01 pchan is=0)
.model DLIM0 D(Ron=10 Roff=10Meg Vfwd=1 epsilon=100m Vrev=1 epsilon=100m noiseless)
.model DNLIN D(Roff=1.8Meg Ron=800k vfwd=0 epsilon=10m noiseless)
.model DLIM D(Ron=100 Roff=4.111Meg Vfwd=700m Vrev=100m epsilon=10m revepsilon=10 noiseless)
.model SHUT SW(level=2 Ron=10k Roff=100G vt=-.5 vh=-.2 noiseless)
.model DSHUT1 D(Ron=1000 Roff=0.823E6 Vfwd=1 epsilon=100m Vrev=1 epsilon=100m ilimit=100n revilimit=0.1n noiseless)
.model DSBD D( Ron=15 Roff=100Meg Vfwd=-48.5m epsilon=50m Vrev=100 revepsilon=10m noiseless)
.model DNR D(Ron=1 Roff=100Meg Vfwd=-8.5m epsilon=300m noiseless)
.model DLIMN1 D(Ron=200k Roff=415Meg Vfwd=1.378 Vrev=-330m epsilon=.1 noiseless)
.model DLIMN2 D(Ron=5Meg Roff=1G Vfwd=-20m epsilon=50m ilimit=44n noiseless)
.model DLIMP D(Ron=100k Roff=100Meg Vfwd=0.815 epsilon=10m noiseless)
.model DLIMPR D(Ron=5Meg Roff=1G Vfwd=100m epsilon=10m noiseless)
.model SGK SW(level=2 Ron=65k Roff=100G vt=-260m vh=150m oneway epsilon=10m noiseless)
.model SBiasN SW(level=2 Ron=5k Roff=1g vt=.5 vh=-.2 ilimit=82.5u noiseless)
.model DBiasDrop D(Ron=1k Roff=1G vfwd=2.37 epsilon=200m noiseless)
.model DBiasOTT D(Ron=500 Roff=1G vfwd=700m epsilon=200m noiseless)
.model D100k D(Ron=100k Roff=100k vfwd=0 vrev=0 ilimit=10n revilimit=10n noiseless)
.model 600nA D(Ron=1Meg Roff=1G Ilimit=600n epsilon=1 Vfwd=1 noiseless)
.model 300nA D(Ron=1Meg Roff=1G Ilimit=300n epsilon=1 Vfwd=0 noiseless)
.model SHUT3 SW(Ron=10 Roff=10G vt=-0.5 vh=100m noiseless)
.model SHUT2 SW(Ron=10 Roff=10G vt=0.5 vh=100m noiseless)
.model SHUTD SW(Ron=10 Roff=10G vt=0 vh=100m ilimit=300n noiseless)
.ends ADA4099-2

428
lib/sub/ADA4177.lib Normal file
View File

@@ -0,0 +1,428 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4177 1 2 3 4 5
R3 Aol1 COM 1Meg Temp=-273.15
R4 Clamp COM 1Meg Temp=-273.15
C1 Clamp COM {Cfp1a}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}* V(Aol1,COM), {Isink}-V(OL,COM)* 0.2, 10m), {Isrc}+V(OL,COM)*0.2, 10m)
A1 Inn2 Inp2 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
G2 0 VCC_Int 3 0 1
G3 0 Vee_Int 4 0 1
R6 VCC_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N060 VCC_Int 1Meg Temp=-273.15
R9 N060 Vee_Int 1Meg Temp=-273.15
C2 N060 0 1
E1 COM 0 N060 0 1
R10 COM 0 1Meg Temp=-273.15
B2 COM N027 I=Uplim(Dnlim({G5_Zo}* V(ZoF,COM), {Izon}, 25m), {Izop}, 25m)
Cinp COM Inp1 {Ccm}
Cinn Inn1 COM {Ccm}
Cdiff Inp1 Inn1 {Cdiff}
Rinn Inn1 COM {Rcm} Temp=-273.15
Rinp COM Inp1 {Rcm} Temp=-273.15
Ibp Inp1 COM {Ib}
Ibn Inn1 COM {Ib-Ios}
R26 N024 N023 1Meg Temp=-273.15
B3 N023 N024 I=1u*{Vos+Drift* (Temp-27)}
G6 N030 N031 N051 N050 1<>
R28 N031 N030 1Meg Temp=-273.15
C8 N044 N045 {C1a_PSRp}
G8 COM N045 VCC_Int COM {G1_PSRp}
R29 N045 COM 1 Temp=-273.15
R30 N044 N045 {R1a_PSRp} Temp=-273.15
R31 N044 COM {R2a_PSRp} Temp=-273.15
C9 N042 N043 {C1b_PSRp}
R32 N042 COM {R2b_PSRp} Temp=-273.15
R33 N042 N043 {R1b_PSRp} Temp=-273.15
G9 COM N043 N044 COM 1
R34 N043 COM 1 Temp=-273.15
G10 COM N051 N042 COM {G2_PSRp}
R35 N051 COM 1 Temp=-273.15
C10 N039 N038 {C1a_PSRn}
G11 COM N038 VEE_Int COM {G1_PSRn}
R36 N038 COM 1 Temp=-273.15
R37 N039 N038 {R1a_PSRn} Temp=-273.15
R38 N039 COM {R2a_PSRn} Temp=-273.15
G12 N021 N022 N009 COM 1<>
R39 N022 N021 1Meg Temp=-273.15
Vimon N020 5 0
BIq 3 4 I={Iq_on} +I(VImon)
G1 COM N023 Inp1 COM 1k
G14 COM Inn2 Inn1 COM 1k
R5 COM N023 1m Temp=-273.15
R43 COM Inn2 1m Temp=-273.15
C12 Inn2 COM 1p
C13 N023 COM 1p
DIP N048 Inp2 DI
DIN Inp2 N049 DI
C14 VCC_Int 0 1n
C15 Vee_Int 0 1n
DOP N046 N019 DO
DON N019 N047 DO
S2 Cap2R Cap2L OL COM OL
F1 COM OLp VGP 1m
A4 OLp OLn COM OLVIp OLVIn COM OL COM OR Ref=100u Vh=50u Trise=10n
R44 OLp COM 1k
F2 COM OLn VGN 1m
R45 OLn COM 1k
C16 OLp COM 10p
C17 OLn COM 10p
DOI N019 N020 LIM
COI N020 N019 1p
G15 COM Vsatp Vsatpi COM 1
R48 Vsatp COM 1
C21 Vsatp COM 1n
G16 COM Vsatn Vsatni COM 1
R49 Vsatn COM 1
C22 Vsatn COM 1n
S3 3 N023 N023 3 ESDI
S4 3 Inn2 Inn2 3 ESDI
S5 N023 4 4 N023 ESDI
S6 Inn2 4 4 Inn2 ESDI
C24 N019 Vsatp 2p
C25 N019 Vsatn 2p
S7 3 5 5 3 ESDO
S8 5 4 4 5 ESDO
R16 N035 COM 1Meg Temp=-273.15
C5 N035 COM {Cfp2}
G5 COM N035 N034 COM 1<>
R18 N036 COM 1Meg Temp=-273.15
C6 N036 COM {Cfp3}
G17 COM N036 N035 COM 1<>
R19 N037 COM 1Meg Temp=-273.15
C20 N037 COM {Cfp3}
G23 COM N037 N036 COM 1<>
G25 COM N025 Clamp COM 1
R21 N025 COM 1 Temp=-273.15
R22 N025 N026 {R1a_Aol} Temp=-273.15
R23 N026 COM {R2a_Aol} Temp=-273.15
G26 COM N034 N026 COM {G1_Aol}
C31 N026 N025 {C1a_Aol}
R50 N034 COM 1 Temp=-273.15
B4 COM N061 I=1m*(V(3,COM)+{Vcm_max}) Rpar=1k Cpar=1n
G13 COM CMp N061 COM 1
R40 CMp COM 1
B5 COM N062 I=1m*(V(4,COM)+{Vcm_min}) Rpar=1k Cpar=1n
G30 COM CMn N062 COM 1
R41 CMn COM 1
R42 Vsatpi 3 1k
C11 Vsatpi 3 1n
B8 Vsatpi 3 I=1m*Max(Ap+((Bp*I(Vimon)**Cp)/(Dp**Cp+I(Vimon)**Cp)),40u)
R14 Vsatni 4 1k
C18 Vsatni 4 1n
B9 4 Vsatni I=1m*Max(An+((Bn*-I(Vimon)**Cn)/(Dn**Cn-I(Vimon)**Cn)),40u)
VIP N048 CMp 0
VIN CMn N049 0
F3 COM OLVIp VIP 1
R46 OLVIp COM 1k
F4 COM OLVIn VIN 1
R51 OLVIn COM 1k
C34 OLVIp COM 10p
C35 OLVIn COM 10p
G4 COM Cap2L N037 N019 {G1_Zo}
R11 Cap2L COM 1 Temp=-273.15
R12 Cap2L Cap2R {R1a_Zo} Temp=-273.15
R13 Cap2R COM {R2a_Zo} Temp=-273.15
G18 COM N010 Cap2R COM {G2_Zo}
C3 Cap2R Cap2L {C1a_Zo}
R17 N010 COM 1 Temp=-273.15
Rx N019 N027 {Rx_Zo} Temp=-273.15
Rdummy N019 COM {Rdummy_Zo} Temp=-273.15
R52 N010 N011 {R2b_Zo} Temp=-273.15
R55 N011 N032 {R1b_Zo} Temp=-273.15
C23 COM N032 {C1b_Zo}
Gb1 COM N012 N011 COM 1
R56 N012 COM 1 Temp=-273.15
R57 N014 N015 {R1c_Zo} Temp=-273.15
R58 N015 COM {R2c_Zo} Temp=-273.15
G19 COM N016 N015 COM {G3_Zo}
C27 N015 N014 {C1c_Zo}
R59 N016 COM 1 Temp=-273.15
R60 N016 N017 {R1d_Zo} Temp=-273.15
R61 N017 COM {R2d_Zo} Temp=-273.15
G20 COM N018 N017 COM {G4_Zo}
C28 N017 N016 {C1d_Zo}
R62 N018 COM 1 Temp=-273.15
R63 N018 ZoF {R1e_Zo} Temp=-273.15
R64 ZoF COM {R2e_Zo} Temp=-273.15
C29 ZoF N018 {C1e_Zo}
R65 N027 COM 1 Temp=-273.15
R66 N012 N013 {R2f_Zo} Temp=-273.15
R72 N013 N033 {R1f_Zo} Temp=-273.15
C36 COM N033 {C1f_Zo}
Gb2 COM N014 N013 COM 1
R75 N014 COM 1 Temp=-273.15
C7 N041 N040 {C1b_PSRn}
R53 N041 COM {R2b_PSRn} Temp=-273.15
R54 N041 N040 {R1b_PSRn} Temp=-273.15
R67 N040 COM 1 Temp=-273.15
G21 COM N040 N039 COM 1
G22 COM N050 N041 COM {G2_PSRn}
R68 N050 COM 1 Temp=-273.15
B6 COM N052 I=1m*({Zo_max}* {Iscp}+V(3,COM)) Rpar=1k Cpar=1n
G27 COM GRp N052 COM 1
R69 GRp COM 1
G28 COM GRn N053 COM 1
R70 GRn COM 1
B7 COM N053 I=1m*({Zo_max}* {Iscn}+V(4,COM)) Rpar=1k Cpar=1n
VGP N046 Vsatp 0
VGN Vsatn N047 0
DGP GRp Clamp DG
DGN Clamp GRn DG
R1 Inp1 1 {Rser} Temp=-273.15
R2 Inn1 2 {Rser} Temp=-273.15
Rdiff Inp1 Inn1 {Rdiff} Temp=-273.15
C4 N002 N001 {C1a_CMR}
G7 COM N001 Inp1 COM {G1_CMR}
R15 N001 COM 1 Temp=-273.15
R24 N002 N001 {R1a_CMR} Temp=-273.15
R25 N002 COM {R2a_CMR} Temp=-273.15
G29 COM N003 N002 COM 1
R27 N003 COM 1 Temp=-273.15
C19 N004 N003 {C1b_CMR}
R47 N004 N003 {R1b_CMR} Temp=-273.15
R71 N004 COM {R2b_CMR} Temp=-273.15
G31 COM N005 N004 COM {G2_CMR}
R73 N005 COM 1 Temp=-273.15
C26 N006 N005 {C1c_CMR}
R74 N006 N005 {R1c_CMR} Temp=-273.15
R76 N006 COM {R2c_CMR} Temp=-273.15
G32 COM N007 N006 COM {G3_CMR}
R77 N007 COM 1 Temp=-273.15
C32 N008 N007 {C1d_CMR}
R78 N008 N007 {R1d_CMR} Temp=-273.15
R79 N008 COM {R2d_CMR} Temp=-273.15
G33 COM N009 N008 COM {G4_CMR}
R80 N009 COM 1 Temp=-273.15
R81 N063 COM 0.94
R82 N054 COM 1 Temp=-273.15
R83 N054 N055 {R2b_I_n} Temp=-273.15
R84 N055 N064 {R1b_I_n} Temp=-273.15
C33 COM N064 {C1b_I_n}
Gb3 COM N056 N055 COM 1
R85 N056 COM 1 Temp=-273.15
R86 N056 N057 {R2b_I_n} Temp=-273.15
R87 N057 N065 {R1b_I_n} Temp=-273.15
C37 COM N065 {C1b_I_n}
Gb4 COM N058 N057 COM 1
R88 N059 COM 1 Temp=-273.15
G34 COM N054 N063 COM 1
V_I_n N058 N059 0
F_I_nn Inn1 COM V_I_n 1
F_I_np Inp1 COM V_I_n 1
A3 COM COM COM COM COM COM N070 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={En} Enk={Enk}
R96 N070 COM 100k Temp=-273.15
R97 N070 N071 {R1a_E_n} Temp=-273.15
R98 N071 COM {R2a_E_n} Temp=-273.15
G37 COM N072 N071 COM {G1_E_n}
C40 N071 N070 {C1a_E_n}
R99 N072 COM 1 Temp=-273.15
R100 N072 N073 {R1a_E_n} Temp=-273.15
R101 N073 COM {R2a_E_n} Temp=-273.15
G38 N021 N024 N080 COM 1<>
C41 N073 N072 {C1a_E_n}
R102 N024 N021 1Meg Temp=-273.15
G24 COM N030 N022 COM 1k
R20 COM N030 1m Temp=-273.15
G35 COM Inp2 N031 COM 1k
R89 COM Inp2 1m Temp=-273.15
C30 N075 N074 {CHP}
R91 N075 COM 100k Temp=-273.15
G36 COM N074 N073 COM {G1_E_n}
R92 N074 COM 1 Temp=-273.15
R90 N076 COM 100k Temp=-273.15
R93 N077 COM 100k Temp=-273.15
R94 N078 COM 100k Temp=-273.15
R95 N079 COM 100k Temp=-273.15
C38 N076 N075 {CHP}
C39 N077 N076 {CHP}
C42 N078 N077 {CHP}
C43 N079 N078 {CHP}
R103 N080 COM 100k Temp=-273.15
C44 N080 N079 {CHP}
.param En=8.25n Enk=11
.param Inp=0.2p Inkp=74
.param Inn=0.2p Inkn=74
.param Vos=0.313u Drift=1u
.param Ib=-0.3n Ios=0.1n
.param Vcm_min=1.5 Vcm_max=-1.5
.param Vsmin=5 Vsmax=36
.param Iscp=44m Iscn=-59m
.param Iq_on=500u Iq_off=1u
.param IZop={2*Rx_Zo*Iscp} IZon={2*Rx_Zo*Iscn}
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model LIM D(Vfwd=1n Vrev=1n Ron=1m Roff=1m Ilimit={Iscp} Revilimit={-Iscn} Epsilon=1u Noiseless)
.model DG D(Vfwd=1k Vrev=0 Revepsilon=0.5 Noiseless)
.model ESDI SW(Ron=50 Roff=1T Vt=0.5 Vh=-0.1 Vser=0.1 Noiseless)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m Noiseless)
.param Rser=10m
.param Rcm=130G Ccm=8p
.param Rdiff=4Meg Cdiff=1p
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param Rej_dc_PSRp=145
.param R1a_PSRp=100Meg
.param fz1_PSRp=0.37
.param fp1_PSRp=1.7Meg
.param C1b_PSRp = {1 / (2 * pi * R1b_PSRp * fz2_PSRp)}
.param R2b_PSRp = {R1b_PSRp/ ((2 * pi * fp2_PSRp * C1b_PSRp
+* R1b_PSRp) - 1)}
.param actual2_PSRp = {R2b_PSRp / (R1b_PSRp + R2b_PSRp)}
.param G2_PSRp = {1/actual2_PSRp}
.param R1b_PSRp=1Meg
.param fz2_PSRp=475k
.param fp2_PSRp=1.7Meg
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param Rej_dc_PSRn=145
.param R1a_PSRn=100Meg
.param fz1_PSRn=4
.param fp1_PSRn=3Meg
.param Aol_v= {pwr(10, (Aol/20))}
.param Aol_adj = {(Aol_v/RL_dc)*(Zo_dc + RL_dc)}
.param Aol_adj_dB={20*log10(Aol_adj)+1}
.param Aol2 = {pwr(10, (Aol_adj_dB - 40)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Cfp3={1 / (2 * pi * fp3 * 1Meg)}
.param A=8.85e-1 B=5.56e-2 C=1.06 D=2.99m
.param ratio = {Zo_dc/RL_dc}
.param Cfp1a = {Cfp1*((A+B*ratio)/(1+C*ratio+D*ratio**2))}
.param Isrc = {Cfp1a * SRp * 1Meg} Isink = {Cfp1a * SRn * 1Meg}
.param R1a_Aol=1Meg
.param fz1_Aol=1.5Meg
.param fp1_Aol=10G
.param C1a_Aol = {1 / (2 * pi * R1a_Aol * fz1_Aol)}
.param R2a_Aol = {R1a_Aol/ ((2 * pi * fp1_Aol * C1a_Aol
+* R1a_Aol) - 1)}
.param actual1_Aol = {R2a_Aol / (R1a_Aol + R2a_Aol)}
.param G1_Aol={1/actual1_Aol}
.param beta_Zo=1.125
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=722.2
.param Zo_max={Zo_dc}
.param R1a_Zo=1Meg
.param fz1_Zo=4.5
.param fp1_Zo=14.5
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
+* R1a_Zo) - 1)}
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
.param G2_Zo = {1/actual1_Zo}
.param R1b_Zo=1Meg
.param fp2_Zo=50k
.param fz2_Zo=70k
.param C1b_Zo = {1 / (fz2_Zo * R1b_Zo * 2 * pi)}
.param R2b_Zo = {(1 / (fp2_Zo * C1b_Zo * 2 * pi))
+- R1b_Zo}
.param R1c_Zo=1Meg
.param fz3_Zo=470k
.param fp3_Zo=560k
.param C1c_Zo = {1 / (2 * pi * R1c_Zo * fz3_Zo)}
.param R2c_Zo = {R1c_Zo/ ((2 * pi * fp3_Zo * C1c_Zo
+* R1c_Zo) - 1)}
.param actual3_Zo = {R2c_Zo / (R1c_Zo + R2c_Zo)}
.param G3_Zo = {1/actual3_Zo}
.param R1d_Zo=1Meg
.param fz4_Zo=1.98Meg
.param fp4_Zo=3.5Meg
.param C1d_Zo = {1 / (2 * pi * R1d_Zo * fz4_Zo)}
.param R2d_Zo = {R1d_Zo/ ((2 * pi * fp4_Zo * C1d_Zo
+* R1d_Zo) - 1)}
.param actual4_Zo = {R2d_Zo / (R1d_Zo + R2d_Zo)}
.param G4_Zo = {1/actual4_Zo}
.param R1e_Zo=1Meg
.param fz5_Zo=34.5Meg
.param fp5_Zo=1G
.param C1e_Zo = {1 / (2 * pi * R1e_Zo * fz5_Zo)}
.param R2e_Zo = {R1e_Zo/ ((2 * pi * fp5_Zo * C1e_Zo
+* R1e_Zo) - 1)}
.param actual5_Zo = {R2e_Zo / (R1e_Zo + R2e_Zo)}
.param G5_Zo = {1/actual5_Zo}
.param R1f_Zo=1Meg
.param fp6_Zo=140k
.param fz6_Zo=160k
.param C1f_Zo = {1 / (fz6_Zo * R1f_Zo * 2 * pi)}
.param R2f_Zo = {(1 / (fp6_Zo * C1f_Zo * 2 * pi))
+- R1f_Zo}
.param Aol=114 RL_dc=2k
.param SRp=1.76 SRn=-1.76
.param fp1=4.05 fp2=1.5Meg fp3=13.6Meg
.param C1b_PSRn = {1 / (2 * pi * R1b_PSRn * fz2_PSRn)}
.param R2b_PSRn = {R1b_PSRn/ ((2 * pi * fp2_PSRn * C1b_PSRn
+* R1b_PSRn) - 1)}
.param actual2_PSRn = {R2b_PSRn/ (R1b_PSRn + R2b_PSRn)}
.param G2_PSRn = {1/actual2_PSRn}
.param R1b_PSRn=1Meg
.param fz2_PSRn=130k
.param fp2_PSRn=3Meg
.param Ap=0.15 Bp=818 Cp=5.62 Dp=9e-2
.param An=0.15 Bn=69.5 Cn=6.32 Dn=7.27e-2
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Rej_dc_CMR=130
.param R1a_CMR=1Meg
.param fz1_CMR=500
.param fp1_CMR=11.5k
.param R1b_CMR=1Meg
.param fz2_CMR=30k
.param fp2_CMR=185k
.param C1b_CMR = {1 / (2 * pi * R1b_CMR * fz2_CMR)}
.param R2b_CMR = {R1b_CMR/ ((2 * pi * fp2_CMR * C1b_CMR
+* R1b_CMR) - 1)}
.param actual2_CMR = {R2b_CMR / (R1b_CMR + R2b_CMR)}
.param G2_CMR = {1/actual2_CMR}
.param R1c_CMR=1Meg
.param fz3_CMR=350k
.param fp3_CMR=2.5Meg
.param R1d_CMR=1Meg
.param fz4_CMR=7Meg
.param fp4_CMR=25Meg
.param C1c_CMR = {1 / (2 * pi * R1c_CMR * fz3_CMR)}
.param R2c_CMR = {R1c_CMR/ ((2 * pi * fp3_CMR * C1c_CMR
+* R1c_CMR) - 1)}
.param actual3_CMR = {R2c_CMR / (R1c_CMR + R2c_CMR)}
.param G3_CMR = {1/actual3_CMR}
.param C1d_CMR = {1 / (2 * pi * R1d_CMR * fz4_CMR)}
.param R2d_CMR = {R1d_CMR/ ((2 * pi * fp4_CMR * C1d_CMR
+* R1d_CMR) - 1)}
.param actual4_CMR = {R2d_CMR / (R1d_CMR + R2d_CMR)}
.param G4_CMR = {1/actual4_CMR}
.param R1b_I_n=1Meg
.param fp1_I_n=0.1
.param fz1_I_n=2.5
.param C1b_I_n = {1 / (fz1_I_n * R1b_I_n * 2 * pi)}
.param R2b_I_n = {(1 / (fp1_I_n * C1b_I_n * 2 * pi))
+- R1b_I_n}
.param R1a_E_n=1Meg
.param fz1_E_n=700k
.param fp1_E_n=1.05Meg
.param C1a_E_n = {1 / (2 * pi * R1a_E_n * fz1_E_n)}
.param R2a_E_n = {R1a_E_n/ ((2 * pi * fp1_E_n * C1a_E_n
+* R1a_E_n) - 1)}
.param actual1_E_n = {R2a_E_n / (R1a_E_n + R2a_E_n)}
.param G1_E_n = {1/actual1_E_n}
.param R1b_E_n=1Meg
.param fp2_E_n=90G
.param fz2_E_n=100G
.param C1b_E_n = {1 / (fz2_E_n * R1b_E_n * 2 * pi)}
.param R2b_E_n={(1 / (fp2_E_n * C1b_E_n * 2 * pi)) - R1b_I_n}
.param CHP=4.75u
.ends ADA4177

BIN
lib/sub/ADA4254.sub Normal file

Binary file not shown.

350
lib/sub/ADA4255.lib Normal file
View File

@@ -0,0 +1,350 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4255 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
R1 0 innoise2 3e9 noiseless
R2 innoise1 0 3e9 noiseless
R3 innoise1 innoise2 3e9 noiseless
C1 innoise2 0 4.7p
C2 innoise2 innoise1 11p
C3 0 innoise1 4.7p
R4 0 vilim1 100k noiseless
C4 vilim1 0 0.1p
C5 0 vilim2 0.1p
R5 vilim2 0 100k noiseless
R6 N067 0 1e4 noiseless
R7 0 N082 1e4 noiseless
D1 N094 N102 Dn1
D2 N093 N101 Dn1
H1 N071 N068 V3 300
V1 N094 0 0.65
V2 N093 0 0.65
H2 N067 N068 V4 300
V3 0 N102 0
V4 0 N101 0
D3 N063 N065 Dshort
D4 N065 N062 Dshort
D5 N086 N087 Dshort
D6 N097 N086 Dshort
V11 VDDH-INT P001 2
V12 VDDH-INT N098 2
V13 N063 VSSH-INT 2.75
V14 N097 VSSH-INT 2.75
R16 N065 N067 1m
R17 N086 N082 1m
V15 g11 N070 0
F1 0 g1111 V8 -1
F2 0 g1222 V15 -1
C6 g11 0 5p
E13 VOCM-INT AVSS-INT 7 AVSS-INT 1
R29 7 AVSS-INT 1e9 noiseless
V8 g12 N084 0
D11 N096 N104 Dn2
D12 N095 N103 Dn2
V20 N096 0 0.65
V21 N095 0 0.65
V22 0 N104 0
V23 0 N103 0
E20 VinR1 0 N071 0 0.95
S1 N124 N113 g0 0 SWg
S2 N125 P002 g3 0 SWg
S3 N126 P003 g0 0 SWg
S4 N129 P004 g3 0 SWg
R38 g12 N113 1.9755k noiseless
R41 g12 P002 3.955k noiseless
R42 g12 P003 7.915k noiseless
R43 g12 P004 15.83k noiseless
R44 13 0 10k
R45 12 0 10k
R46 11 0 10k
R47 10 0 10k
R33 g12 P005 31.65k noiseless
R48 g12 N117 63.37k noiseless
R49 g12 N118 126.7k noiseless
R50 g12 N116 253.8k noiseless
R51 g12 N119 508.6k noiseless
R52 g12 N120 1021k noiseless
S5 N138 N124 g1 0 SWg
S6 N150 N138 g3 0 SWg
S7 N137 N125 g1 0 SWg
S8 N139 N126 g3 0 SWg
S9 N123 P005 g0 0 SWg
S10 N140 N123 g1 0 SWg
S11 P006 N140 g2 0 SWg
S12 N130 N117 g1 0 SWg
S13 N142 N130 g2 0 SWg
S14 N131 N118 g0 0 SWg
S15 N143 N131 g2 0 SWg
R53 g12 N121 2057k noiseless
R54 g12 N122 4175k noiseless
S16 N127 N116 g2 0 SWg
S17 N135 N119 g0 0 SWg
S18 N145 N135 g1 0 SWg
S19 N132 N120 g1 0 SWg
S20 N133 N121 g0 0 SWg
v44 vf 0 2.5
S21 g11 N158 vf g2 SWg
S22 N149 N137 vf g0 SWg
S23 g11 P007 vf g2 SWg
S24 N151 N139 vf g1 SWg
S25 g11 P008 vf g2 SWg
S26 g11 P009 vf g2 SWg
S27 N152 N141 vf g1 SWg
S28 N141 N129 vf g0 SWg
S29 g11 N154 vf g3 SWg
S30 P010 N142 vf g0 SWg
S31 g11 N159 vf g3 SWg
S32 P011 N143 vf g1 SWg
S33 g11 P012 vf g3 SWg
S34 N144 N127 vf g0 SWg
S35 N155 N144 vf g1 SWg
S36 g11 N155 vf g3 SWg
S37 N156 N145 vf g2 SWg
S38 g11 N156 vf g3 SWg
S39 N146 N132 vf g0 SWg
S40 N153 N146 vf g2 SWg
S41 g11 N153 vf g3 SWg
S42 N147 N133 vf g1 SWg
S43 N157 N147 vf g2 SWg
S44 g11 N157 vf g3 SWg
S45 N134 N122 vf g0 SWg
S46 N148 N134 vf g1 SWg
S47 N160 N148 vf g2 SWg
S48 g11 N160 vf g3 SWg
R18 15 0 10k
R55 14 0 10k
R56 g1111 N076 128k noiseless
R57 g1111 N077 176k noiseless
R58 g1111 N078 160k noiseless
R59 g1222 N045 128k noiseless
S49 N080 N076 vf g4 SWg
S50 8 N080 vf g5 SWg
S51 8 N077 g4 0 SWg
S53 N081 N078 g5 0 SWg
S54 8 N081 vf g4 SWg
S55 N050 N045 vf g4 SWg
S56 9 N050 vf g5 SWg
S57 9 N046 g4 0 SWg
S59 N051 N047 g5 0 SWg
S60 9 N051 vf g4 SWg
E18 N062 P013 0 n44 -1
R63 P001 P013 1m
E21 N087 P014 0 n44 -1
R69 N098 P014 1m
E24 VinL1 0 N082 0 0.95
R65 n44 0 1k
F7 0 N088 V8 0.5
F8 0 N088 V15 0.5
R83 clip4 0 1k
C21 clip3 0 1<>
D17 N088 clip4 Dclip
D18 clip3 N088 Dclip
R84 clip3 0 1k
C22 clip4 0 1<>
B2 n44 0 V=128*V(clip3)+128*V(clip4)
C7 g12 0 5p
D19 N092 N100 Dcn
D20 N091 N099 Dcn
V34 N092 0 0.65
V35 N091 0 0.65
V36 0 N100 0
V37 0 N099 0
D21 N106 N108 Dcn
D22 N105 N107 Dcn
V38 N106 0 0.65
V39 N105 0 0.65
V40 0 N108 0
V41 0 N107 0
R71 N128 N114 10 noiseless
L5 N115 N114 1<> Rser=0 Rpar=0 Cpar=0
C17 N128 N115 100<30> Rser=0 Lser=0 Rpar=0 Cpar=0
R72 N128 0 1.111 noiseless
F9 0 N136 V36 0.70710678
R73 N136 0 1 noiseless
E14 N114 0 N136 0 1
F10 0 N136 V37 -0.70710678
G6 0 innoise1 N128 0 18
R74 N111 N109 10 noiseless
L6 N110 N109 1<> Rser=0 Rpar=0 Cpar=0
C20 N111 N110 50<35> Rser=0 Lser=0 Rpar=0 Cpar=0
R75 N111 0 1.111 noiseless
F5 0 N112 V41 0.70710678
R76 N112 0 1 noiseless
E22 N109 0 N112 0 1
F6 0 N112 V40 -0.70710678
G8 0 innoise2 N111 0 18
R23 0 vilim1 100k noiseless
R24 vilim2 0 100k noiseless
C8 0 vilim2 .1p
C9 vilim1 0 0.1p
G4 0 N067 vilim1 0 -1.05e-4
G5 0 N082 vilim2 0 -1.05e-4
C11 VinR 0 500p
R25 VinR 0 100k noiseless
C12 0 VinL 500p
R27 0 VinL 100k noiseless
E12 N069 0 VinR 0 1
E15 N083 0 VinL 0 1
B6 0 VinR I=(LIMIT (-1e-3 * (V(VinR, VinR1)), 400e-6, -400e-6))
B7 0 VinL I=(LIMIT (-1e-3* (V(VinL, VinL1)), 400e-6, -400e-6))
C14 8 g1111 1.9p
R31 g1222 N047 160k noiseless
R32 g1222 N046 176k noiseless
R14 innoise2 1 600
R15 innoise1 2 600
G2 0 vilim1 innoise2 0 2e-5
G3 0 vilim2 innoise1 0 2e-5
R10 N023 REF 2e7 noiseless
R11 REF N039 2e7 noiseless
R19 N023 N039 5e7 noiseless
C10 N023 REF 4e-12
C13 REF N039 4e-12
C16 N023 N039 1e-12
V5 N003 REF 0.65
V6 REF N015 0
D7 N003 N015 DVnoisy
V7 N004 REF 0.65
V9 REF N016 0
D8 N004 N016 DVnoisy
H3 N023 N024 V6 707.10678
H4 N025 N024 V9 707.10678
G7 REF vin-int N025 N039 0.001
R26 vin-int REF 1e8 noiseless
R28 N026 REF 7.962e5 noiseless
C18 N026 REF 1e-7
G9 REF N027 N026 REF 0.001
R30 N027 REF 1000 noiseless
C19 N027 REF 26.528e-12
G10 REF N028 N027 REF 1e-3
R34 N028 REF 1k noiseless
E1 vout-int REF N028 REF 1
R35 N030 N029 3
L10 9 N030 1e-9
C23 9 REF 1e-12
V10 N029 vout-int 0
R40 N041 5 1e-6
R60 N048 6 1e-6
R61 N041 N043 10e6 noiseless
R70 N043 N048 10e6 noiseless
I3 N041 N048 950<35>
E2 N044 0 N043 0 1
E3 N042 N044 N041 N044 1
E6 N044 N049 N044 N048 1
B4 REF N026 I=(limit( (V(vin-int, REF))*1.256e-5,.1601,-.1601))
R78 VOCM-INT N023 2
R79 N039 g1222 2
V28 N001 N007 .336
V29 N008 N001 0.536
D29 N007 N019 Dclip
D30 N019 N008 Dclip
B5 vout-int N001 V=-100*I(V10)
R85 N019 N028 1m
R86 N031 REF 2e7 noiseless
R87 REF N040 2e7 noiseless
R88 N031 N040 5e7 noiseless
C24 N031 REF 4e-12
C25 REF N040 4e-12
C26 N031 N040 1e-12
V30 N005 REF 0.65
V31 REF N017 0
D31 N005 N017 DVnoisy
V32 N006 REF 0.65
V33 REF N018 0
D32 N006 N018 DVnoisy
H5 N031 N032 V31 707.10678
H6 N033 N032 V33 707.10678
G12 REF vin-int1 N033 N040 1e-3
R89 vin-int1 REF 1e8 noiseless
R90 N034 REF 7.962e5 noiseless
C27 N034 REF 1e-7
G13 REF N035 N034 REF 0.001
R91 N035 REF 1000 noiseless
C28 N035 REF 26.528e-12
G14 REF N036 N035 REF 1e-3
R92 N036 REF 1k noiseless
E9 vout-int1 REF N036 REF 1
R93 N038 N037 3
L11 8 N038 1e-9
C29 8 REF 1e-12
V42 N037 vout-int1 0
B10 REF N034 I=(limit((V(vin-int1, REF))*1.256e-5,.1601,-.1601))
R102 VOCM-INT N031 2
R103 N040 g1111 2
V52 N002 N009 .336
V53 N010 N002 0.536
D45 N009 N021 Dclip
D46 N021 N010 Dclip
B11 vout-int1 N002 V=-100*I(V42)
R107 N021 N036 1m
C30 9 g1222 1.9p
D15 N022 N013 Dclip
D16 N014 N022 Dclip
V18 N014 AVSS-INT 0.8
V19 AVDD-INT N013 0.8
R12 N022 N026 1m
D25 N020 N011 Dclip
D26 N012 N020 Dclip
V45 AVDD-INT N011 0.8
R13 N020 N034 1m
V46 N012 AVSS-INT 0.8
R80 AVSS-INT N049 1m
R77 REF N044 1m
D9 N064 N053 Dclip
D10 N054 N064 Dclip
V16 AVDD-INT N053 0.7
R81 N064 g1222 1m
V24 N054 AVSS-INT 0.7
D13 N085 N090 Dclip
D14 N089 N085 Dclip
V25 AVDD-INT N090 0.7
R82 N085 g1111 1m
V26 N089 AVSS-INT 0.7
R22 N070 N069 1
R36 N084 N083 1
E4 N058 0 N057 0 4.65
E5 0 N072 N057 0 4.65
E7 N061 0 3 0 1
E8 0 N075 0 4 1
R8 N061 VDDH-INT 1m
R9 N075 VSSH-INT 1m
R20 N055 16 1E-6
R21 N079 0 1E-6
V17 N058 N059 0.9V
V27 N073 N072 1.6V
I1 N055 N079 15mA
D23 N060 3 DCP
D24 4 N074 DCP
E10 N052 0 N055 0 1
S52 N057 N056 N052 0 SWCP
R39 N052 N056 10k noiseless
D27 N056 N066 Dclip
V43 N066 0 5.3
R37 N057 0 100k noiseless
S58 N060 N059 N052 0 SWCP
S61 N074 N073 N052 0 SWCP
R62 N060 0 100k
R64 0 N074 100k
R66 AVDD-INT N042 1m
B1 0 g0 I=V(10)*1m Rpar=1k
B3 0 g1 I=V(11)*1m Rpar=1k
B8 0 g2 I=V(12)*1m Rpar=1k
B9 0 g3 I=V(13)*1m Rpar=1k
B12 0 g4 I=V(14)*1m Rpar=1k
B13 0 g5 I=V(15)*1m Rpar=1k
L1 N150 N158 0.9m
L2 N149 P007 1m
L3 N151 P008 1m
L4 N152 P009 1.5m
L7 P006 N154 0.7m
L8 P010 N159 2m
L9 P011 P012 0.1<EFBFBD>
R67 N055 N079 1Meg
.model Dn1 D(IS=5.26e-14 KF=1.49e-19)
.model Dn2 D(IS=2.47e-12 KF=1.42e-019)
.model Dshort D(Ron = 1 Vfwd = 0.6 )
.model SWg SW(Ron = 1 Vt = 2V Roff = 1000MEG Ilimit = 100e-3)
.model Dclip D(Rs = 0 Is = 1E-14)
.model Dcn D(IS=1.72e-19 KF= 3.52e-19)
.model DVnoisy D(IS=9.39e-13 KF=1.27e-19)
.model DCP D(Ilimit = 500u, Vfwd = 0)
.model SWCP SW(Ron= 0.0001 Roff=100Meg Vt = 1.9)
.ends ADA4255

354
lib/sub/ADA4522-1.lib Normal file
View File

@@ -0,0 +1,354 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4522-1 1 2 3 4 5
C1 Clamp COM {Cfp1}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}*V(Aol1,COM), {Isink}-V(SB,COM)*350,1m),{Isrc},1m)
G2 0 Vcc_Int N052 0 1
G3 0 Vee_Int N054 0 1
R6 Vcc_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N050 Vcc_Int 1Meg Temp=-273.15
R9 N050 Vee_Int 1Meg Temp=-273.15
C2 N050 0 1
R25 Aol2 COM 1Meg Temp=-273.15
G7 COM Aol2 Clamp COM 1<>
C14 Vcc_Int 0 1n
C15 Vee_Int 0 1n
R1 N003 N020 {Rser} Temp=-273.15
R82 N054 4 1<> Temp=-273.15
A1 Inn1 Inp1 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
R47 N052 3 1<> Temp=-273.15
R38 Aol1 COM 1Meg Temp=-273.15
R78 Clamp COM 1Meg Temp=-273.15
Iq N052 N054 {Iq_on}
R45 Vimon COM 1k Temp=-273.15
C34 COM 0 1n
G30 N052 N054 Vimon COM 1
C38 Aol2 COM {Cfp2}
Vimon N018 5 0
F1 COM Vimon Vimon 1m
DGP N046 Clamp DG
DGN Clamp N047 DG
C11 Vsatp2 Vcc_Int 1n
B2 Vsatp1 Vcc_Int I=1m*Max(Mp*(V(Vimon,COM))+OSp,40u)
C12 Vsatp1 Vcc_Int 1n
B5 Vsatp2 Vcc_Int I=1m*Max((V(Vimon,COM)/(Ap+Bp*(V(Vimon,COM)**Gp))),40u)
R18 Vsatp1 Vcc_Int 1k Temp=-273.15
R19 Vsatp2 Vcc_Int 1k Temp=-273.15
R20 Satp COM 1k Temp=-273.15
C13 Satp COM 1p
B9 COM Satp I=1m*Min(V(Vsatp1,COM), V(Vsatp2,COM))
B10 Vee_Int N039 I=1m*Max(Mn*(-V(Vimon,COM))+OSn,40u)
C19 N039 Vee_Int 1n
R21 N039 Vee_Int 1k Temp=-273.15
Rx N018 N017 {Rx_Zo} Temp=-273.15
Rdummy N018 COM {Rdummy_Zo} Temp=-273.15
G4 COM Cap2L N026 N018 {G1_Zo}
R4 Cap2L COM 1 Temp=-273.15
R5 Cap2L Cap2R {R1a_Zo} Temp=-273.15
R13 Cap2R COM {R2a_Zo} Temp=-273.15
G8 COM N004 Cap2R COM {G2_Zo}
C3 Cap2R Cap2L {C1a_Zo}
R22 N004 N005 {R2b_Zo} Temp=-273.15
R23 N005 N022 {R1b_Zo} Temp=-273.15
C4 COM N022 {C1b_Zo}
R24 N008 ZoF {R1d_Zo} Temp=-273.15
R26 ZoF COM {R2d_Zo} Temp=-273.15
C5 ZoF N008 {C1d_Zo}
R27 N004 COM 1 Temp=-273.15
Gb1 COM N006 N005 COM 1
R28 N006 COM 1 Temp=-273.15
R29 N008 COM 1 Temp=-273.15
R30 N006 N007 {R1d_Zo} Temp=-273.15
R31 N007 COM {R2d_Zo} Temp=-273.15
C18 N007 N006 {C1d_Zo}
Gb2 COM N008 N007 COM {G4_Zo}
R32 N017 COM 1 Temp=-273.15
S1 Cap2R Cap2L OL COM OL
F2 COM OLp VGP 1m
A2 OLp OLn COM COM COM COM OL COM OR Ref=100u Vh=50u Trise=10n
R3 OLp COM 1k
F3 COM OLn VGN -1m
R33 OLn COM 1k
C20 OLp COM 10n
C21 OLn COM 10n
C22 OL COM 10p
VGN N047 N049 0
VGP N046 N048 0
R34 N013 N014 {R1b_Aol} Temp=-273.15
R35 N014 COM {R2b_Aol} Temp=-273.15
G1 COM N015 N014 COM {G2_Aol}
C24 N014 N013 {C1b_Aol}
R36 N013 COM 1 Temp=-273.15
R39 N015 COM 1 Temp=-273.15
R40 N015 N016 {R1b_Aol} Temp=-273.15
R41 N016 COM {R2b_Aol} Temp=-273.15
G9 COM N023 N016 COM {G2_Aol}
C28 N016 N015 {C1b_Aol}
R42 N023 COM 1 Temp=-273.15
G10 COM N013 Aol2 COM 1
R43 N024 COM 1Meg Temp=-273.15
G11 COM N024 N023 COM 1<>
C29 N024 COM {Cfp3}
R46 N025 COM 1Meg Temp=-273.15
G12 COM N025 N024 COM 1<>
C30 N025 COM {Cfp4}
R48 N026 COM 1Meg Temp=-273.15
G13 COM N026 N025 COM 1<>
C31 N026 COM {Cfp4}
G18 N021 Inp1 N038 N037 1m
R51 Inp1 N021 1k Temp=-273.15
C32 N035 N036 {C1a_PSRp}
G19 COM N036 VCC_Int COM {G1_PSRp}
R52 N036 COM 1 Temp=-273.15
R55 N035 N036 {R1a_PSRp} Temp=-273.15
R56 N035 COM {R2a_PSRp} Temp=-273.15
C33 N028 N027 {C1a_PSRn}
G20 COM N027 VEE_Int COM {G1_PSRn}
R57 N027 COM 1 Temp=-273.15
R58 N028 N027 {R1a_PSRn} Temp=-273.15
R59 N028 COM {R2a_PSRn} Temp=-273.15
C35 N030 N029 {C1b_PSRn}
R60 N029 COM 1 Temp=-273.15
R61 N030 N029 {R1b_PSRn} Temp=-273.15
R63 N030 COM {R2b_PSRn} Temp=-273.15
G21 COM N031 N030 COM {G2_PSRn}
R64 N037 COM 1 Temp=-273.15
G23 COM N029 N028 COM 1
C36 N032 N031 {C1c_PSRn}
R65 N031 COM 1 Temp=-273.15
R66 N032 N031 {R1c_PSRn} Temp=-273.15
R67 N032 COM {R2c_PSRn} Temp=-273.15
G24 COM N037 N032 COM {G3_PSRn}
R68 N034 N033 {R1b_PSRp} Temp=-273.15
R69 N033 COM {R2b_PSRp} Temp=-273.15
G26 COM N038 N033 COM {G2_PSRp}
C37 N033 N034 {C1b_PSRp}
G27 COM N034 N035 COM 1
R70 N034 COM 1 Temp=-273.15
R71 N038 COM 1 Temp=-273.15
A3 COM COM COM COM COM COM E_n COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En=Table(freq, 0.1, 4.25n, 10.1, 6.8n, 109k, 6.8n, 126k, 7n, 170k, 7.9n, 220k, 8.71n, 224k, 8.71n, 275k, 9.4n, 402k, 11n, 627k, 13.4n, 755k, 14.6n, 916k, 14.9n, 1.16Meg, 13.1n, 1.37Meg, 11.3n, 1.65Meg, 9.86n, 1.95Meg, 9.77n, 2.18Meg, 10.9n, 2.7Meg, 13.2n, 3.27Meg, 16.7n, 4.07Meg, 19.9n, 4.21Meg, 31.1n, 4.55Meg, 22.6n, 5.13Meg, 24.6n, 6.03Meg, 25.9n, 9.27Meg, 27.6n, 12.5Meg, 26.8n, 16.9Meg, 22.7n, 20.2Meg, 16.2n, 25Meg, 6.8n, 30.5Meg, 2.2n, 33.7Meg, 1.34n, 46.8Meg, 4n, 56.4Meg, 6.2n, 59.8Meg, 6.8n, 85.3Meg, 12.7n, 106Meg, 19.0n)
R73 E_n COM 100k Noiseless
R74 N055 COM 100k Noiseless
R75 N056 COM 100k Noiseless
G29 COM I_np N055 COM 1
RI_np1 I_np COM 1 Temp=-273.15
G31 COM I_nn N056 COM 1
RI_nn1 I_nn COM 1 Temp=-273.15
A4 COM COM COM COM COM COM N056 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En=Table(freq, 0.1, 780f, 10, 720f, 1k, 780f, 1.98k, 850f, 2.96k, 955f, 3.7k, 1.08p, 4.47k, 1.42p, 5.49k, 1.1p, 6.51k, 970f, 9.93k, 814f, 13.2k, 672f, 16.5k, 577f, 20k, 415f, 23.3k, 296f, 25.3k, 182f)
A5 COM COM COM COM COM COM N055 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En=Table(freq, 0.1, 780f, 10, 720f, 1k, 780f, 1.98k, 850f, 2.96k, 955f, 3.7k, 1.08p, 4.47k, 1.42p, 5.49k, 1.1p, 6.51k, 970f, 9.93k, 814f, 13.2k, 672f, 16.5k, 577f, 20k, 415f, 23.3k, 296f, 25.3k, 182f)
R76 N009 N012 1k Temp=-273.15
B17 N012 N009 I=1m*{Vos+Drift* (Temp-25)}
G32 N010 N011 N002 COM 1m
R77 N011 N010 1k Temp=-273.15
R79 N010 N009 1k Temp=-273.15
G33 N009 N010 E_n COM 1m
C39 N002 N001 {C1a_CMR}
G34 COM N001 N003 COM {G1_CMR}
R80 N002 N001 {R1a_CMR} Temp=-273.15
R81 N002 COM {R2a_CMR} Temp=-273.15
R83 N001 COM 1 Temp=-273.15
G35 COM IVR N003 COM 1m
G36 COM Inn1 N044 COM 1k
R84 COM IVR 1k Temp=-273.15
R85 COM Inn1 1m Temp=-273.15
C40 Inn1 COM 1.59n
C41 IVR COM 1.59f
Ibp N003 COM {Ib}
Ibn N044 COM {Ib-Ios}
G37 N003 COM I_np COM 1
G38 N044 COM I_nn COM 1
R2 N044 N043 {Rser} Temp=-273.15
Cinp COM N003 {Ccm}
Cinn N044 COM {Ccm}
Rinn N044 COM {Rcm} Temp=-273.15
Rinp COM N003 {Rcm} Temp=-273.15
A6 In_diff COM COM COM COM SB COM COM SCHMITT Vt=-14.9 Vh=100m Trise=15n
R86 SB COM 1G Temp=-273.15
G39 COM In_diff 1 2 1m
R87 In_diff COM 1k Temp=-273.15
G28 COM N021 N011 COM 1k
R72 COM N021 1m Temp=-273.15
C42 N021 COM 1.59n
C43 Aol1 COM 1.59e-18
G15 COM N048 GRpi COM 1k
G16 COM N049 GRni COM 1k
R11 N048 COM 1m Temp=-273.15
R12 N049 COM 1m Temp=-273.15
R37 GRpi COM 1k Temp=-273.15
R44 GRni COM 1k Temp=-273.15
C6 GRni COM 10p
C7 GRpi COM 10p
S2 3 5 5 3 ESDO
S3 5 4 4 5 ESDO
DOP Vsatp N018 DO
DON N018 Vsatn DO
G5 COM Vsatp Satp COM 1k
R92 Vsatp COM 1m
G6 COM Vsatn N039 COM 1k
R93 Vsatn COM 1m
C10 Vimon COM 1.59f
S4 3 N012 N012 3 ESDI
S5 3 Inn1 Inn1 3 ESDI
S6 N012 4 4 N012 ESDI
S7 Inn1 4 4 Inn1 ESDI
C9 N018 Vsatp 1p
C16 N018 Vsatn 1p
C27 Clamp N048 1f
C44 Clamp N049 1f
Cdiff N003 N044 {Cdiff}
C45 SB COM 1p
C46 N020 COM 10f
C47 N043 COM 10f
B6 COM GRpi I=1m*({Zo_max}* {Iscp}+V(3,COM))
B7 COM GRni I=1m*({Zo_max}* {Iscn}+V(4,COM))
C17 Vsatp COM 1n
C23 Vsatn COM 1n
E1 COM 0 N050 0 1
R10 COM 0 1Meg Temp=-273.15
B4 COM N017 I=Uplim(Dnlim(V(ZoF,COM)*{G4_Zo}, {Izon}, 25m), {Izop}, 25m)
C8 I_np COM 1.59p
C26 I_nn COM 1.59p
C50 E_n COM 159f
C51 N037 COM 1.59p
C52 N038 COM 1.59p
R16 N020 1 1m Temp=-273.15
R17 N043 2 1m Temp=-273.15
B3 COM CMpi I=1m*(V(3,COM)+{Vcm_max}) Cpar=1n
G17 COM CMp CMpi COM 1k
R53 COM CMp 1m Temp=-273.15
B8 COM CMni I=1m*(V(4,COM)+{Vcm_min}) Cpar=1n
G22 COM CMn CMni COM 1k
R54 COM CMn 1m Temp=-273.15
R62 CMpi COM 1k Temp=-273.15
R88 CMni COM 1k Temp=-273.15
DIP CMp IVR DI
DIN IVR CMn DI
C54 IVR CMn 1f
C48 IVR CMp 1f
G14 COM N012 IVR COM 1k
R14 COM N012 1m Temp=-273.15
C49 N012 COM 1.59n
C25 2 COM 1f
Rdiff N003 N044 {Rdiff} Temp=-273.15
.param Vos=714n Drift=4n
.param Ib=83.90p Ios=147.79p
.param Vcm_min=0 Vcm_max=-1.5
.param Vsmin=4.5 Vsmax=55
.param Iscp=21m Iscn=-33m
.param Iq_on=840u Iq_off=1u
.param IZop={Rx_Zo*Iscp} IZon={Rx_Zo*Iscn}
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model DG D(Vfwd=10k Vrev=0 Revepsilon=0.5 Noiseless Ron=1m)
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1 Ron=1m)
.model LIM D(Vfwd=1n Vrev=1n Ron=1m Roff=1m Ilimit={Iscp} Revilimit={-Iscn} Epsilon=1u)
.model ESDI SW(Ron=50 Roff=1T Vt=300m Vh=-150m Vser=0.1 Noiseless)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m Noiseless)
.param Mp=57.8 OSp=5.5m
.param Ap=15m Bp=-4.14e4 Gp=4.5
.param Mn=69.7 OSn=5.5m ;OSn=2.6m
.param beta_Zo=1.13
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=1k
.param Zo_max={Zo_dc}
.param R1a_Zo=1Meg
.param fz1_Zo=75m
.param fp1_Zo=45
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
+* R1a_Zo) - 1)}
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
.param G2_Zo = {1/actual1_Zo}
.param R1d_Zo=10k
.param fz4_Zo=26Meg
.param fp4_Zo=100G
.param C1d_Zo = {1 / (2 * pi * R1d_Zo * fz4_Zo)}
.param R2d_Zo = {R1d_Zo/ ((2 * pi * fp4_Zo * C1d_Zo
+* R1d_Zo) - 1)}
.param actual4_Zo = {R2d_Zo / (R1d_Zo + R2d_Zo)}
.param G4_Zo = {1/actual4_Zo}
.param R1b_Zo=100k
.param fp2_Zo=150k
.param fz2_Zo= 26Meg
.param C1b_Zo = {1 / (fz2_Zo * R1b_Zo * 2 * pi)}
.param R2b_Zo = {(1 / (fp2_Zo * C1b_Zo * 2 * pi))
+- R1b_Zo}
.param Aol_PB=151
.param SRp=1.8 SRn=-0.86
.param fp1=75m fp2=3.5Meg fp3=4.95Meg fp4=120Meg
.param Aol2_dB = {Aol_PB-40+1}
.param Aol2 = {pwr(10, (Aol2_dB)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Cfp3={1 / (2 * pi * fp3 * 1Meg)}
.param Cfp4={1 / (2 * pi * fp4 * 1Meg)}
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
.param C1b_Aol = {1 / (2 * pi * R1b_Aol * fz2_Aol)}
.param R2b_Aol = {R1b_Aol/ ((2 * pi * fp2_Aol * C1b_Aol
+* R1b_Aol) - 1)}
.param actual2_Aol = {R2b_Aol / (R1b_Aol + R2b_Aol)}
.param G2_Aol={1/actual2_Aol}
.param R1b_Aol=10k
.param fz2_Aol=4Meg
.param fp2_Aol=25Meg
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param C1b_PSRn = {1 / (2 * pi * R1b_PSRn * fz2_PSRn)}
.param R2b_PSRn = {R1b_PSRn/ ((2 * pi * fp2_PSRn * C1b_PSRn
+* R1b_PSRn) - 1)}
.param actual2_PSRn = {R2b_PSRn/ (R1b_PSRn + R2b_PSRn)}
.param G2_PSRn = {1/actual2_PSRn}
.param C1c_PSRn = {1 / (2 * pi * R1c_PSRn * fz3_PSRn)}
.param R2c_PSRn = {R1c_PSRn/ ((2 * pi * fp3_PSRn * C1c_PSRn
+* R1c_PSRn) - 1)}
.param actual3_PSRn = {R2c_PSRn/ (R1c_PSRn + R2c_PSRn)}
.param G3_PSRn = {1/actual3_PSRn}
.param Rej_dc_PSRn=159.3
.param R1a_PSRn=100Meg
.param fz1_PSRn=40m
.param fp1_PSRn=1k
.param R1b_PSRn=1Meg
.param fz2_PSRn=1.5k
.param fp2_PSRn=70k
.param R1c_PSRn=1Meg
.param fz3_PSRn=160k
.param fp3_PSRn=13Meg
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param Rej_dc_PSRp=161
.param R1a_PSRp=1Meg
.param fz1_PSRp=900
.param fp1_PSRp=45Meg
.param C1b_PSRp={1 / (2 * pi * R1b_PSRp * fz2_PSRp)}
.param R2b_PSRp = {R1b_PSRp/ ((2 * pi * fp2_PSRp * C1b_PSRp
+* R1b_PSRp) - 1)}
.param actual2_PSRp = {R2b_PSRp / (R1b_PSRp + R2b_PSRp)}
.param G2_PSRp= {1/actual2_PSRp}
.param R1b_PSRp=1Meg
.param fz2_PSRp={fz1_PSRp}
.param fp2_PSRp=1.8Meg
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Rej_dc_CMR=158.5
.param R1a_CMR=1Meg
.param fz1_CMR=2
.param fp1_CMR=350k
.param Rser=200
.param Ccm=35p Rcm=400G
.param Cdiff=7p Rdiff=30k
.ends ADA4522-1

354
lib/sub/ADA4522-2.lib Normal file
View File

@@ -0,0 +1,354 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4522-2 1 2 3 4 5
C1 Clamp COM {Cfp1}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}*V(Aol1,COM), {Isink}-V(SB,COM)*350,1m),{Isrc},1m)
G2 0 Vcc_Int N052 0 1
G3 0 Vee_Int N054 0 1
R6 Vcc_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N050 Vcc_Int 1Meg Temp=-273.15
R9 N050 Vee_Int 1Meg Temp=-273.15
C2 N050 0 1
R25 Aol2 COM 1Meg Temp=-273.15
G7 COM Aol2 Clamp COM 1<>
C14 Vcc_Int 0 1n
C15 Vee_Int 0 1n
R1 N003 N020 {Rser} Temp=-273.15
R82 N054 4 1<> Temp=-273.15
A1 Inn1 Inp1 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
R47 N052 3 1<> Temp=-273.15
R38 Aol1 COM 1Meg Temp=-273.15
R78 Clamp COM 1Meg Temp=-273.15
Iq N052 N054 {Iq_on}
R45 Vimon COM 1k Temp=-273.15
C34 COM 0 1n
G30 N052 N054 Vimon COM 1
C38 Aol2 COM {Cfp2}
Vimon N018 5 0
F1 COM Vimon Vimon 1m
DGP N046 Clamp DG
DGN Clamp N047 DG
C11 Vsatp2 Vcc_Int 1n
B2 Vsatp1 Vcc_Int I=1m*Max(Mp*(V(Vimon,COM))+OSp,40u)
C12 Vsatp1 Vcc_Int 1n
B5 Vsatp2 Vcc_Int I=1m*Max((V(Vimon,COM)/(Ap+Bp*(V(Vimon,COM)**Gp))),40u)
R18 Vsatp1 Vcc_Int 1k Temp=-273.15
R19 Vsatp2 Vcc_Int 1k Temp=-273.15
R20 Satp COM 1k Temp=-273.15
C13 Satp COM 1p
B9 COM Satp I=1m*Min(V(Vsatp1,COM), V(Vsatp2,COM))
B10 Vee_Int N039 I=1m*Max(Mn*(-V(Vimon,COM))+OSn,40u)
C19 N039 Vee_Int 1n
R21 N039 Vee_Int 1k Temp=-273.15
Rx N018 N017 {Rx_Zo} Temp=-273.15
Rdummy N018 COM {Rdummy_Zo} Temp=-273.15
G4 COM Cap2L N026 N018 {G1_Zo}
R4 Cap2L COM 1 Temp=-273.15
R5 Cap2L Cap2R {R1a_Zo} Temp=-273.15
R13 Cap2R COM {R2a_Zo} Temp=-273.15
G8 COM N004 Cap2R COM {G2_Zo}
C3 Cap2R Cap2L {C1a_Zo}
R22 N004 N005 {R2b_Zo} Temp=-273.15
R23 N005 N022 {R1b_Zo} Temp=-273.15
C4 COM N022 {C1b_Zo}
R24 N008 ZoF {R1d_Zo} Temp=-273.15
R26 ZoF COM {R2d_Zo} Temp=-273.15
C5 ZoF N008 {C1d_Zo}
R27 N004 COM 1 Temp=-273.15
Gb1 COM N006 N005 COM 1
R28 N006 COM 1 Temp=-273.15
R29 N008 COM 1 Temp=-273.15
R30 N006 N007 {R1d_Zo} Temp=-273.15
R31 N007 COM {R2d_Zo} Temp=-273.15
C18 N007 N006 {C1d_Zo}
Gb2 COM N008 N007 COM {G4_Zo}
R32 N017 COM 1 Temp=-273.15
S1 Cap2R Cap2L OL COM OL
F2 COM OLp VGP 1m
A2 OLp OLn COM COM COM COM OL COM OR Ref=100u Vh=50u Trise=10n
R3 OLp COM 1k
F3 COM OLn VGN -1m
R33 OLn COM 1k
C20 OLp COM 10n
C21 OLn COM 10n
C22 OL COM 10p
VGN N047 N049 0
VGP N046 N048 0
R34 N013 N014 {R1b_Aol} Temp=-273.15
R35 N014 COM {R2b_Aol} Temp=-273.15
G1 COM N015 N014 COM {G2_Aol}
C24 N014 N013 {C1b_Aol}
R36 N013 COM 1 Temp=-273.15
R39 N015 COM 1 Temp=-273.15
R40 N015 N016 {R1b_Aol} Temp=-273.15
R41 N016 COM {R2b_Aol} Temp=-273.15
G9 COM N023 N016 COM {G2_Aol}
C28 N016 N015 {C1b_Aol}
R42 N023 COM 1 Temp=-273.15
G10 COM N013 Aol2 COM 1
R43 N024 COM 1Meg Temp=-273.15
G11 COM N024 N023 COM 1<>
C29 N024 COM {Cfp3}
R46 N025 COM 1Meg Temp=-273.15
G12 COM N025 N024 COM 1<>
C30 N025 COM {Cfp4}
R48 N026 COM 1Meg Temp=-273.15
G13 COM N026 N025 COM 1<>
C31 N026 COM {Cfp4}
G18 N021 Inp1 N038 N037 1m
R51 Inp1 N021 1k Temp=-273.15
C32 N035 N036 {C1a_PSRp}
G19 COM N036 VCC_Int COM {G1_PSRp}
R52 N036 COM 1 Temp=-273.15
R55 N035 N036 {R1a_PSRp} Temp=-273.15
R56 N035 COM {R2a_PSRp} Temp=-273.15
C33 N028 N027 {C1a_PSRn}
G20 COM N027 VEE_Int COM {G1_PSRn}
R57 N027 COM 1 Temp=-273.15
R58 N028 N027 {R1a_PSRn} Temp=-273.15
R59 N028 COM {R2a_PSRn} Temp=-273.15
C35 N030 N029 {C1b_PSRn}
R60 N029 COM 1 Temp=-273.15
R61 N030 N029 {R1b_PSRn} Temp=-273.15
R63 N030 COM {R2b_PSRn} Temp=-273.15
G21 COM N031 N030 COM {G2_PSRn}
R64 N037 COM 1 Temp=-273.15
G23 COM N029 N028 COM 1
C36 N032 N031 {C1c_PSRn}
R65 N031 COM 1 Temp=-273.15
R66 N032 N031 {R1c_PSRn} Temp=-273.15
R67 N032 COM {R2c_PSRn} Temp=-273.15
G24 COM N037 N032 COM {G3_PSRn}
R68 N034 N033 {R1b_PSRp} Temp=-273.15
R69 N033 COM {R2b_PSRp} Temp=-273.15
G26 COM N038 N033 COM {G2_PSRp}
C37 N033 N034 {C1b_PSRp}
G27 COM N034 N035 COM 1
R70 N034 COM 1 Temp=-273.15
R71 N038 COM 1 Temp=-273.15
A3 COM COM COM COM COM COM E_n COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En=Table(freq, 0.1, 4.25n, 10.1, 6.8n, 109k, 6.8n, 126k, 7n, 170k, 7.9n, 220k, 8.71n, 224k, 8.71n, 275k, 9.4n, 402k, 11n, 627k, 13.4n, 755k, 14.6n, 916k, 14.9n, 1.16Meg, 13.1n, 1.37Meg, 11.3n, 1.65Meg, 9.86n, 1.95Meg, 9.77n, 2.18Meg, 10.9n, 2.7Meg, 13.2n, 3.27Meg, 16.7n, 4.07Meg, 19.9n, 4.21Meg, 31.1n, 4.55Meg, 22.6n, 5.13Meg, 24.6n, 6.03Meg, 25.9n, 9.27Meg, 27.6n, 12.5Meg, 26.8n, 16.9Meg, 22.7n, 20.2Meg, 16.2n, 25Meg, 6.8n, 30.5Meg, 2.2n, 33.7Meg, 1.34n, 46.8Meg, 4n, 56.4Meg, 6.2n, 59.8Meg, 6.8n, 85.3Meg, 12.7n, 106Meg, 19.0n)
R73 E_n COM 100k Noiseless
R74 N055 COM 100k Noiseless
R75 N056 COM 100k Noiseless
G29 COM I_np N055 COM 1
RI_np1 I_np COM 1 Temp=-273.15
G31 COM I_nn N056 COM 1
RI_nn1 I_nn COM 1 Temp=-273.15
A4 COM COM COM COM COM COM N056 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En=Table(freq, 0.1, 780f, 10, 720f, 1k, 780f, 1.98k, 850f, 2.96k, 955f, 3.7k, 1.08p, 4.47k, 1.42p, 5.49k, 1.1p, 6.51k, 970f, 9.93k, 814f, 13.2k, 672f, 16.5k, 577f, 20k, 415f, 23.3k, 296f, 25.3k, 182f)
A5 COM COM COM COM COM COM N055 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En=Table(freq, 0.1, 780f, 10, 720f, 1k, 780f, 1.98k, 850f, 2.96k, 955f, 3.7k, 1.08p, 4.47k, 1.42p, 5.49k, 1.1p, 6.51k, 970f, 9.93k, 814f, 13.2k, 672f, 16.5k, 577f, 20k, 415f, 23.3k, 296f, 25.3k, 182f)
R76 N009 N012 1k Temp=-273.15
B17 N012 N009 I=1m*{Vos+Drift* (Temp-25)}
G32 N010 N011 N002 COM 1m
R77 N011 N010 1k Temp=-273.15
R79 N010 N009 1k Temp=-273.15
G33 N009 N010 E_n COM 1m
C39 N002 N001 {C1a_CMR}
G34 COM N001 N003 COM {G1_CMR}
R80 N002 N001 {R1a_CMR} Temp=-273.15
R81 N002 COM {R2a_CMR} Temp=-273.15
R83 N001 COM 1 Temp=-273.15
G35 COM IVR N003 COM 1m
G36 COM Inn1 N044 COM 1k
R84 COM IVR 1k Temp=-273.15
R85 COM Inn1 1m Temp=-273.15
C40 Inn1 COM 1.59n
C41 IVR COM 1.59f
Ibp N003 COM {Ib}
Ibn N044 COM {Ib-Ios}
G37 N003 COM I_np COM 1
G38 N044 COM I_nn COM 1
R2 N044 N043 {Rser} Temp=-273.15
Cinp COM N003 {Ccm}
Cinn N044 COM {Ccm}
Rinn N044 COM {Rcm} Temp=-273.15
Rinp COM N003 {Rcm} Temp=-273.15
A6 In_diff COM COM COM COM SB COM COM SCHMITT Vt=-14.9 Vh=100m Trise=15n
R86 SB COM 1G Temp=-273.15
G39 COM In_diff 1 2 1m
R87 In_diff COM 1k Temp=-273.15
G28 COM N021 N011 COM 1k
R72 COM N021 1m Temp=-273.15
C42 N021 COM 1.59n
C43 Aol1 COM 1.59e-18
G15 COM N048 GRpi COM 1k
G16 COM N049 GRni COM 1k
R11 N048 COM 1m Temp=-273.15
R12 N049 COM 1m Temp=-273.15
R37 GRpi COM 1k Temp=-273.15
R44 GRni COM 1k Temp=-273.15
C6 GRni COM 10p
C7 GRpi COM 10p
S2 3 5 5 3 ESDO
S3 5 4 4 5 ESDO
DOP Vsatp N018 DO
DON N018 Vsatn DO
G5 COM Vsatp Satp COM 1k
R92 Vsatp COM 1m
G6 COM Vsatn N039 COM 1k
R93 Vsatn COM 1m
C10 Vimon COM 1.59f
S4 3 N012 N012 3 ESDI
S5 3 Inn1 Inn1 3 ESDI
S6 N012 4 4 N012 ESDI
S7 Inn1 4 4 Inn1 ESDI
C9 N018 Vsatp 1p
C16 N018 Vsatn 1p
C27 Clamp N048 1f
C44 Clamp N049 1f
Cdiff N003 N044 {Cdiff}
C45 SB COM 1p
C46 N020 COM 10f
C47 N043 COM 10f
B6 COM GRpi I=1m*({Zo_max}* {Iscp}+V(3,COM))
B7 COM GRni I=1m*({Zo_max}* {Iscn}+V(4,COM))
C17 Vsatp COM 1n
C23 Vsatn COM 1n
E1 COM 0 N050 0 1
R10 COM 0 1Meg Temp=-273.15
B4 COM N017 I=Uplim(Dnlim(V(ZoF,COM)*{G4_Zo}, {Izon}, 25m), {Izop}, 25m)
C8 I_np COM 1.59p
C26 I_nn COM 1.59p
C50 E_n COM 159f
C51 N037 COM 1.59p
C52 N038 COM 1.59p
R16 N020 1 1m Temp=-273.15
R17 N043 2 1m Temp=-273.15
B3 COM CMpi I=1m*(V(3,COM)+{Vcm_max}) Cpar=1n
G17 COM CMp CMpi COM 1k
R53 COM CMp 1m Temp=-273.15
B8 COM CMni I=1m*(V(4,COM)+{Vcm_min}) Cpar=1n
G22 COM CMn CMni COM 1k
R54 COM CMn 1m Temp=-273.15
R62 CMpi COM 1k Temp=-273.15
R88 CMni COM 1k Temp=-273.15
DIP CMp IVR DI
DIN IVR CMn DI
C54 IVR CMn 1f
C48 IVR CMp 1f
G14 COM N012 IVR COM 1k
R14 COM N012 1m Temp=-273.15
C49 N012 COM 1.59n
C25 2 COM 1f
Rdiff N003 N044 {Rdiff} Temp=-273.15
.param Vos=714n Drift=4n
.param Ib=83.90p Ios=147.79p
.param Vcm_min=0 Vcm_max=-1.5
.param Vsmin=4.5 Vsmax=55
.param Iscp=21m Iscn=-33m
.param Iq_on=830u Iq_off=1u
.param IZop={Rx_Zo*Iscp} IZon={Rx_Zo*Iscn}
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model DG D(Vfwd=10k Vrev=0 Revepsilon=0.5 Noiseless Ron=1m)
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1 Ron=1m)
.model LIM D(Vfwd=1n Vrev=1n Ron=1m Roff=1m Ilimit={Iscp} Revilimit={-Iscn} Epsilon=1u)
.model ESDI SW(Ron=50 Roff=1T Vt=300m Vh=-150m Vser=0.1 Noiseless)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m Noiseless)
.param Mp=57.8 OSp=5.5m
.param Ap=15m Bp=-4.14e4 Gp=4.5
.param Mn=69.7 OSn=5.5m ;OSn=2.6m
.param beta_Zo=1.13
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=1k
.param Zo_max={Zo_dc}
.param R1a_Zo=1Meg
.param fz1_Zo=75m
.param fp1_Zo=45
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
+* R1a_Zo) - 1)}
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
.param G2_Zo = {1/actual1_Zo}
.param R1d_Zo=10k
.param fz4_Zo=26Meg
.param fp4_Zo=100G
.param C1d_Zo = {1 / (2 * pi * R1d_Zo * fz4_Zo)}
.param R2d_Zo = {R1d_Zo/ ((2 * pi * fp4_Zo * C1d_Zo
+* R1d_Zo) - 1)}
.param actual4_Zo = {R2d_Zo / (R1d_Zo + R2d_Zo)}
.param G4_Zo = {1/actual4_Zo}
.param R1b_Zo=100k
.param fp2_Zo=150k
.param fz2_Zo= 26Meg
.param C1b_Zo = {1 / (fz2_Zo * R1b_Zo * 2 * pi)}
.param R2b_Zo = {(1 / (fp2_Zo * C1b_Zo * 2 * pi))
+- R1b_Zo}
.param Aol_PB=151
.param SRp=1.8 SRn=-0.86
.param fp1=75m fp2=3.5Meg fp3=4.95Meg fp4=120Meg
.param Aol2_dB = {Aol_PB-40+1}
.param Aol2 = {pwr(10, (Aol2_dB)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Cfp3={1 / (2 * pi * fp3 * 1Meg)}
.param Cfp4={1 / (2 * pi * fp4 * 1Meg)}
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
.param C1b_Aol = {1 / (2 * pi * R1b_Aol * fz2_Aol)}
.param R2b_Aol = {R1b_Aol/ ((2 * pi * fp2_Aol * C1b_Aol
+* R1b_Aol) - 1)}
.param actual2_Aol = {R2b_Aol / (R1b_Aol + R2b_Aol)}
.param G2_Aol={1/actual2_Aol}
.param R1b_Aol=10k
.param fz2_Aol=4Meg
.param fp2_Aol=25Meg
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param C1b_PSRn = {1 / (2 * pi * R1b_PSRn * fz2_PSRn)}
.param R2b_PSRn = {R1b_PSRn/ ((2 * pi * fp2_PSRn * C1b_PSRn
+* R1b_PSRn) - 1)}
.param actual2_PSRn = {R2b_PSRn/ (R1b_PSRn + R2b_PSRn)}
.param G2_PSRn = {1/actual2_PSRn}
.param C1c_PSRn = {1 / (2 * pi * R1c_PSRn * fz3_PSRn)}
.param R2c_PSRn = {R1c_PSRn/ ((2 * pi * fp3_PSRn * C1c_PSRn
+* R1c_PSRn) - 1)}
.param actual3_PSRn = {R2c_PSRn/ (R1c_PSRn + R2c_PSRn)}
.param G3_PSRn = {1/actual3_PSRn}
.param Rej_dc_PSRn=159.3
.param R1a_PSRn=100Meg
.param fz1_PSRn=40m
.param fp1_PSRn=1k
.param R1b_PSRn=1Meg
.param fz2_PSRn=1.5k
.param fp2_PSRn=70k
.param R1c_PSRn=1Meg
.param fz3_PSRn=160k
.param fp3_PSRn=13Meg
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param Rej_dc_PSRp=161
.param R1a_PSRp=1Meg
.param fz1_PSRp=900
.param fp1_PSRp=45Meg
.param C1b_PSRp={1 / (2 * pi * R1b_PSRp * fz2_PSRp)}
.param R2b_PSRp = {R1b_PSRp/ ((2 * pi * fp2_PSRp * C1b_PSRp
+* R1b_PSRp) - 1)}
.param actual2_PSRp = {R2b_PSRp / (R1b_PSRp + R2b_PSRp)}
.param G2_PSRp= {1/actual2_PSRp}
.param R1b_PSRp=1Meg
.param fz2_PSRp={fz1_PSRp}
.param fp2_PSRp=1.8Meg
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Rej_dc_CMR=158.5
.param R1a_CMR=1Meg
.param fz1_CMR=2
.param fp1_CMR=350k
.param Rser=200
.param Ccm=35p Rcm=400G
.param Cdiff=7p Rdiff=30k
.ends ADA4522-2

354
lib/sub/ADA4522-4.lib Normal file
View File

@@ -0,0 +1,354 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4522-4 1 2 3 4 5
C1 Clamp COM {Cfp1}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}*V(Aol1,COM), {Isink}-V(SB,COM)*350,1m),{Isrc},1m)
G2 0 Vcc_Int N052 0 1
G3 0 Vee_Int N054 0 1
R6 Vcc_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N050 Vcc_Int 1Meg Temp=-273.15
R9 N050 Vee_Int 1Meg Temp=-273.15
C2 N050 0 1
R25 Aol2 COM 1Meg Temp=-273.15
G7 COM Aol2 Clamp COM 1<>
C14 Vcc_Int 0 1n
C15 Vee_Int 0 1n
R1 N003 N020 {Rser} Temp=-273.15
R82 N054 4 1<> Temp=-273.15
A1 Inn1 Inp1 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
R47 N052 3 1<> Temp=-273.15
R38 Aol1 COM 1Meg Temp=-273.15
R78 Clamp COM 1Meg Temp=-273.15
Iq N052 N054 {Iq_on}
R45 Vimon COM 1k Temp=-273.15
C34 COM 0 1n
G30 N052 N054 Vimon COM 1
C38 Aol2 COM {Cfp2}
Vimon N018 5 0
F1 COM Vimon Vimon 1m
DGP N046 Clamp DG
DGN Clamp N047 DG
C11 Vsatp2 Vcc_Int 1n
B2 Vsatp1 Vcc_Int I=1m*Max(Mp*(V(Vimon,COM))+OSp,40u)
C12 Vsatp1 Vcc_Int 1n
B5 Vsatp2 Vcc_Int I=1m*Max((V(Vimon,COM)/(Ap+Bp*(V(Vimon,COM)**Gp))),40u)
R18 Vsatp1 Vcc_Int 1k Temp=-273.15
R19 Vsatp2 Vcc_Int 1k Temp=-273.15
R20 Satp COM 1k Temp=-273.15
C13 Satp COM 1p
B9 COM Satp I=1m*Min(V(Vsatp1,COM), V(Vsatp2,COM))
B10 Vee_Int N039 I=1m*Max(Mn*(-V(Vimon,COM))+OSn,40u)
C19 N039 Vee_Int 1n
R21 N039 Vee_Int 1k Temp=-273.15
Rx N018 N017 {Rx_Zo} Temp=-273.15
Rdummy N018 COM {Rdummy_Zo} Temp=-273.15
G4 COM Cap2L N026 N018 {G1_Zo}
R4 Cap2L COM 1 Temp=-273.15
R5 Cap2L Cap2R {R1a_Zo} Temp=-273.15
R13 Cap2R COM {R2a_Zo} Temp=-273.15
G8 COM N004 Cap2R COM {G2_Zo}
C3 Cap2R Cap2L {C1a_Zo}
R22 N004 N005 {R2b_Zo} Temp=-273.15
R23 N005 N022 {R1b_Zo} Temp=-273.15
C4 COM N022 {C1b_Zo}
R24 N008 ZoF {R1d_Zo} Temp=-273.15
R26 ZoF COM {R2d_Zo} Temp=-273.15
C5 ZoF N008 {C1d_Zo}
R27 N004 COM 1 Temp=-273.15
Gb1 COM N006 N005 COM 1
R28 N006 COM 1 Temp=-273.15
R29 N008 COM 1 Temp=-273.15
R30 N006 N007 {R1d_Zo} Temp=-273.15
R31 N007 COM {R2d_Zo} Temp=-273.15
C18 N007 N006 {C1d_Zo}
Gb2 COM N008 N007 COM {G4_Zo}
R32 N017 COM 1 Temp=-273.15
S1 Cap2R Cap2L OL COM OL
F2 COM OLp VGP 1m
A2 OLp OLn COM COM COM COM OL COM OR Ref=100u Vh=50u Trise=10n
R3 OLp COM 1k
F3 COM OLn VGN -1m
R33 OLn COM 1k
C20 OLp COM 10n
C21 OLn COM 10n
C22 OL COM 10p
VGN N047 N049 0
VGP N046 N048 0
R34 N013 N014 {R1b_Aol} Temp=-273.15
R35 N014 COM {R2b_Aol} Temp=-273.15
G1 COM N015 N014 COM {G2_Aol}
C24 N014 N013 {C1b_Aol}
R36 N013 COM 1 Temp=-273.15
R39 N015 COM 1 Temp=-273.15
R40 N015 N016 {R1b_Aol} Temp=-273.15
R41 N016 COM {R2b_Aol} Temp=-273.15
G9 COM N023 N016 COM {G2_Aol}
C28 N016 N015 {C1b_Aol}
R42 N023 COM 1 Temp=-273.15
G10 COM N013 Aol2 COM 1
R43 N024 COM 1Meg Temp=-273.15
G11 COM N024 N023 COM 1<>
C29 N024 COM {Cfp3}
R46 N025 COM 1Meg Temp=-273.15
G12 COM N025 N024 COM 1<>
C30 N025 COM {Cfp4}
R48 N026 COM 1Meg Temp=-273.15
G13 COM N026 N025 COM 1<>
C31 N026 COM {Cfp4}
G18 N021 Inp1 N038 N037 1m
R51 Inp1 N021 1k Temp=-273.15
C32 N035 N036 {C1a_PSRp}
G19 COM N036 VCC_Int COM {G1_PSRp}
R52 N036 COM 1 Temp=-273.15
R55 N035 N036 {R1a_PSRp} Temp=-273.15
R56 N035 COM {R2a_PSRp} Temp=-273.15
C33 N028 N027 {C1a_PSRn}
G20 COM N027 VEE_Int COM {G1_PSRn}
R57 N027 COM 1 Temp=-273.15
R58 N028 N027 {R1a_PSRn} Temp=-273.15
R59 N028 COM {R2a_PSRn} Temp=-273.15
C35 N030 N029 {C1b_PSRn}
R60 N029 COM 1 Temp=-273.15
R61 N030 N029 {R1b_PSRn} Temp=-273.15
R63 N030 COM {R2b_PSRn} Temp=-273.15
G21 COM N031 N030 COM {G2_PSRn}
R64 N037 COM 1 Temp=-273.15
G23 COM N029 N028 COM 1
C36 N032 N031 {C1c_PSRn}
R65 N031 COM 1 Temp=-273.15
R66 N032 N031 {R1c_PSRn} Temp=-273.15
R67 N032 COM {R2c_PSRn} Temp=-273.15
G24 COM N037 N032 COM {G3_PSRn}
R68 N034 N033 {R1b_PSRp} Temp=-273.15
R69 N033 COM {R2b_PSRp} Temp=-273.15
G26 COM N038 N033 COM {G2_PSRp}
C37 N033 N034 {C1b_PSRp}
G27 COM N034 N035 COM 1
R70 N034 COM 1 Temp=-273.15
R71 N038 COM 1 Temp=-273.15
A3 COM COM COM COM COM COM E_n COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En=Table(freq, 0.1, 4.25n, 10.1, 6.8n, 109k, 6.8n, 126k, 7n, 170k, 7.9n, 220k, 8.71n, 224k, 8.71n, 275k, 9.4n, 402k, 11n, 627k, 13.4n, 755k, 14.6n, 916k, 14.9n, 1.16Meg, 13.1n, 1.37Meg, 11.3n, 1.65Meg, 9.86n, 1.95Meg, 9.77n, 2.18Meg, 10.9n, 2.7Meg, 13.2n, 3.27Meg, 16.7n, 4.07Meg, 19.9n, 4.21Meg, 31.1n, 4.55Meg, 22.6n, 5.13Meg, 24.6n, 6.03Meg, 25.9n, 9.27Meg, 27.6n, 12.5Meg, 26.8n, 16.9Meg, 22.7n, 20.2Meg, 16.2n, 25Meg, 6.8n, 30.5Meg, 2.2n, 33.7Meg, 1.34n, 46.8Meg, 4n, 56.4Meg, 6.2n, 59.8Meg, 6.8n, 85.3Meg, 12.7n, 106Meg, 19.0n)
R73 E_n COM 100k Noiseless
R74 N055 COM 100k Noiseless
R75 N056 COM 100k Noiseless
G29 COM I_np N055 COM 1
RI_np1 I_np COM 1 Temp=-273.15
G31 COM I_nn N056 COM 1
RI_nn1 I_nn COM 1 Temp=-273.15
A4 COM COM COM COM COM COM N056 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En=Table(freq, 0.1, 780f, 10, 720f, 1k, 780f, 1.98k, 850f, 2.96k, 955f, 3.7k, 1.08p, 4.47k, 1.42p, 5.49k, 1.1p, 6.51k, 970f, 9.93k, 814f, 13.2k, 672f, 16.5k, 577f, 20k, 415f, 23.3k, 296f, 25.3k, 182f)
A5 COM COM COM COM COM COM N055 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En=Table(freq, 0.1, 780f, 10, 720f, 1k, 780f, 1.98k, 850f, 2.96k, 955f, 3.7k, 1.08p, 4.47k, 1.42p, 5.49k, 1.1p, 6.51k, 970f, 9.93k, 814f, 13.2k, 672f, 16.5k, 577f, 20k, 415f, 23.3k, 296f, 25.3k, 182f)
R76 N009 N012 1k Temp=-273.15
B17 N012 N009 I=1m*{Vos+Drift* (Temp-25)}
G32 N010 N011 N002 COM 1m
R77 N011 N010 1k Temp=-273.15
R79 N010 N009 1k Temp=-273.15
G33 N009 N010 E_n COM 1m
C39 N002 N001 {C1a_CMR}
G34 COM N001 N003 COM {G1_CMR}
R80 N002 N001 {R1a_CMR} Temp=-273.15
R81 N002 COM {R2a_CMR} Temp=-273.15
R83 N001 COM 1 Temp=-273.15
G35 COM IVR N003 COM 1m
G36 COM Inn1 N044 COM 1k
R84 COM IVR 1k Temp=-273.15
R85 COM Inn1 1m Temp=-273.15
C40 Inn1 COM 1.59n
C41 IVR COM 1.59f
Ibp N003 COM {Ib}
Ibn N044 COM {Ib-Ios}
G37 N003 COM I_np COM 1
G38 N044 COM I_nn COM 1
R2 N044 N043 {Rser} Temp=-273.15
Cinp COM N003 {Ccm}
Cinn N044 COM {Ccm}
Rinn N044 COM {Rcm} Temp=-273.15
Rinp COM N003 {Rcm} Temp=-273.15
A6 In_diff COM COM COM COM SB COM COM SCHMITT Vt=-14.9 Vh=100m Trise=15n
R86 SB COM 1G Temp=-273.15
G39 COM In_diff 1 2 1m
R87 In_diff COM 1k Temp=-273.15
G28 COM N021 N011 COM 1k
R72 COM N021 1m Temp=-273.15
C42 N021 COM 1.59n
C43 Aol1 COM 1.59e-18
G15 COM N048 GRpi COM 1k
G16 COM N049 GRni COM 1k
R11 N048 COM 1m Temp=-273.15
R12 N049 COM 1m Temp=-273.15
R37 GRpi COM 1k Temp=-273.15
R44 GRni COM 1k Temp=-273.15
C6 GRni COM 10p
C7 GRpi COM 10p
S2 3 5 5 3 ESDO
S3 5 4 4 5 ESDO
DOP Vsatp N018 DO
DON N018 Vsatn DO
G5 COM Vsatp Satp COM 1k
R92 Vsatp COM 1m
G6 COM Vsatn N039 COM 1k
R93 Vsatn COM 1m
C10 Vimon COM 1.59f
S4 3 N012 N012 3 ESDI
S5 3 Inn1 Inn1 3 ESDI
S6 N012 4 4 N012 ESDI
S7 Inn1 4 4 Inn1 ESDI
C9 N018 Vsatp 1p
C16 N018 Vsatn 1p
C27 Clamp N048 1f
C44 Clamp N049 1f
Cdiff N003 N044 {Cdiff}
C45 SB COM 1p
C46 N020 COM 10f
C47 N043 COM 10f
B6 COM GRpi I=1m*({Zo_max}* {Iscp}+V(3,COM))
B7 COM GRni I=1m*({Zo_max}* {Iscn}+V(4,COM))
C17 Vsatp COM 1n
C23 Vsatn COM 1n
E1 COM 0 N050 0 1
R10 COM 0 1Meg Temp=-273.15
B4 COM N017 I=Uplim(Dnlim(V(ZoF,COM)*{G4_Zo}, {Izon}, 25m), {Izop}, 25m)
C8 I_np COM 1.59p
C26 I_nn COM 1.59p
C50 E_n COM 159f
C51 N037 COM 1.59p
C52 N038 COM 1.59p
R16 N020 1 1m Temp=-273.15
R17 N043 2 1m Temp=-273.15
B3 COM CMpi I=1m*(V(3,COM)+{Vcm_max}) Cpar=1n
G17 COM CMp CMpi COM 1k
R53 COM CMp 1m Temp=-273.15
B8 COM CMni I=1m*(V(4,COM)+{Vcm_min}) Cpar=1n
G22 COM CMn CMni COM 1k
R54 COM CMn 1m Temp=-273.15
R62 CMpi COM 1k Temp=-273.15
R88 CMni COM 1k Temp=-273.15
DIP CMp IVR DI
DIN IVR CMn DI
C54 IVR CMn 1f
C48 IVR CMp 1f
G14 COM N012 IVR COM 1k
R14 COM N012 1m Temp=-273.15
C49 N012 COM 1.59n
C25 2 COM 1f
Rdiff N003 N044 {Rdiff} Temp=-273.15
.param Vos=714n Drift=5.23n
.param Ib=83.90p Ios=147.79p
.param Vcm_min=0 Vcm_max=-1.5
.param Vsmin=4.5 Vsmax=55
.param Iscp=21m Iscn=-33m
.param Iq_on=830u Iq_off=1u
.param IZop={Rx_Zo*Iscp} IZon={Rx_Zo*Iscn}
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model DG D(Vfwd=10k Vrev=0 Revepsilon=0.5 Noiseless Ron=1m)
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1 Ron=1m)
.model LIM D(Vfwd=1n Vrev=1n Ron=1m Roff=1m Ilimit={Iscp} Revilimit={-Iscn} Epsilon=1u)
.model ESDI SW(Ron=50 Roff=1T Vt=300m Vh=-150m Vser=0.1 Noiseless)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m Noiseless)
.param Mp=57.8 OSp=5.5m
.param Ap=15m Bp=-4.14e4 Gp=4.5
.param Mn=69.7 OSn=5.5m ;OSn=2.6m
.param beta_Zo=1.13
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=1k
.param Zo_max={Zo_dc}
.param R1a_Zo=1Meg
.param fz1_Zo=75m
.param fp1_Zo=45
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
+* R1a_Zo) - 1)}
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
.param G2_Zo = {1/actual1_Zo}
.param R1d_Zo=10k
.param fz4_Zo=26Meg
.param fp4_Zo=100G
.param C1d_Zo = {1 / (2 * pi * R1d_Zo * fz4_Zo)}
.param R2d_Zo = {R1d_Zo/ ((2 * pi * fp4_Zo * C1d_Zo
+* R1d_Zo) - 1)}
.param actual4_Zo = {R2d_Zo / (R1d_Zo + R2d_Zo)}
.param G4_Zo = {1/actual4_Zo}
.param R1b_Zo=100k
.param fp2_Zo=150k
.param fz2_Zo= 26Meg
.param C1b_Zo = {1 / (fz2_Zo * R1b_Zo * 2 * pi)}
.param R2b_Zo = {(1 / (fp2_Zo * C1b_Zo * 2 * pi))
+- R1b_Zo}
.param Aol_PB=151
.param SRp=1.8 SRn=-0.86
.param fp1=75m fp2=3.5Meg fp3=4.95Meg fp4=120Meg
.param Aol2_dB = {Aol_PB-40+1}
.param Aol2 = {pwr(10, (Aol2_dB)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Cfp3={1 / (2 * pi * fp3 * 1Meg)}
.param Cfp4={1 / (2 * pi * fp4 * 1Meg)}
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
.param C1b_Aol = {1 / (2 * pi * R1b_Aol * fz2_Aol)}
.param R2b_Aol = {R1b_Aol/ ((2 * pi * fp2_Aol * C1b_Aol
+* R1b_Aol) - 1)}
.param actual2_Aol = {R2b_Aol / (R1b_Aol + R2b_Aol)}
.param G2_Aol={1/actual2_Aol}
.param R1b_Aol=10k
.param fz2_Aol=4Meg
.param fp2_Aol=25Meg
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param C1b_PSRn = {1 / (2 * pi * R1b_PSRn * fz2_PSRn)}
.param R2b_PSRn = {R1b_PSRn/ ((2 * pi * fp2_PSRn * C1b_PSRn
+* R1b_PSRn) - 1)}
.param actual2_PSRn = {R2b_PSRn/ (R1b_PSRn + R2b_PSRn)}
.param G2_PSRn = {1/actual2_PSRn}
.param C1c_PSRn = {1 / (2 * pi * R1c_PSRn * fz3_PSRn)}
.param R2c_PSRn = {R1c_PSRn/ ((2 * pi * fp3_PSRn * C1c_PSRn
+* R1c_PSRn) - 1)}
.param actual3_PSRn = {R2c_PSRn/ (R1c_PSRn + R2c_PSRn)}
.param G3_PSRn = {1/actual3_PSRn}
.param Rej_dc_PSRn=159.3
.param R1a_PSRn=100Meg
.param fz1_PSRn=40m
.param fp1_PSRn=1k
.param R1b_PSRn=1Meg
.param fz2_PSRn=1.5k
.param fp2_PSRn=70k
.param R1c_PSRn=1Meg
.param fz3_PSRn=160k
.param fp3_PSRn=13Meg
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param Rej_dc_PSRp=161
.param R1a_PSRp=1Meg
.param fz1_PSRp=900
.param fp1_PSRp=45Meg
.param C1b_PSRp={1 / (2 * pi * R1b_PSRp * fz2_PSRp)}
.param R2b_PSRp = {R1b_PSRp/ ((2 * pi * fp2_PSRp * C1b_PSRp
+* R1b_PSRp) - 1)}
.param actual2_PSRp = {R2b_PSRp / (R1b_PSRp + R2b_PSRp)}
.param G2_PSRp= {1/actual2_PSRp}
.param R1b_PSRp=1Meg
.param fz2_PSRp={fz1_PSRp}
.param fp2_PSRp=1.8Meg
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Rej_dc_CMR=158.5
.param R1a_CMR=1Meg
.param fz1_CMR=2
.param fp1_CMR=350k
.param Rser=200
.param Ccm=35p Rcm=400G
.param Cdiff=7p Rdiff=30k
.ends ADA4522-4

BIN
lib/sub/ADA4523-1.sub Normal file

Binary file not shown.

241
lib/sub/ADA4610.lib Normal file
View File

@@ -0,0 +1,241 @@
* ADA4610
*Node Assignments
* Non-Inverting Input
* | Inverting Input
* | | Positive supply
* | | | Negative supply
* | | | | Output
* | | | | |
.Subckt ADA4610 100 101 102 103 104
***Power Supplies***
Rz1 102 1020 Rideal 1e-6
Rz2 103 1030 Rideal 1e-6
Ibias 1020 1030 dc 0.33e-3
DzPS 98 1020 diode
Iquies 1020 98 dc 2.97e-3
S1 98 1030 106 113 Switch
R1 1020 99 Rideal 1e7
R2 99 1030 Rideal 1e7
e1 111 110 1020 110 1
e2 110 112 110 1030 1
e3 110 0 99 0 1
*
*
***Inputs***
B_IbiasP 110 2 I=TABLE(V(100), (-4.1,-100p),(-4,-14.2p),(-3.5,7.9p),(-3.4,8.9p),(-3,7.9p),(-2.7,3.9p),(-2.3,1.6p),(-2,2.4p),(4,5.2p),(4.2,50p),(5,200p)) ;5e-12
IbiasN 110 9 dc 3e-12
S2 1 100 106 113 Switch
S3 9 101 106 113 Switch
VOS 1 2 dc 0.2e-6
RinCMP 110 2 Rideal 20000000000000e6
RinCMN 9 110 Rideal 20000000000000e6
CinCMP 110 2 5.7e-12
CinCMN 9 110 5.7e-12
RinDiff 9 2 Rideal 20000000000000e3
CinDiff 9 2 2.2e-12
*
*
***Non-Inverting Input with Clamp***
g1 3 110 110 2 0.001
RInP 3 110 Rideal 1e3
RX1 40 3 Rideal 0.001
DInP 40 41 diode
DInN 42 40 diode
VinP 111 41 dc 2.96
VinN 42 112 dc 2.96
*
*
***Vnoise***
hVn 6 5 Vmeas1 707.10678
Vmeas1 20 110 DC 0
Vvn 21 110 dc 0.65
Dvn 21 20 DVnoisy
hVn1 6 7 Vmeas2 707.10678
Vmeas2 22 110 dc 0
Vvn1 23 110 dc 0.65
Dvn1 23 22 DVnoisy
*
*
***Inoise***
FnIN 9 110 Vmeas3 0.7071068
Vmeas3 51 110 dc 0
VnIN 50 110 dc 0.65
DnIN 50 51 DINnoisy
FnIN1 110 9 Vmeas4 0.7071068
Vmeas4 53 110 dc 0
VnIN1 52 110 dc 0.65
DnIN1 52 53 DINnoisy
*
FnIP 2 110 Vmeas5 0.7071068
Vmeas5 31 110 dc 0
VnIP 30 110 dc 0.65
DnIP 30 31 DIPnoisy
FnIP1 110 2 Vmeas6 0.7071068
Vmeas6 33 110 dc 0
VnIP1 32 110 dc 0.65
DnIP1 32 33 DIPnoisy
*
*
***CMRR***
RcmrrP 3 10 Rideal 1e12
RcmrrN 10 9 Rideal 1e12
g10 11 110 10 110 -1e-10
Lcmrr 11 12 1e-12
Rcmrr 12 110 Rideal 1e3
e4 5 3 11 110 1
*
*
***Power Down***
VPD 111 80 dc 2
VPD1 81 0 dc 1.5
RPD 111 106 Rideal 0.286e6
ePD 80 113 82 0 1
RDP1 82 0 Rideal 1e3
CPD 82 0 1e-10
S5 81 82 83 113 Switch
CDP1 83 0 1e-12
RPD2 106 83 1e6
*
*
***Feedback Pin***
*RF 105 104 Rideal 0.001
*
*
***VFB Stage***
g200 200 110 7 9 1
R200 200 110 Rideal 250
DzSlewP 201 200 DzSlewP
DzSlewN 201 110 DzSlewN
*
*
***Dominant Pole at 350 Hz***
g210 210 110 200 110 0.3502e-6
R210 210 110 Rideal 454.73e6
C210 210 110 1e-012
*
*
***Output Voltage Clamp-1***
RX2 60 210 Rideal 0.001
DzVoutP 61 60 DzVoutP
DzVoutN 60 62 DzVoutN
DVoutP 61 63 diode
DVoutN 64 62 diode
VoutP 65 63 dc 5.709
VoutN 64 66 dc 5.428
e60 65 110 111 110 1.34
e61 66 110 112 110 1.34
*
*
***Pole-Zero at 84KHz, 180KHz***
g220 220 110 210 110 0.001
R220 220 110 Rideal 1000
R221 220 221 Rideal 0.875e3
C220 221 110 1010.5064e-12
*
***Pole at 110MHz***
g230 230 110 220 110 0.001
R230 230 110 Rideal 1000
C230 230 110 1.4469e-12
*
***Buffer***
g240 240 110 230 110 0.001
R240 240 110 Rideal 1000
*
***Buffer***
g245 245 110 240 110 0.001
R245 245 110 Rideal 1000
*
***Buffer***
g250 250 110 245 110 0.001
R250 250 110 Rideal 1000
*
***Buffer***
g255 255 110 250 110 0.001
R255 255 110 Rideal 1000
*
***Buffer***
g260 260 110 255 110 0.001
R260 260 110 Rideal 1000
*
***Buffer***
g265 265 110 260 110 0.001
R265 265 110 Rideal 1000
*
***Buffer***
g270 270 110 265 110 0.001
R270 270 110 Rideal 1000
*
***Notch: f=2.2MHz, Zeta=1.2, Gain=0.8dB***
e280 280 110 270 110 1
R280 280 285 Rideal 10
L280 285 281 3425.757e-9
C280 281 282 1527.698e-12
R281 282 110 Rideal 103.65
*
***Peak: f=0.5MHz, Zeta=3.1, Gain=5.1dB***
e290 290 110 285 110 1
R290 290 292 Rideal 10
L290 290 291 513.402e-9
C290 291 292 197351.907e-12
R291 292 110 Rideal 12.518
e295 295 110 292 110 1.7989
*
*
***Output Stage***
g300 300 110 295 110 0.001
R300 300 110 Rideal 1000
e301 301 110 300 110 1
Rout 302 303 Rideal 163
Lout 303 310 80e-9
Cout 310 110 6e-12
*
*
***Output Current Limit***
H1 301 304 Vsense1 100
Vsense1 301 302 dc 0
VIoutP 305 304 dc 5.736
VIoutN 304 306 dc 5.736
DIoutP 307 305 diode
DIoutN 306 307 diode
Rx3 307 300 Rideal 0.001
*
*
***Output Clamp-2***
VoutP1 111 73 dc 0.785
VoutN1 74 112 dc 0.785
DVoutP1 75 73 diode
DVoutN1 74 75 diode
RX4 75 310 Rideal 0.001
*
*
***Supply Currents***
FIoVcc 314 110 Vmeas8 1
Vmeas8 310 311 dc 0
R314 110 314 Rideal 1e9
DzOVcc 110 314 diode
DOVcc 102 314 diode
RX5 311 312 Rideal 0.001
FIoVee 315 110 Vmeas9 1
Vmeas9 312 313 dc 0
R315 315 110 Rideal 1e9
DzOVee 315 110 diode
DOVee 315 103 diode
*
*
***Output Switch***
S4 104 313 106 113 Switch
*
*
*** Common Models ***
.model diode d(bv=100)
.model Switch vswitch(Von=1.505,Voff=1.495,ron=0.001,roff=1e6)
.model DzVoutP D(BV=4.3)
.model DzVoutN D(BV=4.3)
.model DzSlewP D(BV=174.665)
.model DzSlewN D(BV=174.665)
.model DVnoisy D(IS=2.03e-15 KF=8.16e-18)
.model DINnoisy D(IS=1.45e-22 KF=8.13e-18)
.model DIPnoisy D(IS=1.45e-22 KF=8.13e-18)
.model Rideal res(T_ABS=-273)
*
.ends ADA4610

346
lib/sub/ADA4622.lib Normal file
View File

@@ -0,0 +1,346 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4622 1 2 3 4 5
R1 Inn1 2 {Rser} Temp=-273.15
R2 Inp1 1 {Rser} Temp=-273.15
R3 Aol1 COM 1Meg Temp=-273.15
R4 Clamp COM 1Meg Temp=-273.15
C1 Clamp COM {Cfp1a}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}* V(Aol1,COM), {Isink}-V(OL,COM)* 0.2, 10m), {Isrc}+V(OL,COM)*0.2, 10m)
A1 Inn2 Inp2 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k En={Ae}-{Be}*exp(-{Ce}*(freq**{De}))
G2 0 VCC_Int 3 0 1
G3 0 Vee_Int 4 0 1
R6 VCC_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N047 VCC_Int 1Meg Temp=-273.15
R9 N047 Vee_Int 1Meg Temp=-273.15
C2 N047 0 1
E1 COM 0 N047 0 1
R10 COM 0 1Meg Temp=-273.15
Rx N014 N023 {Rx_Zo} Temp=-273.15
Rdummy N014 COM {Rdummy_Zo} Temp=-273.15
G4 COM Cap2L N032 N014 {G1_Zo}
R11 Cap2L COM 1 Temp=-273.15
R12 Cap2L Cap2R {R1a_Zo} Temp=-273.15
R13 Cap2R COM {R2a_Zo} Temp=-273.15
C3 Cap2R Cap2L {C1a_Zo}
R17 N023 COM 1 Temp=-273.15
B2 COM N023 I=Uplim(Dnlim({G5_Zo}* V(ZoF,COM), {Izon}, 25m), {Izop}, 25m)
Cinp COM Inp1 {Ccm}
Cinn Inn1 COM {Ccm}
Cdiff Inp1 Inn1 {Cdiff}
Rcmn Inn1 COM {Rcm} Temp=-273.15
Rcmp COM Inp1 {Rcm} Temp=-273.15
R24 Inn2 N046 1m Temp=-273.15
Ibp Inp1 COM {Ib}
Ibn Inn1 COM {Ib-Ios}
R26 N016 N018 1k Temp=-273.15
A2 COM N006 COM COM COM COM COM COM OTA G=1u In={Inp} Ink={Inkp}
A3 COM N041 COM COM COM COM COM COM OTA G=0 In={Inn} Ink={Inkn}
B3 N018 N016 I=1m*{Vos+Drift* (Temp-27)}
R27 N025 N017 1m Temp=-273.15
G6 N025 Inp2 N044 N034 1m
R28 Inp2 N025 1k Temp=-273.15
C8 N037 N038 {C1a_PSRp}
G8 COM N038 VCC_Int COM {G1_PSRp}
R29 N038 COM 1 Temp=-273.15
R30 N037 N038 {R1a_PSRp} Temp=-273.15
R31 N037 COM {R2a_PSRp} Temp=-273.15
C9 N035 N036 {C1b_PSRp}
R32 N035 COM {R2b_PSRp} Temp=-273.15
R33 N035 N036 {R1b_PSRp} Temp=-273.15
G9 COM N036 N037 COM 1
R34 N036 COM 1 Temp=-273.15
G10 COM N044 N035 COM {G2_PSRp}
R35 N044 COM 1 Temp=-273.15
C10 N034 N033 {C1a_PSRn}
G11 COM N033 VEE_Int COM {G1_PSRn}
R36 N033 COM 1 Temp=-273.15
R37 N034 N033 {R1a_PSRn} Temp=-273.15
R38 N034 COM {R2a_PSRn} Temp=-273.15
G12 N016 N017 N005 COM 1m
R39 N017 N016 1k Temp=-273.15
Vimon N015 5 0
BIq 3 4 I={Iq_on} +I(VImon)
G1 COM N018 N006 COM 1k
G14 COM N046 N041 COM 1k
R5 COM N018 1m Temp=-273.15
R43 COM N046 1m Temp=-273.15
C12 N046 COM 1p
C13 N018 COM 1p
DIP N042 Inp2 DIP
DIN Inp2 N043 DIN
C14 VCC_Int 0 1n
C15 Vee_Int 0 1n
DOP N039 N014 DO
DON N014 N040 DO
S2 Cap2R Cap2L OL COM OL
F1 COM OLp VGP 1m
A4 OLp OLn COM OLVIp OLVIn COM OL COM OR Ref=100u Vh=50u Trise=10n
R44 OLp COM 1k
F2 COM OLn VGN 1m
R45 OLn COM 1k
C16 OLp COM 10p
C17 OLn COM 10p
DOI N014 N015 LIM
COI N015 N014 1p
G15 COM Vsatp Vsatpi COM 1
R48 Vsatp COM 1
C21 Vsatp COM 1n
G16 COM Vsatn Vsatni COM 1
R49 Vsatn COM 1
C22 Vsatn COM 1n
S3 3 N006 N006 3 ESDI
S4 3 N041 N041 3 ESDI
S5 N006 4 4 N006 ESDI
S6 N041 4 4 N041 ESDI
C24 N014 Vsatp 5p
C25 N014 Vsatn 5p
S7 3 5 5 3 ESDO
S8 5 4 4 5 ESDO
C26 OL COM 1p
B6 COM GRp I=1m*({Zo_max}*{Iscp}+V(3,COM)) Rpar=1k Cpar=1n
B7 COM GRn I=1m*({Zo_max}*{Iscn}+V(4,COM)) Rpar=1k Cpar=1n
G20 COM N007 Cap2R COM {G2_Zo}
R55 N007 COM 1 Temp=-273.15
R56 N007 N008 {R2b_Zo} Temp=-273.15
R57 N008 N026 {R1b_Zo} Temp=-273.15
C23 COM N026 {C1b_Zo}
Gb3 COM N009 N008 COM 1
R58 N009 COM 1
R59 N009 N010 {R1c_Zo} Temp=-273.15
R60 N010 COM {R2c_Zo} Temp=-273.15
G21 COM N011 N010 COM {G3_Zo}
C27 N010 N009 {C1c_Zo}
R61 N011 COM 1
R62 N011 N012 {R1d_Zo} Temp=-273.15
R63 N012 COM {R2d_Zo} Temp=-273.15
G22 COM N013 N012 COM {G4_Zo}
C28 N012 N011 {C1d_Zo}
R64 N013 COM 1
R65 N013 ZoF {R1e_Zo} Temp=-273.15
R66 ZoF COM {R2e_Zo} Temp=-273.15
C29 ZoF N013 {C1e_Zo}
R16 N028 COM 1Meg Temp=-273.15
C5 N028 COM {Cfp2}
G5 COM N028 N027 COM 1<>
R18 N029 COM 1Meg Temp=-273.15
C6 N029 COM {Cfp3}
G17 COM N029 N028 COM 1<>
R19 N030 COM 1Meg Temp=-273.15
C20 N030 COM {Cfp3}
G23 COM N030 N029 COM 1<>
R20 N031 COM 1Meg Temp=-273.15
G24 COM N031 N030 COM 1<>
G25 COM N019 Sense COM 1
R21 N019 COM 1
R22 N019 N020 {R1a_Aol} Temp=-273.15
R23 N020 COM {R2a_Aol} Temp=-273.15
G26 COM N021 N020 COM {G1_Aol}
C31 N020 N019 {C1a_Aol}
R50 N021 COM 1
R53 N021 N022 {R1b_Aol} Temp=-273.15
R54 N022 COM {R2b_Aol} Temp=-273.15
G27 COM N027 N022 COM {G2_Aol}
C32 N022 N021 {C1b_Aol}
R67 N027 COM 1
C4 N002 N001 {C1a_CMR}
G7 COM N001 N006 COM {G1_CMR}
R15 N001 COM 1 Temp=-273.15
R25 N002 N001 {R1a_CMR} Temp=-273.15
R47 N002 COM {R2a_CMR} Temp=-273.15
C7 N004 N003 {C1b_CMR}
R68 N004 COM {R2b_CMR} Temp=-273.15
R69 N004 N003 {R1b_CMR} Temp=-273.15
R70 N003 COM 1 Temp=-273.15
G28 COM N003 N002 COM 1
G29 COM N005 N004 COM {G2_CMR}
R71 N005 COM 1
B4 COM N048 I=1m*(V(3,COM)+{Vcm_max}) Rpar=1k Cpar=1n
G13 COM CMp N048 COM 1
R40 CMp COM 1
B5 COM N049 I=1m*(V(4,COM)+{Vcm_min}) Rpar=1k Cpar=1n
G30 COM CMn N049 COM 1
R41 CMn COM 1
R42 Vsatpi 3 1k
C11 Vsatpi 3 1n
B8 Vsatpi 3 I=1m*Max(Ap+((Bp*I(Vimon)**Cp)/(Dp**Cp+I(Vimon)**Cp)),40u)
R14 Vsatni 4 1k
C18 Vsatni 4 1n
B9 4 Vsatni I=1m*Max(An+((Bn*-I(Vimon)**Cn)/(Dn**Cn-I(Vimon)**Cn)),40u)
R73 Gn3 COM 1 Temp=-273.15
R74 COM Gp3 1 Temp=-273.15
BVGr Clamp COM I=Uplim(Dnlim(V(Gp3,Gn3), {IGrn}, 0.1), {IGrp}, 0.1)
B10 COM Gp3 I=IF(V(Sense,COM)>V(GRp,COM), ((V(Sense,COM)-V(GRp,COM))*1),0)
B11 COM Gn3 I=IF(V(Sense,COM)<V(GRn,COM), ((V(GRn,COM)-V(Sense,COM))*1),0)
C19 COM Gp3 1p
C33 Gn3 COM 1p
G32 COM Sense Clamp COM 1
R76 Sense COM 1
VGN Vsatn N040 0
VGP N039 Vsatp 0
VIP N042 CMp 0
VIN CMn N043 0
F3 COM OLVIp VIP 1m
R46 OLVIp COM 1k
F4 COM OLVIn VIN 1m
R51 OLVIn COM 1k
C34 OLVIp COM 10p
C35 OLVIn COM 10p
Rdiff Inp1 Inn1 {Rdiff} Temp=-273.15
C30 N031 COM {Cfp4}
R52 N032 COM 1Meg Temp=-273.15
G18 COM N032 N031 COM 1<>
C36 N032 COM 2.9f
G19 COM N006 Inp1 COM 1k
G31 COM N041 Inn1 COM 1k
R72 COM N006 1m Temp=-273.15
R75 COM N041 1m Temp=-273.15
.param Inp=0.8f Inkp=1u
.param Inn=0.8f Inkn=1u
.param Vos=-196.57u Drift=2u
.param Ib=2p Ios=4p
.param Vcm_min=-0.2 Vcm_max=-1
.param Vsmin=5 Vsmax=36
.param Iscp=42m Iscn=-47m
.param Iq_on=715u Iq_off=60u
.param IZop={2*Rx_Zo*Iscp} IZon={2*Rx_Zo*Iscn}
.param IGrp=2*({Isrc}+0.2) IGrn=2*({Isink}-0.2)
.model DIP D(Vfwd=1k Vrev=0 Revepsilon=0.1)
.model DIN D(Vfwd=1k Vrev=0 Revepsilon=0.1)
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1)
.model LIM D(Vfwd=1n Vrev=1n Ron=1m Roff=1m Ilimit={Iscp} Revilimit={-Iscn} Epsilon=1u)
.model DGP D(Vfwd=1k Vrev=0 Revepsilon=0.5)
.model DGN D(Vfwd=1k Vrev=0 Revepsilon=0.5)
.model ESDI SW(Ron=50 Roff=1T Vt=0.5 Vh=-0.1 Vser=0.1)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n)
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m)
.param Rser=10m
.param Rcm=10T Rdiff=10T
.param Ccm=3.6p Cdiff=0.4p
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param Rej_dc_PSRp=101.3
.param R1a_PSRp=1Meg
.param fz1_PSRp=400
.param fp1_PSRp=5Meg
.param C1b_PSRp = {1 / (2 * pi * R1b_PSRp * fz2_PSRp)}
.param R2b_PSRp = {R1b_PSRp/ ((2 * pi * fp2_PSRp * C1b_PSRp
+* R1b_PSRp) - 1)}
.param actual2_PSRp = {R2b_PSRp / (R1b_PSRp + R2b_PSRp)}
.param G2_PSRp = {1/actual2_PSRp}
.param R1b_PSRp=1Meg
.param fz2_PSRp=250k
.param fp2_PSRp=2Meg
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param Rej_dc_PSRn=102.9
.param R1a_PSRn=1Meg
.param fz1_PSRn=50
.param fp1_PSRn=7Meg
.param beta_Zo=1.05
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=722
.param Zo_max=722
.param R1a_Zo=10k
.param fz1_Zo=140
.param fp1_Zo=400
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
+* R1a_Zo) - 1)}
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
.param G2_Zo = {1/actual1_Zo}
.param R1b_Zo=10k
.param fp2_Zo=15.5k
.param fz2_Zo=22.5k
.param C1b_Zo = {1 / (fz2_Zo * R1b_Zo * 2 * pi)}
.param R2b_Zo = {(1 / (fp2_Zo * C1b_Zo * 2 * pi))
+- R1b_Zo}
.param R1c_Zo=10k
.param fz3_Zo=270k
.param fp3_Zo=440k
.param C1c_Zo = {1 / (2 * pi * R1c_Zo * fz3_Zo)}
.param R2c_Zo = {R1c_Zo/ ((2 * pi * fp3_Zo * C1c_Zo
+* R1c_Zo) - 1)}
.param actual3_Zo = {R2c_Zo / (R1c_Zo + R2c_Zo)}
.param G3_Zo = {1/actual3_Zo}
.param R1d_Zo=10k
.param fz4_Zo=2.7Meg
.param fp4_Zo=4.1Meg
.param C1d_Zo = {1 / (2 * pi * R1d_Zo * fz4_Zo)}
.param R2d_Zo = {R1d_Zo/ ((2 * pi * fp4_Zo * C1d_Zo
+* R1d_Zo) - 1)}
.param actual4_Zo = {R2d_Zo / (R1d_Zo + R2d_Zo)}
.param G4_Zo = {1/actual4_Zo}
.param R1e_Zo=10k
.param fz5_Zo=70Meg
.param fp5_Zo=100G
.param C1e_Zo = {1 / (2 * pi * R1e_Zo * fz5_Zo)}
.param R2e_Zo = {R1e_Zo/ ((2 * pi * fp5_Zo * C1e_Zo
+* R1e_Zo) - 1)}
.param actual5_Zo = {R2e_Zo / (R1e_Zo + R2e_Zo)}
.param G5_Zo = {1/actual5_Zo}
.param Aol=122 RL_dc=10k
.param SRp=27.9 SRn=-22
.param fp1=4.8 fp2=2.2Meg fp3=39Meg
.param fp4=45Meg
.param Aol_v= {pwr(10, (Aol/20))}
.param Aol_adj = {(Aol_v/RL_dc)*(Zo_dc + RL_dc)}
.param Aol_adj_dB={20*log10(Aol_adj)+1}
.param Aol2 = {pwr(10, (Aol_adj_dB - 40)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Cfp3={1 / (2 * pi * fp3 * 1Meg)}
.param Cfp4={1 / (2 * pi * fp4 * 1Meg)}
.param A=8.85e-1 B=5.56e-2 C=1.06 D=2.99m
.param ratio = {Zo_dc/RL_dc}
.param Cfp1a = {Cfp1*((A+B*ratio)/(1+C*ratio+D*ratio**2))}
.param Isrc = {Cfp1a * SRp * 1Meg} Isink = {Cfp1a * SRn * 1Meg}
.param R1a_Aol=1Meg
.param fz1_Aol=2.6Meg
.param fp1_Aol=35Meg
.param C1a_Aol = {1 / (2 * pi * R1a_Aol * fz1_Aol)}
.param R2a_Aol = {R1a_Aol/ ((2 * pi * fp1_Aol * C1a_Aol
+* R1a_Aol) - 1)}
.param actual1_Aol = {R2a_Aol / (R1a_Aol + R2a_Aol)}
.param G1_Aol={1/actual1_Aol}
.param R1b_Aol=1Meg
.param fz2_Aol=9Meg
.param fp2_Aol=50Meg
.param C1b_Aol = {1 / (2 * pi * R1b_Aol * fz2_Aol)}
.param R2b_Aol = {R1b_Aol/ ((2 * pi * fp2_Aol * C1b_Aol
+* R1b_Aol) - 1)}
.param actual2_Aol = {R2b_Aol / (R1b_Aol + R2b_Aol)}
.param G2_Aol={1/actual2_Aol}
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Rej_dc_CMR=107.4
.param R1a_CMR=1Meg
.param fz1_CMR=700
.param fp1_CMR=450k
.param C1b_CMR = {1 / (2 * pi * R1b_CMR * fz2_CMR)}
.param R2b_CMR = {R1b_CMR/ ((2 * pi * fp2_CMR * C1b_CMR
+* R1b_CMR) - 1)}
.param actual2_CMR = {R2b_CMR / (R1b_CMR + R2b_CMR)}
.param G2_CMR = {1/actual2_CMR}
.param R1b_CMR=1Meg
.param fz2_CMR=1.7Meg
.param fp2_CMR=10Meg
.param Ap=0.1 Bp=31.76 Cp=4.88 Dp=4.473e-2
.param An=0.1 Bn=33.27 Cn=7 Dn=4.96E-02
.param Ae=9.13e-8 Be=7.93e-8 Ce=8.66e-1 De=-6.8e-1
.ends ADA4622

372
lib/sub/ADA4625-1.lib Normal file
View File

@@ -0,0 +1,372 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4625-1 1 2 3 4 5
C1 Clamp COM {Cfp1}
G2 0 Vcc_Int N053 0 1
G3 0 Vee_Int N055 0 1
R6 Vcc_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N051 Vcc_Int 1Meg Temp=-273.15
R9 N051 Vee_Int 1Meg Temp=-273.15
C2 N051 0 1
E1 COM 0 N051 0 1
R10 COM 0 1Meg Temp=-273.15
R25 Aol2 COM 1Meg Temp=-273.15
G7 COM Aol2 Sense COM 1<>
C14 Vcc_Int 0 1n
C15 Vee_Int 0 1n
R1 N003 1 {Rser} Temp=-273.15
R82 N055 4 1<> Temp=-273.15
A1 Inn1 Inp1 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
R47 N053 3 1<> Temp=-273.15
G22 COM Sense Clamp COM 1m
R91 Sense COM 1k Temp=-273.15
R38 Aol1 COM 1Meg Temp=-273.15
R78 Clamp COM 1Meg Temp=-273.15
Iq N053 N055 {Iq_on}
C34 COM 0 1n
G30 N053 N055 Vimon COM 1
C38 Aol2 COM {Cfp2}
Vimon N014 5 0
DGP N046 Clamp DG
DGN Clamp N047 DG
G5 COM N048 GRpi COM 1
G6 COM N049 GRni COM 1
R14 N048 COM 1 Temp=-273.15
R15 N049 COM 1 Temp=-273.15
R16 GRpi COM 1k Temp=-273.15
R17 GRni COM 1k Temp=-273.15
C9 GRni COM 10p
I5 COM GRni {1m*Grossn}
I6 COM GRpi {1m*Grossp}
C10 GRpi COM 10p
R20 Satp COM 1k Temp=-273.15
C13 Satp COM 1p
C19 Satn COM 1p
R21 Satn COM 1k Temp=-273.15
S1 Cap2R Cap2L OL COM OL
F2 COM OLp VGP 1m
A2 OLp OLn COM COM COM COM OL COM OR Ref=100u Vh=50u Trise=10n
R3 OLp COM 1k
F3 COM OLn VGN -1m
R33 OLn COM 1k
C20 OLp COM 10n
C21 OLn COM 10n
C22 OL COM 1p
VGN N047 N049 0
VGP N046 N048 0
G18 N028 Inp1 N043 N042 1m
R51 Inp1 N028 1k Temp=-273.15
C32 N040 N041 {C1a_PSRp}
G19 COM N041 VCC_Int COM {G1_PSRp}
R52 N041 COM 1 Temp=-273.15
R55 N040 N041 {R1a_PSRp} Temp=-273.15
R56 N040 COM {R2a_PSRp} Temp=-273.15
C33 N035 N034 {C1a_PSRn}
G20 COM N034 VEE_Int COM {G1_PSRn}
R57 N034 COM 1 Temp=-273.15
R58 N035 N034 {R1a_PSRn} Temp=-273.15
R59 N035 COM {R2a_PSRn} Temp=-273.15
C35 N037 N036 {C1b_PSRn}
R60 N036 COM 1 Temp=-273.15
R61 N037 N036 {R1b_PSRn} Temp=-273.15
R63 N037 COM {R2b_PSRn} Temp=-273.15
G21 COM N042 N037 COM {G2_PSRn}
R64 N042 COM 1 Temp=-273.15
G23 COM N036 N035 COM 1
R68 N039 N038 {R1b_PSRp} Temp=-273.15
R69 N038 COM {R2b_PSRp} Temp=-273.15
G26 COM N043 N038 COM {G2_PSRp}
C37 N038 N039 {C1b_PSRp}
G27 COM N039 N040 COM 1
R70 N039 COM 1 Temp=-273.15
R71 N043 COM 1 Temp=-273.15
R76 N015 N018 1k Temp=-273.15
B17 N018 N015 I=1m*{Vos+Drift* (Temp-25)}
G32 N016 N017 N002 COM 1m
R77 N017 N016 1k Temp=-273.15
R79 N016 N015 1k Temp=-273.15
G33 N015 N016 E_n COM 1m
C39 N002 N001 {C1a_CMR}
G34 COM N001 N003 COM {G1_CMR}
R80 N002 N001 {R1a_CMR} Temp=-273.15
R81 N002 COM {R2a_CMR} Temp=-273.15
R83 N001 COM 1 Temp=-273.15
G35 COM N018 N003 COM 1k
G36 COM Inn1 N045 COM 1k
R84 COM N018 1m Temp=-273.15
R85 COM Inn1 1m Temp=-273.15
C40 Inn1 COM 1p
C41 N018 COM 1p
Ibp N003 COM {Ib}
Ibn N045 COM {Ib-Ios}
G37 N003 COM I_np COM 1
G38 N045 COM I_nn COM 1
R2 N045 2 {Rser} Temp=-273.15
Cinp COM N003 {Ccm}
Cinn N045 COM {Ccm}
Cdiff N003 N045 {Cdiff}
Rinn N045 COM {Rcm} Temp=-273.15
Rinp COM N003 {Rcm} Temp=-273.15
Rdiff N003 N045 {Rdiff} Temp=-273.15
A6 In_diff COM COM COM COM SB COM COM SCHMITT Vt=-5 Vh=100m Trise=5n
R86 SB COM 1G Temp=-273.15
G39 COM In_diff 1 2 1m
R87 In_diff COM 1k Temp=-273.15
G28 COM N028 N017 COM 1k
R72 COM N028 1m Temp=-273.15
C42 N028 COM 1p
B8 COM N005 I=1m*(V(3,COM)+{Vcm_max}) Cpar=1n
G14 COM CMp N005 COM 1
R49 COM CMp 1 Temp=-273.15
B12 COM N004 I=1m*(V(4,COM)+{Vcm_min}) Cpar=1n
G17 COM CMn N004 COM 1
R50 COM CMn 1 Temp=-273.15
R88 N005 COM 1k Temp=-273.15
R89 N004 COM 1k Temp=-273.15
DIP CMp Inp1 DI
DIN Inp1 CMn DI
C44 CMn Inp1 1f
C45 CMp Inp1 1f
Rx N013 N025 {Rx_Zo} Temp=-273.15
Rdummy N013 COM {Rdummy_Zo} Temp=-273.15
G40 COM Cap2L N033 N013 {G1_Zo}
R90 Cap2L COM 1 Temp=-273.15
R92 Cap2L Cap2R {R1a_Zo} Temp=-273.15
R95 Cap2R COM {R2a_Zo} Temp=-273.15
G41 COM N006 Cap2R COM {G2_Zo}
C46 Cap2R Cap2L {C1a_Zo}
R96 N025 COM 1 Temp=-273.15
B13 COM N025 I=Uplim(Dnlim({G5_Zo}* +V(ZoF,COM), {Izon}, 25m), {Izop}, 25m)
R97 N010 COM 1 Temp=-273.15
R98 N012 ZoF {R1e_Zo} Temp=-273.15
R99 ZoF COM {R2e_Zo} Temp=-273.15
C48 ZoF N012 {C1e_Zo}
R100 N006 COM 1 Temp=-273.15
R101 N006 N007 {R1b_Zo} Temp=-273.15
R102 N007 COM {R2b_Zo} Temp=-273.15
G42 COM N008 N007 COM {G3_Zo}
C49 N007 N006 {C1b_Zo}
R103 N008 COM 1 Temp=-273.15
R104 N008 N009 {R1b_Zo} Temp=-273.15
R105 N009 COM {R2b_Zo} Temp=-273.15
G43 COM N010 N009 COM {G3_Zo}
C50 N009 N008 {C1b_Zo}
R106 N010 N011 {R2d_Zo} Temp=-273.15
R107 N011 N032 {R1d_Zo} Temp=-273.15
C51 COM N032 {C1d_Zo}
Gb3 COM N012 N011 COM 1
R108 N012 COM 1 Temp=-273.15
R22 N029 COM 1Meg Temp=-273.15
G8 COM N029 Aol2 COM 1<>
C5 N029 COM {Cfp2}
R23 N030 COM 1Meg Temp=-273.15
G44 COM N030 N029 COM 1<>
Gb1 COM N019 N031 COM 1
R24 N023 COM 1 Temp=-273.15
R26 N019 N020 {R1f_Aol} Temp=-273.15
R27 N020 COM {R2f_Aol} Temp=-273.15
G45 COM N021 N020 COM {G6_Aol}
C18 N020 N019 {C1f_Aol}
R28 N019 COM 1 Temp=-273.15
R29 N033 COM 1 Temp=-273.15
R30 N023 N024 {R1g_Aol} Temp=-273.15
R31 N024 COM {R2g_Aol} Temp=-273.15
G46 COM N033 N024 COM {G7_Aol}
C52 N024 N023 {C1g_Aol}
R32 N021 N022 {R1f_Aol} Temp=-273.15
R109 N022 COM {R2f_Aol} Temp=-273.15
G47 COM N023 N022 COM {G6_Aol}
C53 N022 N021 {C1f_Aol}
R110 N021 COM 1 Temp=-273.15
R111 N031 COM 1Meg Temp=-273.15
G48 COM N031 N030 COM 1<>
C54 N030 COM {Cfp3}
C55 N031 COM {Cfp4}
A7 COM COM COM COM COM COM N050 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={fA}/(freq**{M})
R4 N050 COM 100k Temp=-273.15
A8 COM N050 COM COM COM COM E_n COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={BB}
R5 E_n COM 100k Temp=-273.15
A3 COM COM COM COM COM COM I_np COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={In}
R13 I_np COM 100k Temp=-273.15
A4 COM COM COM COM COM COM I_nn COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={In}
R34 I_nn COM 100k Temp=-273.15
B2 4 Vsatn1 I=1m*Max(Mn*(-I(Vimon))+OSn,40u)
R18 Vsatn1 4 1k
C3 Vsatn1 4 1n
B5 4 Vsatn2 I=1m*Max((An*(-I(Vimon)))/(Bn+(-I(Vimon))),40u)
R19 Vsatn2 4 1k
C4 Vsatn2 4 1n
B10 COM Satn I=1m*Max(V(Vsatn2,COM), V(Vsatn1,COM))
R35 Vsatp3 3 1k
C11 Vsatp3 3 1n
B11 Vsatp1 3 I=1m*Max(Mp1*(I(Vimon))+OSp1,40u)
R36 Vsatp1 3 1k
C12 Vsatp1 3 1n
B15 Vsatp3 3 I=1m*Max(Ap+((Bp*(I(Vimon)**Cp))/((Dp**Cp)+(I(Vimon)**Cp))),40u)
B18 Vsatp2 3 I=1m*Max(Mp2*(I(Vimon))+OSp2,40u)
R39 Vsatp2 3 1k
C24 Vsatp2 3 1n
B9 COM Satp I=1m*Min(V(Vsatp1,COM), Min(V(Vsatp2,COM), V(Vsatp3,COM)))
C28 SB COM 1p
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}*V(Aol1,COM), {Isink}-V(SB,COM)*{Boost},1m),{Isrc},1m)
S2 3 5 5 3 ESDO
S3 5 4 4 5 ESDO
C6 Vimon COM 1p
R11 Vimon COM 1k Temp=-273.15
F1 COM Vimon Vimon 1m
DOP Vsatp N013 DO
DON N013 Vsatn DO
DOI N013 N014 LIM
COI N014 N013 1p
G1 COM Vsatp Satp COM 1k
R42 Vsatp COM 1m
C16 Vsatp COM 1n
G4 COM Vsatn Satn COM 1k
R43 Vsatn COM 1m
C17 Vsatn COM 1n
C23 N013 Vsatp 1f
C25 N013 Vsatn 1f
C7 2 COM 1f
C8 1 COM 1f
S4 3 N018 N018 3 ESDI
S5 3 Inn1 Inn1 3 ESDI
S6 N018 4 4 N018 ESDI
S7 Inn1 4 4 Inn1 ESDI
.param Vos=-22u Drift=0.5u
.param BB=3.15n In=4.5f
.param fC=39 M=0.35 fA={BB*(fC**M)}
.param Ib=15p Ios=2p
.param Vcm_min=-0.2 Vcm_max=-3.5
.param Vsmin=5 Vsmax=36
.param Iscp=46m Iscn=-46m
.param Iq_on=4m Iq_off=1u
.param Torp=100n Torn=100n
.param ORp={(Isrc/Cfp1)*Torp} ORn={(Isink/Cfp1)*Torn}
.param IZop={2*Rx_Zo*Iscp} IZon={2*Rx_Zo*Iscn}
.param Grossn={Zo_max*Iscn-Vsmax} Grossp={Zo_max*Iscp+Vsmax}
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model DG D(Vfwd=10k Vrev=0 Revepsilon=0.5 Noiseless)
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1)
.model LIM D(Vfwd=1n Vrev=1n Ron=1m Roff=1m Ilimit={Iscp} Revilimit={-Iscn} Epsilon=1u)
.model ESDI SW(Ron=50 Roff=1T Vt=31.6 Vh=-500m Vser=0.1 Noiseless)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m Noiseless)
.param Aol2_dB = {Aol_PB-40+1}
.param Aol2 = {pwr(10, (Aol2_dB)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Cfp3={1 / (2 * pi * fp3 * 1Meg)}
.param Cfp4={1 / (2 * pi * fp4 * 1Meg)}
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
.param Boost=7
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param C1b_PSRn = {1 / (2 * pi * R1b_PSRn * fz2_PSRn)}
.param R2b_PSRn = {R1b_PSRn/ ((2 * pi * fp2_PSRn * C1b_PSRn
+* R1b_PSRn) - 1)}
.param actual2_PSRn = {R2b_PSRn/ (R1b_PSRn + R2b_PSRn)}
.param G2_PSRn = {1/actual2_PSRn}
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param C1b_PSRp={1 / (2 * pi * R1b_PSRp * fz2_PSRp)}
.param R2b_PSRp = {R1b_PSRp/ ((2 * pi * fp2_PSRp * C1b_PSRp
+* R1b_PSRp) - 1)}
.param actual2_PSRp = {R2b_PSRp / (R1b_PSRp + R2b_PSRp)}
.param G2_PSRp= {1/actual2_PSRp}
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Rser=1m
.param Ccm=11.3p Rcm=1T
.param Cdiff=8.6p Rdiff=1T
.param beta_Zo=1.13
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=1k
.param Zo_max={Zo_dc}
.param R1a_Zo=10k
.param fz1_Zo=0.44
.param fp1_Zo=16.5
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
+* R1a_Zo) - 1)}
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
.param G2_Zo = {1/actual1_Zo}
.param R1b_Zo=10k
.param fz2_Zo=100k
.param fp2_Zo=102k
.param C1b_Zo = {1 / (2 * pi * R1b_Zo * fz2_Zo)}
.param R2b_Zo = {R1b_Zo/ ((2 * pi * fp2_Zo * C1b_Zo
+* R1b_Zo) - 1)}
.param actual3_Zo = {R2b_Zo / (R1b_Zo + R2b_Zo)}
.param G3_Zo = {1/actual3_Zo}
.param R1e_Zo=10k
.param fz5_Zo=300Meg
.param fp5_Zo=100G
.param C1e_Zo = {1 / (2 * pi * R1e_Zo * fz5_Zo)}
.param R2e_Zo = {R1e_Zo/ ((2 * pi * fp5_Zo * C1e_Zo
+* R1e_Zo) - 1)}
.param actual5_Zo = {R2e_Zo / (R1e_Zo + R2e_Zo)}
.param G5_Zo = {1/actual5_Zo}
.param R1d_Zo=10k
.param fp4_Zo=28Meg
.param fz4_Zo=247Meg
.param C1d_Zo = {1 / (fz4_Zo * R1d_Zo * 2 * pi)}
.param R2d_Zo = {(1 / (fp4_Zo * C1d_Zo * 2 * pi))
+- R1d_Zo}
.param Aol_PB=152.07
.param SRp=51 SRn=-38.5
.param fp1=0.44 fp2=6.35Meg fp3=55Meg fp4=58.5Meg
.param R1f_Aol=10k
.param fz6_Aol=10.85Meg
.param fp6_Aol=183Meg
.param C1f_Aol = {1 / (2 * pi * R1f_Aol * fz6_Aol)}
.param R2f_Aol = {R1f_Aol/ ((2 * pi * fp6_Aol * C1f_Aol
+* R1f_Aol) - 1)}
.param actual6_Aol = {R2f_Aol / (R1f_Aol + R2f_Aol)}
.param G6_Aol = {1/actual6_Aol}
.param R1g_Aol=10k
.param fz7_Aol={fz6_Aol}
.param fp7_Aol=600Meg
.param C1g_Aol = {1 / (2 * pi * R1g_Aol * fz7_Aol)}
.param R2g_Aol = {R1g_Aol/ ((2 * pi * fp7_Aol * C1g_Aol
+* R1g_Aol) - 1)}
.param actual7_Aol = {R2g_Aol / (R1g_Aol + R2g_Aol)}
.param G7_Aol = {1/actual7_Aol}
.param Rej_dc_CMR=130
.param R1a_CMR=1Meg
.param fz1_CMR=20
.param fp1_CMR=5Meg
.param Rej_dc_PSRp=120
.param R1a_PSRp=1Meg
.param fz1_PSRp=750
.param fp1_PSRp=800k
.param R1b_PSRp=1Meg
.param fz2_PSRp=16.5k
.param fp2_PSRp=14Meg
.param Rej_dc_PSRn=120
.param R1a_PSRn=1Meg
.param fz1_PSRn=5
.param fp1_PSRn=50k
.param R1b_PSRn=1Meg
.param fz2_PSRn=100k
.param fp2_PSRn=10Meg
.param Mp1=5.01 OSp1=0.155
.param Mp2=15.56 OSp2=0.14
.param Ap=0.159 Bp=300 Cp=1.8 Dp=0.9
.param Mn=14 OSn=0.15
.param An=-1.43 Bn=-8.9e-2
.ends ADA4625-1

372
lib/sub/ADA4625-2.lib Normal file
View File

@@ -0,0 +1,372 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4625-2 1 2 3 4 5
C1 Clamp COM {Cfp1}
G2 0 Vcc_Int N053 0 1
G3 0 Vee_Int N055 0 1
R6 Vcc_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N051 Vcc_Int 1Meg Temp=-273.15
R9 N051 Vee_Int 1Meg Temp=-273.15
C2 N051 0 1
E1 COM 0 N051 0 1
R10 COM 0 1Meg Temp=-273.15
R25 Aol2 COM 1Meg Temp=-273.15
G7 COM Aol2 Sense COM 1<>
C14 Vcc_Int 0 1n
C15 Vee_Int 0 1n
R1 N003 1 {Rser} Temp=-273.15
R82 N055 4 1<> Temp=-273.15
A1 Inn1 Inp1 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
R47 N053 3 1<> Temp=-273.15
G22 COM Sense Clamp COM 1m
R91 Sense COM 1k Temp=-273.15
R38 Aol1 COM 1Meg Temp=-273.15
R78 Clamp COM 1Meg Temp=-273.15
Iq N053 N055 {Iq_on}
C34 COM 0 1n
G30 N053 N055 Vimon COM 1
C38 Aol2 COM {Cfp2}
Vimon N014 5 0
DGP N046 Clamp DG
DGN Clamp N047 DG
G5 COM N048 GRpi COM 1
G6 COM N049 GRni COM 1
R14 N048 COM 1 Temp=-273.15
R15 N049 COM 1 Temp=-273.15
R16 GRpi COM 1k Temp=-273.15
R17 GRni COM 1k Temp=-273.15
C9 GRni COM 10p
I5 COM GRni {1m*Grossn}
I6 COM GRpi {1m*Grossp}
C10 GRpi COM 10p
R20 Satp COM 1k Temp=-273.15
C13 Satp COM 1p
C19 Satn COM 1p
R21 Satn COM 1k Temp=-273.15
S1 Cap2R Cap2L OL COM OL
F2 COM OLp VGP 1m
A2 OLp OLn COM COM COM COM OL COM OR Ref=100u Vh=50u Trise=10n
R3 OLp COM 1k
F3 COM OLn VGN -1m
R33 OLn COM 1k
C20 OLp COM 10n
C21 OLn COM 10n
C22 OL COM 1p
VGN N047 N049 0
VGP N046 N048 0
G18 N027 Inp1 N042 N041 1m
R51 Inp1 N027 1k Temp=-273.15
C32 N039 N040 {C1a_PSRp}
G19 COM N040 VCC_Int COM {G1_PSRp}
R52 N040 COM 1 Temp=-273.15
R55 N039 N040 {R1a_PSRp} Temp=-273.15
R56 N039 COM {R2a_PSRp} Temp=-273.15
C33 N034 N033 {C1a_PSRn}
G20 COM N033 VEE_Int COM {G1_PSRn}
R57 N033 COM 1 Temp=-273.15
R58 N034 N033 {R1a_PSRn} Temp=-273.15
R59 N034 COM {R2a_PSRn} Temp=-273.15
C35 N036 N035 {C1b_PSRn}
R60 N035 COM 1 Temp=-273.15
R61 N036 N035 {R1b_PSRn} Temp=-273.15
R63 N036 COM {R2b_PSRn} Temp=-273.15
G21 COM N041 N036 COM {G2_PSRn}
R64 N041 COM 1 Temp=-273.15
G23 COM N035 N034 COM 1
R68 N038 N037 {R1b_PSRp} Temp=-273.15
R69 N037 COM {R2b_PSRp} Temp=-273.15
G26 COM N042 N037 COM {G2_PSRp}
C37 N037 N038 {C1b_PSRp}
G27 COM N038 N039 COM 1
R70 N038 COM 1 Temp=-273.15
R71 N042 COM 1 Temp=-273.15
R76 N015 N018 1k Temp=-273.15
B17 N018 N015 I=1m*{Vos+Drift* (Temp-25)}
G32 N016 N017 N002 COM 1m
R77 N017 N016 1k Temp=-273.15
R79 N016 N015 1k Temp=-273.15
G33 N015 N016 E_n COM 1m
C39 N002 N001 {C1a_CMR}
G34 COM N001 N003 COM {G1_CMR}
R80 N002 N001 {R1a_CMR} Temp=-273.15
R81 N002 COM {R2a_CMR} Temp=-273.15
R83 N001 COM 1 Temp=-273.15
G35 COM N018 N003 COM 1k
G36 COM Inn1 N045 COM 1k
R84 COM N018 1m Temp=-273.15
R85 COM Inn1 1m Temp=-273.15
C40 Inn1 COM 1p
C41 N018 COM 1p
Ibp N003 COM {Ib}
Ibn N045 COM {Ib-Ios}
G37 N003 COM I_np COM 1
G38 N045 COM I_nn COM 1
R2 N045 2 {Rser} Temp=-273.15
Cinp COM N003 {Ccm}
Cinn N045 COM {Ccm}
Cdiff N003 N045 {Cdiff}
Rinn N045 COM {Rcm} Temp=-273.15
Rinp COM N003 {Rcm} Temp=-273.15
Rdiff N003 N045 {Rdiff} Temp=-273.15
A6 In_diff COM COM COM COM SB COM COM SCHMITT Vt=-5 Vh=100m Trise=5n
R86 SB COM 1G Temp=-273.15
G39 COM In_diff 1 2 1m
R87 In_diff COM 1k Temp=-273.15
G28 COM N027 N017 COM 1k
R72 COM N027 1m Temp=-273.15
C42 N027 COM 1p
B8 COM N005 I=1m*(V(3,COM)+{Vcm_max}) Cpar=1n
G14 COM CMp N005 COM 1
R49 COM CMp 1 Temp=-273.15
B12 COM N004 I=1m*(V(4,COM)+{Vcm_min}) Cpar=1n
G17 COM CMn N004 COM 1
R50 COM CMn 1 Temp=-273.15
R88 N005 COM 1k Temp=-273.15
R89 N004 COM 1k Temp=-273.15
DIP CMp Inp1 DI
DIN Inp1 CMn DI
C44 CMn Inp1 1f
C45 CMp Inp1 1f
Rx N013 N025 {Rx_Zo} Temp=-273.15
Rdummy N013 COM {Rdummy_Zo} Temp=-273.15
G40 COM Cap2L N032 N013 {G1_Zo}
R90 Cap2L COM 1 Temp=-273.15
R92 Cap2L Cap2R {R1a_Zo} Temp=-273.15
R95 Cap2R COM {R2a_Zo} Temp=-273.15
G41 COM N006 Cap2R COM {G2_Zo}
C46 Cap2R Cap2L {C1a_Zo}
R96 N025 COM 1 Temp=-273.15
B13 COM N025 I=Uplim(Dnlim({G5_Zo}* +V(ZoF,COM), {Izon}, 25m), {Izop}, 25m)
R97 N010 COM 1 Temp=-273.15
R98 N012 ZoF {R1e_Zo} Temp=-273.15
R99 ZoF COM {R2e_Zo} Temp=-273.15
C48 ZoF N012 {C1e_Zo}
R100 N006 COM 1 Temp=-273.15
R101 N006 N007 {R1b_Zo} Temp=-273.15
R102 N007 COM {R2b_Zo} Temp=-273.15
G42 COM N008 N007 COM {G3_Zo}
C49 N007 N006 {C1b_Zo}
R103 N008 COM 1 Temp=-273.15
R104 N008 N009 {R1b_Zo} Temp=-273.15
R105 N009 COM {R2b_Zo} Temp=-273.15
G43 COM N010 N009 COM {G3_Zo}
C50 N009 N008 {C1b_Zo}
R106 N010 N011 {R2d_Zo} Temp=-273.15
R107 N011 N031 {R1d_Zo} Temp=-273.15
C51 COM N031 {C1d_Zo}
Gb3 COM N012 N011 COM 1
R108 N012 COM 1 Temp=-273.15
R22 N028 COM 1Meg Temp=-273.15
G8 COM N028 Aol2 COM 1<>
C5 N028 COM {Cfp2}
R23 N029 COM 1Meg Temp=-273.15
G44 COM N029 N028 COM 1<>
Gb1 COM N019 N030 COM 1
R24 N023 COM 1 Temp=-273.15
R26 N019 N020 {R1f_Aol} Temp=-273.15
R27 N020 COM {R2f_Aol} Temp=-273.15
G45 COM N021 N020 COM {G6_Aol}
C18 N020 N019 {C1f_Aol}
R28 N019 COM 1 Temp=-273.15
R29 N032 COM 1 Temp=-273.15
R30 N023 N024 {R1g_Aol} Temp=-273.15
R31 N024 COM {R2g_Aol} Temp=-273.15
G46 COM N032 N024 COM {G7_Aol}
C52 N024 N023 {C1g_Aol}
R32 N021 N022 {R1f_Aol} Temp=-273.15
R109 N022 COM {R2f_Aol} Temp=-273.15
G47 COM N023 N022 COM {G6_Aol}
C53 N022 N021 {C1f_Aol}
R110 N021 COM 1 Temp=-273.15
R111 N030 COM 1Meg Temp=-273.15
G48 COM N030 N029 COM 1<>
C54 N029 COM {Cfp3}
C55 N030 COM {Cfp4}
A7 COM COM COM COM COM COM N050 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={fA}/(freq**{M})
R4 N050 COM 100k Temp=-273.15
A8 COM N050 COM COM COM COM E_n COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={BB}
R5 E_n COM 100k Temp=-273.15
A3 COM COM COM COM COM COM I_np COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={In}
R13 I_np COM 100k Temp=-273.15
A4 COM COM COM COM COM COM I_nn COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={In}
R34 I_nn COM 100k Temp=-273.15
B2 4 Vsatn1 I=1m*Max(Mn*(-I(Vimon))+OSn,40u)
R18 Vsatn1 4 1k
C3 Vsatn1 4 1n
B5 4 Vsatn2 I=1m*Max((An*(-I(Vimon)))/(Bn+(-I(Vimon))),40u)
R19 Vsatn2 4 1k
C4 Vsatn2 4 1n
B10 COM Satn I=1m*Max(V(Vsatn2,COM), V(Vsatn1,COM))
R35 Vsatp3 3 1k
C11 Vsatp3 3 1n
B11 Vsatp1 3 I=1m*Max(Mp1*(I(Vimon))+OSp1,40u)
R36 Vsatp1 3 1k
C12 Vsatp1 3 1n
B15 Vsatp3 3 I=1m*Max(Ap+((Bp*(I(Vimon)**Cp))/((Dp**Cp)+(I(Vimon)**Cp))),40u)
B18 Vsatp2 3 I=1m*Max(Mp2*(I(Vimon))+OSp2,40u)
R39 Vsatp2 3 1k
C24 Vsatp2 3 1n
B9 COM Satp I=1m*Min(V(Vsatp1,COM), Min(V(Vsatp2,COM), V(Vsatp3,COM)))
C28 SB COM 1p
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}*V(Aol1,COM), {Isink}-V(SB,COM)*{Boost},1m),{Isrc},1m)
S2 3 5 5 3 ESDO
S3 5 4 4 5 ESDO
C6 Vimon COM 1p
R11 Vimon COM 1k Temp=-273.15
F1 COM Vimon Vimon 1m
DOP Vsatp N013 DO
DON N013 Vsatn DO
DOI N013 N014 LIM
COI N014 N013 1p
G1 COM Vsatp Satp COM 1k
R42 Vsatp COM 1m
C16 Vsatp COM 1n
G4 COM Vsatn Satn COM 1k
R43 Vsatn COM 1m
C17 Vsatn COM 1n
C23 N013 Vsatp 1f
C25 N013 Vsatn 1f
C7 2 COM 1f
C8 1 COM 1f
S4 3 N018 N018 3 ESDI
S5 3 Inn1 Inn1 3 ESDI
S6 N018 4 4 N018 ESDI
S7 Inn1 4 4 Inn1 ESDI
.param Vos=-22u Drift=0.5u
.param BB=3.15n In=4.5f
.param fC=39 M=0.35 fA={BB*(fC**M)}
.param Ib=15p Ios=2p
.param Vcm_min=-0.2 Vcm_max=-3.5
.param Vsmin=5 Vsmax=36
.param Iscp=46m Iscn=-46m
.param Iq_on=4m Iq_off=1u
.param Torp=100n Torn=100n
.param ORp={(Isrc/Cfp1)*Torp} ORn={(Isink/Cfp1)*Torn}
.param IZop={2*Rx_Zo*Iscp} IZon={2*Rx_Zo*Iscn}
.param Grossn={Zo_max*Iscn-Vsmin} Grossp={Zo_max*Iscp+Vsmax}
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model DG D(Vfwd=10k Vrev=0 Revepsilon=0.5 Noiseless)
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1)
.model LIM D(Vfwd=1n Vrev=1n Ron=1m Roff=1m Ilimit={Iscp} Revilimit={-Iscn} Epsilon=1u)
.model ESDI SW(Ron=50 Roff=1T Vt=31.6 Vh=-500m Vser=0.1 Noiseless)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m Noiseless)
.param Aol2_dB = {Aol_PB-40+1}
.param Aol2 = {pwr(10, (Aol2_dB)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Cfp3={1 / (2 * pi * fp3 * 1Meg)}
.param Cfp4={1 / (2 * pi * fp4 * 1Meg)}
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
.param Boost=7
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param C1b_PSRn = {1 / (2 * pi * R1b_PSRn * fz2_PSRn)}
.param R2b_PSRn = {R1b_PSRn/ ((2 * pi * fp2_PSRn * C1b_PSRn
+* R1b_PSRn) - 1)}
.param actual2_PSRn = {R2b_PSRn/ (R1b_PSRn + R2b_PSRn)}
.param G2_PSRn = {1/actual2_PSRn}
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param C1b_PSRp={1 / (2 * pi * R1b_PSRp * fz2_PSRp)}
.param R2b_PSRp = {R1b_PSRp/ ((2 * pi * fp2_PSRp * C1b_PSRp
+* R1b_PSRp) - 1)}
.param actual2_PSRp = {R2b_PSRp / (R1b_PSRp + R2b_PSRp)}
.param G2_PSRp= {1/actual2_PSRp}
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Rser=1m
.param Ccm=13.3p Rcm=1T
.param Cdiff=13.8p Rdiff=1T
.param beta_Zo=1.13
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=1k
.param Zo_max={Zo_dc}
.param R1a_Zo=10k
.param fz1_Zo=0.44
.param fp1_Zo=16.5
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
+* R1a_Zo) - 1)}
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
.param G2_Zo = {1/actual1_Zo}
.param R1b_Zo=10k
.param fz2_Zo=100k
.param fp2_Zo=102k
.param C1b_Zo = {1 / (2 * pi * R1b_Zo * fz2_Zo)}
.param R2b_Zo = {R1b_Zo/ ((2 * pi * fp2_Zo * C1b_Zo
+* R1b_Zo) - 1)}
.param actual3_Zo = {R2b_Zo / (R1b_Zo + R2b_Zo)}
.param G3_Zo = {1/actual3_Zo}
.param R1e_Zo=10k
.param fz5_Zo=300Meg
.param fp5_Zo=100G
.param C1e_Zo = {1 / (2 * pi * R1e_Zo * fz5_Zo)}
.param R2e_Zo = {R1e_Zo/ ((2 * pi * fp5_Zo * C1e_Zo
+* R1e_Zo) - 1)}
.param actual5_Zo = {R2e_Zo / (R1e_Zo + R2e_Zo)}
.param G5_Zo = {1/actual5_Zo}
.param R1d_Zo=10k
.param fp4_Zo=28Meg
.param fz4_Zo=247Meg
.param C1d_Zo = {1 / (fz4_Zo * R1d_Zo * 2 * pi)}
.param R2d_Zo = {(1 / (fp4_Zo * C1d_Zo * 2 * pi))
+- R1d_Zo}
.param Aol_PB=152.07
.param SRp=51 SRn=-38.5
.param fp1=0.44 fp2=6.35Meg fp3=55Meg fp4=51.5Meg
.param R1f_Aol=10k
.param fz6_Aol=10.85Meg
.param fp6_Aol=183Meg
.param C1f_Aol = {1 / (2 * pi * R1f_Aol * fz6_Aol)}
.param R2f_Aol = {R1f_Aol/ ((2 * pi * fp6_Aol * C1f_Aol
+* R1f_Aol) - 1)}
.param actual6_Aol = {R2f_Aol / (R1f_Aol + R2f_Aol)}
.param G6_Aol = {1/actual6_Aol}
.param R1g_Aol=10k
.param fz7_Aol={fz6_Aol}
.param fp7_Aol=600Meg
.param C1g_Aol = {1 / (2 * pi * R1g_Aol * fz7_Aol)}
.param R2g_Aol = {R1g_Aol/ ((2 * pi * fp7_Aol * C1g_Aol
+* R1g_Aol) - 1)}
.param actual7_Aol = {R2g_Aol / (R1g_Aol + R2g_Aol)}
.param G7_Aol = {1/actual7_Aol}
.param Rej_dc_CMR=130
.param R1a_CMR=1Meg
.param fz1_CMR=20
.param fp1_CMR=5Meg
.param Rej_dc_PSRp=120
.param R1a_PSRp=1Meg
.param fz1_PSRp=750
.param fp1_PSRp=800k
.param R1b_PSRp=1Meg
.param fz2_PSRp=16.5k
.param fp2_PSRp=14Meg
.param Rej_dc_PSRn=120
.param R1a_PSRn=1Meg
.param fz1_PSRn=5
.param fp1_PSRn=50k
.param R1b_PSRn=1Meg
.param fz2_PSRn=100k
.param fp2_PSRn=10Meg
.param Mp1=5.01 OSp1=0.155
.param Mp2=15.56 OSp2=0.14
.param Ap=0.159 Bp=300 Cp=1.8 Dp=0.9
.param Mn=14 OSn=0.15
.param An=-1.43 Bn=-8.9e-2
.ends ADA4625-2

84
lib/sub/ADA4661-2.lib Normal file
View File

@@ -0,0 +1,84 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4661-2 1 2 99 50 45
M1 4 7 8 8 PIX L=1E-6 W=2.65E-04
M2 6 2 8 8 PIX L=1E-6 W=2.65E-04
M3 14 7 18 18 NIX L=1E-6 W=1.18E-04
M4 16 2 18 18 NIX L=1E-6 W=1.18E-04
RD1 4 50 1.33E+04
RD2 6 50 1.33E+04
RD3 99 14 1.33E+04
RD4 99 16 1.33E+04
C1 4 6 8.15E-13
C2 14 16 8.15E-13
I1 99 8 3.00E-05
I2 18 50 3.00E-05
V1 99 9 2.113E+00
V2 19 50 1.203E-01
D1 8 9 DX
D2 19 18 DX
EOS 7 1 POLY(4) (73,98) (22,98) (81,98) (83,98) 1.50E-04 1 1 1 1
IOS 1 2 1.50E-12
Ccm1 1 50 3E-12
Ccm2 2 50 3E-12
Cdm 1 2 8.5E-12
E1 72 98 POLY(2) (1,98) (2,98) 0 5.25E-03 5.25E-03
R10 72 73 1.89E+02
R20 73 98 7.959E-02
C10 72 73 1.00E-06
EPSY 21 98 POLY(1) (99,50) -2.074E+02 1.152E+1
RPS1 21 22 1.59E+05
RPS2 22 98 3.18E-02
CPS1 21 22 1.00E-06
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 1.07E+01
RN2 81 98 1
DFN 82 98 DNOISE
VFN 82 98 DC 0.6441
HFN 83 98 POLY(1) VFN 1.00E-03 1.00E+00
RFN 83 98 1
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) 4.575E-04 -1.55E-6
EVP 97 98 POLY(1)(99,50) 0.5 0.175
EVN 51 98 POLY(1)(50,99) 0.5 0.375
G1 98 30 POLY(2) (4,6) (14,16) 0 7.103E-03 7.103E-03
R1 30 98 1.00E+06
RZ 455 31 0.195E+00
CF 30 31 2.95E-9
EZ 455 98 (45A,98) 1
D3 30 97 DX
D4 51 30 DX
M5 45A 46 99 99 POX L=3u W=6m
M6 45A 47 50 50 NOX L=2u W=12m
EG1 99 46 POLY(1) (98,30) 8.523E-01 1
EG2 47 50 POLY(1) (30,98) 6.964E-01 1
Vimon 45A 45 0
BO1 Vsatp 99 I=1m*Dnlim(V(Mp)*I(Vimon) +V(Bp), V(Bp), 100u)
CO1 Vsatp 99 1n Rpar=1k Noiseless
BO2 50 Vsatn I=1m*Dnlim(V(Mn)*-I(Vimon) +V(Bn), V(Bn), 100u)
CO2 Vsatn 50 1n Rpar=1k Noiseless
GO1 0 Satp Vsatp 0 1k
CO3 Satp 0 1n Rpar=1m Noiseless
GO2 0 Satn Vsatn 0 1k
CO4 Satn 0 1n Rpar=1m Noiseless
BO3 0 Mp I=1m*table(V(Vs), 3, {Mp3}, 10, {Mp18}) Rpar=1k Cpar=1n
GO3 0 Vs 99 50 1m
CO5 Vs 0 1n Rpar=1k Noiseless
BO4 0 Mn I=1m*table(V(Vs), 3, {Mn3}, 10, {Mn18}) Rpar=1k Cpar=1n
BO5 0 Bp I=1m*table(V(Vs), 3, {Bp3}, 10, {Bp18}) Rpar=1k Cpar=1n
BO6 0 Bn I=1m*table(V(Vs), 3, {Bn3}, 10, {Bn18}) Rpar=1k Cpar=1n
DO1 Satp 45A DO
DO2 45A Satn DO
.param Mp3=19.9 Bp3=1.35m
.param Mn3=13.3 Bn3=0.9m
.param Mp18=17.3 Bp18=1.9m
.param Mn18=10.5 Bn18=1.2m
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1 Ron=1m Noiseless)
.model POX PMOS (LEVEL=2,KP=4.00E-05,VTO=-0.7,LAMBDA=0.047,RD=0)
.model NOX NMOS (LEVEL=2,KP=1.00E-05,VTO=+0.6,LAMBDA=0.022,RD=0)
.model PIX PMOS (LEVEL=2,KP=1.50E-05,VTO=-0.5,LAMBDA=0.047)
.model NIX NMOS (LEVEL=2,KP=4.00E-05,VTO=0.5,LAMBDA=0.022)
.model DX D(IS=1E-14,RS=0.1)
.model DNOISE D(IS=1E-14,RS=0,KF=1.53E-10)
.ENDS ADA4661-2

514
lib/sub/ADA4807-4.lib Normal file
View File

@@ -0,0 +1,514 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4807-4 1 2 3 4 5
C1 Clamp COM {Cfp1}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}* V(Aol1,COM), {Isink}, 10m), {Isrc}, 10m)
A1 Inn2 Inp2 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
G2 0 Vcc_Int 3 0 1
G3 0 Vee_Int 4 0 1
R6 Vcc_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N054 Vcc_Int 1Meg Temp=-273.15
R9 N054 Vee_Int 1Meg Temp=-273.15
C2 N054 0 1
E1 COM 0 N054 0 1
R10 COM 0 1Meg Temp=-273.15
Cinp COM Inp1 {Ccm}
Cinn Inn1 COM {Ccm}
Cdiff Inp1 Inn1 {Cdiff}
Rinn Inn1 COM {Rcm} Temp=-273.15
Rinp COM Inp1 {Rcm} Temp=-273.15
Vimon N031 5 0
G14 COM Inn2 Inn1 COM 1k
R43 COM Inn2 1m Temp=-273.15
C12 Inn2 COM 1p
DIP N047 Inp2 DI
DIN Inp2 N048 DI
C14 Vcc_Int 0 1n
C15 Vee_Int 0 1n
S3 3 N023 N023 3 ESDI
S4 3 Inn2 Inn2 3 ESDI
S5 N023 4 4 N023 ESDI
S6 Inn2 4 4 Inn2 ESDI
B4 COM N052 I=1m*(V(3,COM)+{Vcm_max}) Rpar=1k Cpar=1n
G13 COM CMp N052 COM 1
R40 CMp COM 1
B5 COM N053 I=1m*(V(4,COM)+{Vcm_min}) Rpar=1k Cpar=1n
G30 COM CMn N053 COM 1
R41 CMn COM 1
VIP N047 CMp 0
VIN CMn N048 0
R1 Inp1 1 {Rser} Temp=-273.15
R2 Inn1 2 {Rser} Temp=-273.15
Rdiff Inp1 Inn1 {Rdiff} Temp=-273.15
B9 Vsatp2 Vcc_Int I=1m*Max(Ap+((Bp*(V(Vimon,COM)**Cp))/((Dp**Cp)+(V(Vimon,COM)**Cp))),40u)
R75 Vsatp2 Vcc_Int 1k
C39 Vsatp2 Vcc_Int {CVsat}
B17 Vee_Int Vsatn1 I=1m*Max(Mn*(-V(Vimon,COM))+OSn,40u)
R76 Vsatn1 Vee_Int 1k
B18 Vee_Int Vsatn2 I=1m*(An+((Bn*(-V(Vimon,COM)**Cn))/((Dn**Cn)+(-V(Vimon,COM)**Cn))))
R96 Vsatn2 Vee_Int 1k
B19 COM Satn I=1m*IF(-V(Vimon,COM)>66m, V(Vsatn2,COM), V(Vsatn1,COM))
R125 Satn COM 1k
C52 Satn COM 1n
B22 Vsatp1 Vcc_Int I=1m*Max(Mp*(V(Vimon,COM))+OSp,40u)
R126 Vsatp1 Vcc_Int 1k
B26 COM Satp I=1m*IF(V(Vimon,COM)>38m, V(Vsatp2,COM),V(Vsatp1,COM))
R127 Satp COM 1k
C54 Satp COM 1n
G15 COM Sense Clamp COM 1m
R3 Sense COM 1k Temp=-273.15
F1 COM Vimon Vimon 1m
R13 Vimon COM 1k
C3 Vimon COM 10p
S1 3 5 5 3 ESDO
S2 5 4 4 5 ESDO
G1 COM N008 N040 N031 {G1_Zo}
R12 N008 COM 1 Temp=-273.15
R15 N008 N009 {R1a_Zo} Temp=-273.15
R16 N009 COM {R2a_Zo} Temp=-273.15
G4 COM N012 N009 COM {G2_Zo}
C4 N009 N008 {C1a_Zo}
R17 N014 COM 1 Temp=-273.15
R18 N014 N015 {R2b_Zo} Temp=-273.15
R19 N015 N037 {R1b_Zo} Temp=-273.15
C5 COM N037 {C1b_Zo}
R20 N012 N013 {R1c_Zo} Temp=-273.15
R21 N013 COM {R2c_Zo} Temp=-273.15
G5 COM N014 N013 COM {G3_Zo}
C6 N013 N012 {C1c_Zo}
R22 N012 COM 1
G6 COM N016 N015 COM 1
R23 N016 N017 {R1d_Zo} Temp=-273.15
R24 N017 COM {R2d_Zo} Temp=-273.15
G7 COM N018 N017 COM {G4_Zo}
C7 N017 N016 {C1d_Zo}
R25 N016 COM 1 Temp=-273.15
R26 N018 N019 {R1e_Zo} Temp=-273.15
R27 N019 COM {R2e_Zo} Temp=-273.15
G8 COM N020 N019 COM {G5_Zo}
C8 N019 N018 {C1e_Zo}
R28 N020 ZoF {R1f_Zo} Temp=-273.15
R29 ZoF COM {R2f_Zo} Temp=-273.15
C9 ZoF N020 {C1f_Zo}
R30 N018 COM 1 Temp=-273.15
R31 N020 COM 1 Temp=-273.15
G9 COM Vs 3 4 1m
R32 Vs COM 1k Temp=-273.15
A3 Vs COM COM COM COM COM VminGD COM SCHMITT Vt={Vsmin-10m} Vh=10m Trise=5n
A4 Vs COM COM COM COM VmaxGD COM COM SCHMITT Vt={Vsmax+10m} Vh=10m Trise=5n
A5 VminGD COM COM COM VmaxGD COM EN COM AND Trise=5n
R33 EN COM 1G Temp=-273.15
R34 VmaxGD COM 1G Temp=-273.15
R35 COM VminGD 1G Temp=-273.15
A6 EN COM COM COM COM _EN COM COM BUF Trise=5n
S7 N009 N008 OL COM OL
A7 COM COM OLp OLn _EN COM OL COM OR Ref=100u Vh=50u Trise=10n
Rx N031 N032 {Rx_Zo} Temp=-273.15
Rdummy N031 COM {Rdummy_Zo} Temp=-273.15
R4 N039 COM 1Meg Temp=-273.15
C20 N039 COM {Cfp2}
G10 COM N039 N038 COM 1<>
G12 COM N025 Sense COM 1
R45 N025 COM 1 Temp=-273.15
R46 N025 N026 {R1a_Aol} Temp=-273.15
R47 N026 COM {R2a_Aol} Temp=-273.15
G16 COM N027 N026 COM {G1_Aol}
C21 N026 N025 {C1a_Aol}
R50 N027 COM 1 Temp=-273.15
R51 N027 N028 {R1a_Aol} Temp=-273.15
R52 N028 COM {R2a_Aol} Temp=-273.15
G17 COM N029 N028 COM {G1_Aol}
C22 N028 N027 {C1a_Aol}
R53 N029 COM 1 Temp=-273.15
R54 N029 N030 {R1b_Aol} Temp=-273.15
R55 N030 COM {R2b_Aol} Temp=-273.15
C23 N030 N029 {C1b_Aol}
G18 COM N038 N030 COM {G2_Aol}
R56 N038 COM 1 Temp=-273.15
R57 N040 COM 1Meg Temp=-273.15
C26 N040 COM {Cfp2}
G19 COM N040 N039 COM 1<>
G21 N035 N036 N050 N042 1<>
R59 N036 N035 1Meg Temp=-273.15
C27 N045 N046 {C1a_PSRp}
G22 COM N046 VCC_Int COM {G1_PSRp}
R60 N046 COM 1 Temp=-273.15
R61 N045 N046 {R1a_PSRp} Temp=-273.15
R62 N045 COM {R2a_PSRp} Temp=-273.15
C28 N043 N044 {C1b_PSRp}
R63 N043 COM {R2b_PSRp} Temp=-273.15
R64 N043 N044 {R1b_PSRp} Temp=-273.15
G23 COM N044 N045 COM 1
R66 N044 COM 1 Temp=-273.15
G24 COM N050 N043 COM {G2_PSRp}
R67 N050 COM 1 Temp=-273.15
C29 N042 N041 {C1a_PSRn}
G25 COM N041 VEE_Int COM {G1_PSRn}
R68 N041 COM 1 Temp=-273.15
R70 N042 N041 {R1a_PSRn} Temp=-273.15
R71 N042 COM {R2a_PSRn} Temp=-273.15
G26 COM N035 N022 COM 1k
R72 COM N035 1m Temp=-273.15
G27 COM Inp2 N036 COM 1m
R73 COM Inp2 1k Temp=-273.15
C30 N002 N001 {C1a_CMR}
R58 N001 COM 1 Temp=-273.15
R74 N002 N001 {R1a_CMR} Temp=-273.15
R77 N002 COM {R2a_CMR} Temp=-273.15
R78 N003 N004 {R1b_CMR} Temp=-273.15
R79 N004 COM {R2b_CMR} Temp=-273.15
G20 COM N005 N004 COM {G2_CMR}
C31 N004 N003 {C1b_CMR}
R80 N003 COM 1 Temp=-273.15
G29 COM N003 N002 COM 1
R81 N005 COM 1 Temp=-273.15
G31 COM N001 Inp1 COM {G1_CMR}
G32 N021 N022 N005 COM 1<>
R82 N022 N021 1Meg Temp=-273.15
G33 COM N023 Inp1 COM 1k
R83 COM N023 1m Temp=-273.15
C32 N023 COM 1p
B2 0 VICM I=1m*((V(1,COM)+V(2,COM))/2) Rpar=1k Cpar=1n
A8 3 VICM COM COM COM NPN PNP COM SCHMITT Vt={1.5-50m} Vh=50m Tau=1u
R84 NPN COM 1G Temp=-273.15
R85 PNP COM 1G Temp=-273.15
BIbp Inp1 COM I={Ib+Ibdrift*(Temp-27)}+V(NPN,COM)*{Ib2}
BIbn Inn1 N051 I={Ib-Ios+(Ibdrift-Iosdrift)*(Temp-27)}+V(NPN,COM)*{Ib2-Ios2}
B6 Inp1 COM I=IF(V(PNP,COM)>0.5, I(V_I_np), I(V_I_nn))
B7 Inn1 COM I=IF(V(PNP,COM)>0.5, I(V_I_np), I(V_I_nn))
A9 COM COM COM COM COM COM N063 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={Enp} Enk={Enkp}
R86 N065 COM 1 Temp=-273.15
R87 N067 N068 {R1a_E_n} Temp=-273.15
R88 N068 COM {R2a_E_n} Temp=-273.15
G34 COM N069 N068 COM {G1_E_n}
C33 N068 N067 {C1a_E_n}
R89 N069 COM 1 Temp=-273.15
R90 N069 N070 {R1a_E_n} Temp=-273.15
R91 N070 COM {R2a_E_n} Temp=-273.15
G35 COM N071 N070 COM {1u*G1_E_n}
C34 N070 N069 {C1a_E_n}
R92 N071 COM 1Meg Temp=-273.15
C35 N071 COM 2.5f
G36 COM N072 N071 COM 1<>
R93 N072 COM 1Meg Temp=-273.15
G37 COM E_np N072 COM 1<>
R94 E_np COM 1Meg Temp=-273.15
R95 N063 COM 100k Temp=-273.15
R97 N063 N064 {R2b_E_n} Temp=-273.15
R98 N064 N077 {R1b_E_n} Temp=-273.15
C36 COM N077 {C1b_E_n}
G38 COM N065 N064 COM 1
C37 N072 COM 2.5f
C38 E_np COM 2.5f
R99 N065 N066 {R1c_E_n} Temp=-273.15
R100 N066 COM {R2c_E_n} Temp=-273.15
G39 COM N067 N066 COM {G3_E_n}
C40 N066 N065 {C1c_E_n}
R101 N067 COM 1 Temp=-273.15
A10 COM COM COM COM COM COM N085 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={Enn} Enk={Enkn}
R102 N085 COM 100k Temp=-273.15
R103 N085 N086 {R1d_E_n} Temp=-273.15
R104 N086 COM {R2d_E_n} Temp=-273.15
G40 COM N087 N086 COM {G4_E_n}
C41 N086 N085 {C1d_E_n}
R105 N087 COM 1 Temp=-273.15
R106 N087 N088 {R1d_E_n} Temp=-273.15
R107 N088 COM {R2d_E_n} Temp=-273.15
C42 N088 N087 {C1d_E_n}
G42 COM N089 N088 COM {G4_E_n}
R108 N089 COM 1 Temp=-273.15
R109 N089 N090 {R1d_E_n} Temp=-273.15
R110 N090 COM {R2d_E_n} Temp=-273.15
C43 N090 N089 {C1d_E_n}
G43 COM N091 N090 COM {1u*G4_E_n}
R111 N091 COM 1Meg Temp=-273.15
C44 N091 COM 2.5f
G44 COM N092 N091 COM 1<>
R112 N092 COM 1Meg Temp=-273.15
G45 COM E_nn N092 COM 1<>
R113 E_nn COM 1Meg Temp=-273.15
C45 N092 COM 2.5f
C46 E_nn COM 2.5f
Gb1 COM N082 N081 COM 1
R114 N083 COM 1 Temp=-273.15
V_I_np N082 N083 0
Gb2 COM N094 N093 COM 1
R115 N095 COM 1 Temp=-273.15
V_I_nn N094 N095 0
A11 COM COM COM COM COM COM N093 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={Inn} Enk={Inkp}
R116 N093 COM 100k Temp=-273.15
A12 COM COM COM COM COM COM N073 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={FAp}/(freq**{EXPp})
R117 N073 COM 100k Temp=-273.15
A13 COM N080 COM COM COM COM N081 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={BBp}
R118 N081 COM 100k Temp=-273.15
Gb3 COM N080 N079 COM 1
R119 N078 N079 {R2b_I_n} Temp=-273.15
R120 N079 N084 {R1b_I_n} Temp=-273.15
C47 COM N084 {C1b_I_n}
R121 N080 COM 1 Temp=-273.15
R122 N073 N074 {R1a_I_n} Temp=-273.15
R123 N074 COM {R2a_I_n} Temp=-273.15
G46 COM N075 N074 COM {G1_I_n}
C48 N074 N073 {C1a_I_n}
R124 N075 COM 1 Temp=-273.15
R131 N075 N076 {R1a_I_n} Temp=-273.15
R132 N076 COM {R2a_I_n} Temp=-273.15
G47 COM N078 N076 COM {G1_I_n}
C51 N076 N075 {C1a_I_n}
R133 N078 COM 1 Temp=-273.15
R134 N024 N023 1Meg Temp=-273.15
B12 N023 N024 I=1u*({Vos+Drift*(Temp-27)} +V(NPN,COM)*{Vos2})
R135 N021 N024 1Meg Temp=-273.15
B13 N024 N021 I=1u*(IF(V(PNP,COM)>0.5, V(E_np,COM), V(E_nn,COM)))
S8 COM Aol1 EN COM ENA
S9 COM Clamp EN COM ENA
S10 COM N032 EN COM ENZ
VIBn N051 COM 0
F2 3 4 Vimon 1
BIq 3 4 I=IF(V(EN,COM)>0.5, {Iq_on}, {Iq_off})
B38 COM N032 I=Uplim(Dnlim({G6_Zo}* V(ZoF,COM), {Izon}, 25m), {Izop}, 25m)
C13 COM ZoF 20f
R36 _EN COM 1G Temp=-273.15
C19 5 COM 2f
C55 COM N074 1f
G11 COM Vo 5 COM 1m
R38 Vo COM 1k
C58 Vo COM 10p
C49 Vsatp1 Vcc_Int {CVsat}
C50 Vsatn2 Vee_Int {CVsat}
C53 Vsatn1 Vee_Int {CVsat}
DGP N055 Clamp DG
DGN Clamp N056 DG
VGN N056 N060 0
VGP N055 N059 0
G28 COM N059 GRpi COM 1k
G41 COM N060 GRni COM 1k
R14 N059 COM 1m Temp=-273.15
R37 N060 COM 1m Temp=-273.15
R42 GRpi COM 1k Temp=-273.15
R48 GRni COM 1k Temp=-273.15
C10 GRni COM 10p
C11 GRpi COM 10p
C18 Clamp N059 1f
C24 Clamp N060 1f
B3 COM GRpi I=1m*({Zo_max}* {Iscp}+V(3,COM))
B8 COM GRni I=1m*({Zo_max}* {Iscn}+V(4,COM))
DOP1 Vsatp N031 DO
DON1 N031 Vsatn DO
G48 COM Vsatp Satp COM 1k
R11 Vsatp COM 1m
G49 COM Vsatn Satn COM 1k
R49 Vsatn COM 1m
C56 N031 Vsatp 1f
C57 N031 Vsatn 1f
C59 Vsatp COM 1n
C60 Vsatn COM 1n
R5 OLp COM 1k
R39 OLn COM 1k
C16 OLp COM 1p
C17 OLn COM 1p
C25 OL COM 1p
C61 Aol1 COM 1f
F3 COM OLp VGP 1m
F4 COM OLn VGN -1m
.param Enp=4n Enkp=11
.param Enn=5.9n Enkn=380
.param Inn=0.4p Inkp=2.1k
.param Vos=-7.33u Drift=0.7u
.param Vos2=108.63u Ib2=1.654u Ios2=25n
.param Ib=-1.2u Ios=9.15n
.param Ibdrift=2.5n Iosdrift=70p
.param Vcm_min=-0.2 Vcm_max=0.2
.param Vsmin=2.7 Vsmax=11
.param Iscp=80m Iscn=-80m
.param IZop={Rx_Zo*Iscp} IZon={Rx_Zo*Iscn}
.param Iq_on=1m Iq_off=2.385u
.param ENVt=3.5 ENVh=200m
.param ENTon=1.3u ENToff=265n
.param Ipd_on=-3n Ipd_off=-470n
.model 325nA D(Ron=1Meg Roff=1G Ilimit=325n epsilon=1 Vfwd=1 Noiseless)
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1 Ron=1m Noiseless)
.model DG D(Vfwd=20k Vrev=0 Revepsilon=0.5 Ron=1m Noiseless)
.model ESDI SW(Ron=50 Roff=1T Vt=0.5 Vh=-0.1 Vser=0.1 Noiseless)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m Noiseless)
.model ENA SW(Ron=1Meg Roff=1u Vt=500m Vh=-100m Noiseless)
.model ENZ SW(Ron=1 Roff=1u Vt=500m Vh=-100m Noiseless)
.param Rser=1u
.param Rcm=45Meg Ccm=0.2p
.param Rdiff=35k Cdiff=0.4p
.param Aol_PB=171 RL_dc=1k
.param SRp=311.5 SRn=-355.2
.param fp1=0.7 fp2=12.8Meg
.param Aol2_dB = {Aol_PB-40+1}
.param Aol2 = {pwr(10, (Aol2_dB)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
.param Ap=0.181 Bp=2.79 Cp=6.59 Dp=7.77e-2
.param An=0.182 Bn=1.92 Cn=13.8 Dn=8.17e-2
.param Mp=4.9 OSp=17.6m
.param Mn=3.667 OSn=30m
.param beta_Zo=1.11
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=112k
.param Zo_max=112k
.param R1a_Zo=1Meg
.param fz1_Zo=0.695
.param fp1_Zo=1.45k
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
+* R1a_Zo) - 1)}
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
.param G2_Zo = {1/actual1_Zo}
.param R1b_Zo=1Meg
.param fp2_Zo=24Meg
.param fz2_Zo=260Meg
.param C1b_Zo = {1 / (fz2_Zo * R1b_Zo * 2 * pi)}
.param R2b_Zo = {(1 / (fp2_Zo * C1b_Zo * 2 * pi))
+- R1b_Zo}
.param R1c_Zo=1Meg
.param fz3_Zo=11Meg
.param fp3_Zo=24Meg
.param C1c_Zo = {1 / (2 * pi * R1c_Zo * fz3_Zo)}
.param R2c_Zo = {R1c_Zo/ ((2 * pi * fp3_Zo * C1c_Zo
+* R1c_Zo) - 1)}
.param actual3_Zo = {R2c_Zo / (R1c_Zo + R2c_Zo)}
.param G3_Zo = {1/actual3_Zo}
.param R1d_Zo=1Meg
.param fz4_Zo=260Meg
.param fp4_Zo=100G
.param C1d_Zo = {1 / (2 * pi * R1d_Zo * fz4_Zo)}
.param R2d_Zo = {R1d_Zo/ ((2 * pi * fp4_Zo * C1d_Zo
+* R1d_Zo) - 1)}
.param actual4_Zo = {R2d_Zo / (R1d_Zo + R2d_Zo)}
.param G4_Zo = {1/actual4_Zo}
.param R1e_Zo=1Meg
.param fz5_Zo=260Meg
.param fp5_Zo=100G
.param C1e_Zo = {1 / (2 * pi * R1e_Zo * fz5_Zo)}
.param R2e_Zo = {R1e_Zo/ ((2 * pi * fp5_Zo * C1e_Zo
+* R1e_Zo) - 1)}
.param actual5_Zo = {R2e_Zo / (R1e_Zo + R2e_Zo)}
.param G5_Zo = {1/actual5_Zo}
.param R1f_Zo=1Meg
.param fz6_Zo=700Meg
.param fp6_Zo=100G
.param C1f_Zo = {1 / (2 * pi * R1f_Zo * fz6_Zo)}
.param R2f_Zo = {R1f_Zo/ ((2 * pi * fp6_Zo * C1f_Zo
+* R1f_Zo) - 1)}
.param actual6_Zo = {R2f_Zo / (R1f_Zo + R2f_Zo)}
.param G6_Zo = {1/actual6_Zo}
.param R1a_Aol=1Meg
.param fz1_Aol=19Meg
.param fp1_Aol=550Meg
.param C1a_Aol = {1 / (2 * pi * R1a_Aol * fz1_Aol)}
.param R2a_Aol = {R1a_Aol/ ((2 * pi * fp1_Aol * C1a_Aol
+* R1a_Aol) - 1)}
.param actual1_Aol = {R2a_Aol / (R1a_Aol + R2a_Aol)}
.param G1_Aol={1/actual1_Aol}
.param R1b_Aol=1Meg
.param fz2_Aol=800Meg
.param fp2_Aol=5G
.param C1b_Aol={1 / (2 * pi * R1b_Aol * fz2_Aol)}
.param R2b_Aol = {R1b_Aol/ ((2 * pi * fp2_Aol * C1b_Aol
+* R1b_Aol) - 1)}
.param actual2_Aol = {R2b_Aol / (R1b_Aol + R2b_Aol)}
.param G2_Aol={1/actual2_Aol}
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param Rej_dc_PSRp=107
.param R1a_PSRp=1Meg
.param fz1_PSRp=18k
.param fp1_PSRp=10Meg
.param C1b_PSRp = {1 / (2 * pi * R1b_PSRp * fz2_PSRp)}
.param R2b_PSRp = {R1b_PSRp/ ((2 * pi * fp2_PSRp * C1b_PSRp
+* R1b_PSRp) - 1)}
.param actual2_PSRp = {R2b_PSRp / (R1b_PSRp + R2b_PSRp)}
.param G2_PSRp = {1/actual2_PSRp}
.param R1b_PSRp=1Meg
.param fz2_PSRp=4Meg
.param fp2_PSRp=10Meg
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param Rej_dc_PSRn=120
.param R1a_PSRn=1Meg
.param fz1_PSRn=210
.param fp1_PSRn=3Meg
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Rej_dc_CMR=110
.param R1a_CMR=1Meg
.param fz1_CMR=17k
.param fp1_CMR=100k
.param R1b_CMR=1Meg
.param fz2_CMR=150k
.param fp2_CMR=11Meg
.param C1b_CMR = {1 / (2 * pi * R1b_CMR * fz2_CMR)}
.param R2b_CMR = {R1b_CMR/ ((2 * pi * fp2_CMR * C1b_CMR
+* R1b_CMR) - 1)}
.param actual2_CMR = {R2b_CMR / (R1b_CMR + R2b_CMR)}
.param G2_CMR = {1/actual2_CMR}
.param R1a_E_n=1Meg
.param fz1_E_n=6Meg
.param fp1_E_n=17Meg
.param C1a_E_n = {1 / (2 * pi * R1a_E_n * fz1_E_n)}
.param R2a_E_n = {R1a_E_n/ ((2 * pi * fp1_E_n * C1a_E_n
+* R1a_E_n) - 1)}
.param actual1_E_n = {R2a_E_n / (R1a_E_n + R2a_E_n)}
.param G1_E_n = {1/actual1_E_n}
.param R1b_E_n=1Meg
.param fp2_E_n=700
.param fz2_E_n=825
.param C1b_E_n = {1 / (fz2_E_n * R1b_E_n * 2 * pi)}
.param R2b_E_n = {(1 / (fp2_E_n * C1b_E_n * 2 * pi))
+- R1b_E_n}
.param R1c_E_n=1Meg
.param fz3_E_n=700k
.param fp3_E_n=800k
.param R1d_E_n=1Meg
.param fz4_E_n=12.1Meg
.param fp4_E_n=30Meg
.param C1d_E_n = {1 / (2 * pi * R1d_E_n * fz4_E_n)}
.param R2d_E_n = {R1c_E_n/ ((2 * pi * fp4_E_n * C1d_E_n
+* R1d_E_n) - 1)}
.param actual4_E_n = {R2d_E_n / (R1d_E_n + R2d_E_n)}
.param G4_E_n = {1/actual4_E_n}
.param R1a_I_n=1Meg
.param fz1_I_n=12.2
.param fp1_I_n=13.55
.param C1b_I_n = {1 / (fz2_I_n * R1b_I_n * 2 * pi)}
.param R2b_I_n = {(1 / (fp2_I_n * C1b_I_n * 2 * pi))
+- R1b_I_n}
.param R1b_I_n=1Meg
.param fp2_I_n=202
.param fz2_I_n=248
.param C1a_I_n = {1 / (2 * pi * R1a_I_n * fz1_I_n)}
.param R2a_I_n = {R1a_I_n/ ((2 * pi * fp1_I_n * C1a_I_n
+* R1a_I_n) - 1)}
.param actual1_I_n = {R2a_I_n / (R1a_I_n + R2a_I_n)}
.param G1_I_n = {1/actual1_I_n}
.param BBp=685f FCp=3.22k EXPp=0.45 FAp=({BBp}*({FCp**Expp}))
.param C1c_E_n = {1 / (2 * pi * R1c_E_n * fz3_E_n)}
.param R2c_E_n = {R1c_E_n/ ((2 * pi * fp3_E_n * C1c_E_n
+* R1c_E_n) - 1)}
.param actual3_E_n = {R2c_E_n / (R1c_E_n + R2c_E_n)}
.param G3_E_n = {1/actual3_E_n}
.param CVsat=10p
.ends ADA4807-4

516
lib/sub/ADA4807.lib Normal file
View File

@@ -0,0 +1,516 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4807 1 2 3 4 5 6
C1 Clamp COM {Cfp1}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}* V(Aol1,COM), {Isink}, 10m), {Isrc}, 10m)
A1 Inn2 Inp2 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
G2 0 Vcc_Int 3 0 1
G3 0 Vee_Int 4 0 1
R6 Vcc_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N054 Vcc_Int 1Meg Temp=-273.15
R9 N054 Vee_Int 1Meg Temp=-273.15
C2 N054 0 1
E1 COM 0 N054 0 1
R10 COM 0 1Meg Temp=-273.15
Cinp COM Inp1 {Ccm}
Cinn Inn1 COM {Ccm}
Cdiff Inp1 Inn1 {Cdiff}
Rinn Inn1 COM {Rcm} Temp=-273.15
Rinp COM Inp1 {Rcm} Temp=-273.15
Vimon N031 5 0
G14 COM Inn2 Inn1 COM 1k
R43 COM Inn2 1m Temp=-273.15
C12 Inn2 COM 1p
DIP N047 Inp2 DI
DIN Inp2 N048 DI
C14 Vcc_Int 0 1n
C15 Vee_Int 0 1n
S3 3 N023 N023 3 ESDI
S4 3 Inn2 Inn2 3 ESDI
S5 N023 4 4 N023 ESDI
S6 Inn2 4 4 Inn2 ESDI
B4 COM N052 I=1m*(V(3,COM)+{Vcm_max}) Rpar=1k Cpar=1n
G13 COM CMp N052 COM 1
R40 CMp COM 1
B5 COM N053 I=1m*(V(4,COM)+{Vcm_min}) Rpar=1k Cpar=1n
G30 COM CMn N053 COM 1
R41 CMn COM 1
VIP N047 CMp 0
VIN CMn N048 0
R1 Inp1 1 {Rser} Temp=-273.15
R2 Inn1 2 {Rser} Temp=-273.15
Rdiff Inp1 Inn1 {Rdiff} Temp=-273.15
B9 Vsatp2 Vcc_Int I=1m*Max(Ap+((Bp*(V(Vimon,COM)**Cp))/((Dp**Cp)+(V(Vimon,COM)**Cp))),40u)
R75 Vsatp2 Vcc_Int 1k
C39 Vsatp2 Vcc_Int {CVsat}
B17 Vee_Int Vsatn1 I=1m*Max(Mn*(-V(Vimon,COM))+OSn,40u)
R76 Vsatn1 Vee_Int 1k
B18 Vee_Int Vsatn2 I=1m*(An+((Bn*(-V(Vimon,COM)**Cn))/((Dn**Cn)+(-V(Vimon,COM)**Cn))))
R96 Vsatn2 Vee_Int 1k
B19 COM Satn I=1m*IF(-V(Vimon,COM)>66m, V(Vsatn2,COM), V(Vsatn1,COM))
R125 Satn COM 1k
C52 Satn COM 1n
B22 Vsatp1 Vcc_Int I=1m*Max(Mp*(V(Vimon,COM))+OSp,40u)
R126 Vsatp1 Vcc_Int 1k
B26 COM Satp I=1m*IF(V(Vimon,COM)>38m, V(Vsatp2,COM),V(Vsatp1,COM))
R127 Satp COM 1k
C54 Satp COM 1n
G15 COM Sense Clamp COM 1m
R3 Sense COM 1k Temp=-273.15
F1 COM Vimon Vimon 1m
R13 Vimon COM 1k
C3 Vimon COM 10p
S1 3 5 5 3 ESDO
S2 5 4 4 5 ESDO
G1 COM N008 N040 N031 {G1_Zo}
R12 N008 COM 1 Temp=-273.15
R15 N008 N009 {R1a_Zo} Temp=-273.15
R16 N009 COM {R2a_Zo} Temp=-273.15
G4 COM N012 N009 COM {G2_Zo}
C4 N009 N008 {C1a_Zo}
R17 N014 COM 1 Temp=-273.15
R18 N014 N015 {R2b_Zo} Temp=-273.15
R19 N015 N037 {R1b_Zo} Temp=-273.15
C5 COM N037 {C1b_Zo}
R20 N012 N013 {R1c_Zo} Temp=-273.15
R21 N013 COM {R2c_Zo} Temp=-273.15
G5 COM N014 N013 COM {G3_Zo}
C6 N013 N012 {C1c_Zo}
R22 N012 COM 1
G6 COM N016 N015 COM 1
R23 N016 N017 {R1d_Zo} Temp=-273.15
R24 N017 COM {R2d_Zo} Temp=-273.15
G7 COM N018 N017 COM {G4_Zo}
C7 N017 N016 {C1d_Zo}
R25 N016 COM 1 Temp=-273.15
R26 N018 N019 {R1e_Zo} Temp=-273.15
R27 N019 COM {R2e_Zo} Temp=-273.15
G8 COM N020 N019 COM {G5_Zo}
C8 N019 N018 {C1e_Zo}
R28 N020 ZoF {R1f_Zo} Temp=-273.15
R29 ZoF COM {R2f_Zo} Temp=-273.15
C9 ZoF N020 {C1f_Zo}
R30 N018 COM 1 Temp=-273.15
R31 N020 COM 1 Temp=-273.15
A2 6 3 COM COM COM COM ENgd COM SCHMITT Vt={-ENVt-10m} Vh={ENVh} Trise={ENTon*2} Tfall={ENToff*2}
G9 COM Vs 3 4 1m
R32 Vs COM 1k Temp=-273.15
A3 Vs COM COM COM COM COM VminGD COM SCHMITT Vt={Vsmin-10m} Vh=10m Trise=5n
A4 Vs COM COM COM COM VmaxGD COM COM SCHMITT Vt={Vsmax+10m} Vh=10m Trise=5n
A5 VminGD COM COM ENgd VmaxGD COM EN COM AND Trise=5n
R33 EN COM 1G Temp=-273.15
R34 VmaxGD COM 1G Temp=-273.15
R35 COM VminGD 1G Temp=-273.15
A6 EN COM COM COM COM _EN COM COM BUF Trise=5n
S7 N009 N008 OL COM OL
A7 COM COM OLp OLn _EN COM OL COM OR Ref=100u Vh=50u Trise=10n
Rx N031 N032 {Rx_Zo} Temp=-273.15
Rdummy N031 COM {Rdummy_Zo} Temp=-273.15
R4 N039 COM 1Meg Temp=-273.15
C20 N039 COM {Cfp2}
G10 COM N039 N038 COM 1<>
G12 COM N025 Sense COM 1
R45 N025 COM 1 Temp=-273.15
R46 N025 N026 {R1a_Aol} Temp=-273.15
R47 N026 COM {R2a_Aol} Temp=-273.15
G16 COM N027 N026 COM {G1_Aol}
C21 N026 N025 {C1a_Aol}
R50 N027 COM 1 Temp=-273.15
R51 N027 N028 {R1a_Aol} Temp=-273.15
R52 N028 COM {R2a_Aol} Temp=-273.15
G17 COM N029 N028 COM {G1_Aol}
C22 N028 N027 {C1a_Aol}
R53 N029 COM 1 Temp=-273.15
R54 N029 N030 {R1b_Aol} Temp=-273.15
R55 N030 COM {R2b_Aol} Temp=-273.15
C23 N030 N029 {C1b_Aol}
G18 COM N038 N030 COM {G2_Aol}
R56 N038 COM 1 Temp=-273.15
R57 N040 COM 1Meg Temp=-273.15
C26 N040 COM {Cfp2}
G19 COM N040 N039 COM 1<>
G21 N035 N036 N050 N042 1<>
R59 N036 N035 1Meg Temp=-273.15
C27 N045 N046 {C1a_PSRp}
G22 COM N046 VCC_Int COM {G1_PSRp}
R60 N046 COM 1 Temp=-273.15
R61 N045 N046 {R1a_PSRp} Temp=-273.15
R62 N045 COM {R2a_PSRp} Temp=-273.15
C28 N043 N044 {C1b_PSRp}
R63 N043 COM {R2b_PSRp} Temp=-273.15
R64 N043 N044 {R1b_PSRp} Temp=-273.15
G23 COM N044 N045 COM 1
R66 N044 COM 1 Temp=-273.15
G24 COM N050 N043 COM {G2_PSRp}
R67 N050 COM 1 Temp=-273.15
C29 N042 N041 {C1a_PSRn}
G25 COM N041 VEE_Int COM {G1_PSRn}
R68 N041 COM 1 Temp=-273.15
R70 N042 N041 {R1a_PSRn} Temp=-273.15
R71 N042 COM {R2a_PSRn} Temp=-273.15
G26 COM N035 N022 COM 1k
R72 COM N035 1m Temp=-273.15
G27 COM Inp2 N036 COM 1m
R73 COM Inp2 1k Temp=-273.15
C30 N002 N001 {C1a_CMR}
R58 N001 COM 1 Temp=-273.15
R74 N002 N001 {R1a_CMR} Temp=-273.15
R77 N002 COM {R2a_CMR} Temp=-273.15
R78 N003 N004 {R1b_CMR} Temp=-273.15
R79 N004 COM {R2b_CMR} Temp=-273.15
G20 COM N005 N004 COM {G2_CMR}
C31 N004 N003 {C1b_CMR}
R80 N003 COM 1 Temp=-273.15
G29 COM N003 N002 COM 1
R81 N005 COM 1 Temp=-273.15
G31 COM N001 Inp1 COM {G1_CMR}
G32 N021 N022 N005 COM 1<>
R82 N022 N021 1Meg Temp=-273.15
G33 COM N023 Inp1 COM 1k
R83 COM N023 1m Temp=-273.15
C32 N023 COM 1p
B2 0 VICM I=1m*((V(1,COM)+V(2,COM))/2) Rpar=1k Cpar=1n
A8 3 VICM COM COM COM NPN PNP COM SCHMITT Vt={1.5-50m} Vh=50m Tau=1u
R84 NPN COM 1G Temp=-273.15
R85 PNP COM 1G Temp=-273.15
BIbp Inp1 COM I={Ib+Ibdrift*(Temp-27)}+V(NPN,COM)*{Ib2}
BIbn Inn1 N051 I={Ib-Ios+(Ibdrift-Iosdrift)*(Temp-27)}+V(NPN,COM)*{Ib2-Ios2}
B6 Inp1 COM I=IF(V(PNP,COM)>0.5, I(V_I_np), I(V_I_nn))
B7 Inn1 COM I=IF(V(PNP,COM)>0.5, I(V_I_np), I(V_I_nn))
A9 COM COM COM COM COM COM N063 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={Enp} Enk={Enkp}
R86 N065 COM 1 Temp=-273.15
R87 N067 N068 {R1a_E_n} Temp=-273.15
R88 N068 COM {R2a_E_n} Temp=-273.15
G34 COM N069 N068 COM {G1_E_n}
C33 N068 N067 {C1a_E_n}
R89 N069 COM 1 Temp=-273.15
R90 N069 N070 {R1a_E_n} Temp=-273.15
R91 N070 COM {R2a_E_n} Temp=-273.15
G35 COM N071 N070 COM {1u*G1_E_n}
C34 N070 N069 {C1a_E_n}
R92 N071 COM 1Meg Temp=-273.15
C35 N071 COM 2.5f
G36 COM N072 N071 COM 1<>
R93 N072 COM 1Meg Temp=-273.15
G37 COM E_np N072 COM 1<>
R94 E_np COM 1Meg Temp=-273.15
R95 N063 COM 100k Temp=-273.15
R97 N063 N064 {R2b_E_n} Temp=-273.15
R98 N064 N077 {R1b_E_n} Temp=-273.15
C36 COM N077 {C1b_E_n}
G38 COM N065 N064 COM 1
C37 N072 COM 2.5f
C38 E_np COM 2.5f
R99 N065 N066 {R1c_E_n} Temp=-273.15
R100 N066 COM {R2c_E_n} Temp=-273.15
G39 COM N067 N066 COM {G3_E_n}
C40 N066 N065 {C1c_E_n}
R101 N067 COM 1 Temp=-273.15
A10 COM COM COM COM COM COM N086 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={Enn} Enk={Enkn}
R102 N086 COM 100k Temp=-273.15
R103 N086 N087 {R1d_E_n} Temp=-273.15
R104 N087 COM {R2d_E_n} Temp=-273.15
G40 COM N088 N087 COM {G4_E_n}
C41 N087 N086 {C1d_E_n}
R105 N088 COM 1 Temp=-273.15
R106 N088 N089 {R1d_E_n} Temp=-273.15
R107 N089 COM {R2d_E_n} Temp=-273.15
C42 N089 N088 {C1d_E_n}
G42 COM N090 N089 COM {G4_E_n}
R108 N090 COM 1 Temp=-273.15
R109 N090 N091 {R1d_E_n} Temp=-273.15
R110 N091 COM {R2d_E_n} Temp=-273.15
C43 N091 N090 {C1d_E_n}
G43 COM N092 N091 COM {1u*G4_E_n}
R111 N092 COM 1Meg Temp=-273.15
C44 N092 COM 2.5f
G44 COM N093 N092 COM 1<>
R112 N093 COM 1Meg Temp=-273.15
G45 COM E_nn N093 COM 1<>
R113 E_nn COM 1Meg Temp=-273.15
C45 N093 COM 2.5f
C46 E_nn COM 2.5f
Gb1 COM N082 N081 COM 1
R114 N083 COM 1 Temp=-273.15
V_I_np N082 N083 0
Gb2 COM N095 N094 COM 1
R115 N096 COM 1 Temp=-273.15
V_I_nn N095 N096 0
A11 COM COM COM COM COM COM N094 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={Inn} Enk={Inkp}
R116 N094 COM 100k Temp=-273.15
A12 COM COM COM COM COM COM N073 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={FAp}/(freq**{EXPp})
R117 N073 COM 100k Temp=-273.15
A13 COM N080 COM COM COM COM N081 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={BBp}
R118 N081 COM 100k Temp=-273.15
Gb3 COM N080 N079 COM 1
R119 N078 N079 {R2b_I_n} Temp=-273.15
R120 N079 N085 {R1b_I_n} Temp=-273.15
C47 COM N085 {C1b_I_n}
R121 N080 COM 1 Temp=-273.15
R122 N073 N074 {R1a_I_n} Temp=-273.15
R123 N074 COM {R2a_I_n} Temp=-273.15
G46 COM N075 N074 COM {G1_I_n}
C48 N074 N073 {C1a_I_n}
R124 N075 COM 1 Temp=-273.15
R131 N075 N076 {R1a_I_n} Temp=-273.15
R132 N076 COM {R2a_I_n} Temp=-273.15
G47 COM N078 N076 COM {G1_I_n}
C51 N076 N075 {C1a_I_n}
R133 N078 COM 1 Temp=-273.15
R134 N024 N023 1Meg Temp=-273.15
B12 N023 N024 I=1u*({Vos+Drift*(Temp-27)} +V(NPN,COM)*{Vos2})
R135 N021 N024 1Meg Temp=-273.15
B13 N024 N021 I=1u*(IF(V(PNP,COM)>0.5, V(E_np,COM), V(E_nn,COM)))
S8 COM Aol1 EN COM ENA
S9 COM Clamp EN COM ENA
S10 COM N032 EN COM ENZ
VIBn N051 COM 0
F2 3 4 Vimon 1
BIq 3 4 I=IF(V(EN,COM)>0.5, {Iq_on}, {Iq_off})
B38 COM N032 I=Uplim(Dnlim({G6_Zo}* V(ZoF,COM), {Izon}, 25m), {Izop}, 25m)
C13 COM ZoF 20f
R36 _EN COM 1G Temp=-273.15
C19 5 COM 2f
C55 COM N074 1f
G11 COM Vo 5 COM 1m
R38 Vo COM 1k
C58 Vo COM 10p
C49 Vsatp1 Vcc_Int {CVsat}
C50 Vsatn2 Vee_Int {CVsat}
C53 Vsatn1 Vee_Int {CVsat}
D1 3 6 325nA
DGP N055 Clamp DG
DGN Clamp N056 DG
VGN N056 N060 0
VGP N055 N059 0
G28 COM N059 GRpi COM 1k
G41 COM N060 GRni COM 1k
R14 N059 COM 1m Temp=-273.15
R37 N060 COM 1m Temp=-273.15
R42 GRpi COM 1k Temp=-273.15
R48 GRni COM 1k Temp=-273.15
C10 GRni COM 10p
C11 GRpi COM 10p
C18 Clamp N059 1f
C24 Clamp N060 1f
B3 COM GRpi I=1m*({Zo_max}* {Iscp}+V(3,COM))
B8 COM GRni I=1m*({Zo_max}* {Iscn}+V(4,COM))
DOP1 Vsatp N031 DO
DON1 N031 Vsatn DO
G48 COM Vsatp Satp COM 1k
R11 Vsatp COM 1m
G49 COM Vsatn Satn COM 1k
R49 Vsatn COM 1m
C56 N031 Vsatp 1f
C57 N031 Vsatn 1f
C59 Vsatp COM 1n
C60 Vsatn COM 1n
R5 OLp COM 1k
R39 OLn COM 1k
C16 OLp COM 1p
C17 OLn COM 1p
C25 OL COM 1p
C61 Aol1 COM 1f
F3 COM OLp VGP 1m
F4 COM OLn VGN -1m
.param Enp=4n Enkp=11
.param Enn=5.9n Enkn=380
.param Inn=0.4p Inkp=2.1k
.param Vos=-7.33u Drift=0.7u
.param Vos2=108.63u Ib2=1.654u Ios2=25n
.param Ib=-1.2u Ios=9.15n
.param Ibdrift=2.5n Iosdrift=70p
.param Vcm_min=-0.2 Vcm_max=0.2
.param Vsmin=2.7 Vsmax=11
.param Iscp=80m Iscn=-80m
.param IZop={Rx_Zo*Iscp} IZon={Rx_Zo*Iscn}
.param Iq_on=1m Iq_off=2.385u
.param ENVt=3.5 ENVh=200m
.param ENTon=1.3u ENToff=265n
.param Ipd_on=-3n Ipd_off=-470n
.model 325nA D(Ron=1Meg Roff=1G Ilimit=325n epsilon=1 Vfwd=1 Noiseless)
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1 Ron=1m Noiseless)
.model DG D(Vfwd=20k Vrev=0 Revepsilon=0.5 Ron=1m Noiseless)
.model ESDI SW(Ron=50 Roff=1T Vt=0.5 Vh=-0.1 Vser=0.1 Noiseless)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m Noiseless)
.model ENA SW(Ron=1Meg Roff=1u Vt=500m Vh=-100m Noiseless)
.model ENZ SW(Ron=1 Roff=1u Vt=500m Vh=-100m Noiseless)
.param Rser=1u
.param Rcm=45Meg Ccm=0.2p
.param Rdiff=35k Cdiff=0.4p
.param Aol_PB=171 RL_dc=1k
.param SRp=311.5 SRn=-355.2
.param fp1=0.7 fp2=12.8Meg
.param Aol2_dB = {Aol_PB-40+1}
.param Aol2 = {pwr(10, (Aol2_dB)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
.param Ap=0.181 Bp=2.79 Cp=6.59 Dp=7.77e-2
.param An=0.182 Bn=1.92 Cn=13.8 Dn=8.17e-2
.param Mp=4.9 OSp=17.6m
.param Mn=3.667 OSn=30m
.param beta_Zo=1.11
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=112k
.param Zo_max=112k
.param R1a_Zo=1Meg
.param fz1_Zo=0.695
.param fp1_Zo=1.45k
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
+* R1a_Zo) - 1)}
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
.param G2_Zo = {1/actual1_Zo}
.param R1b_Zo=1Meg
.param fp2_Zo=24Meg
.param fz2_Zo=260Meg
.param C1b_Zo = {1 / (fz2_Zo * R1b_Zo * 2 * pi)}
.param R2b_Zo = {(1 / (fp2_Zo * C1b_Zo * 2 * pi))
+- R1b_Zo}
.param R1c_Zo=1Meg
.param fz3_Zo=11Meg
.param fp3_Zo=24Meg
.param C1c_Zo = {1 / (2 * pi * R1c_Zo * fz3_Zo)}
.param R2c_Zo = {R1c_Zo/ ((2 * pi * fp3_Zo * C1c_Zo
+* R1c_Zo) - 1)}
.param actual3_Zo = {R2c_Zo / (R1c_Zo + R2c_Zo)}
.param G3_Zo = {1/actual3_Zo}
.param R1d_Zo=1Meg
.param fz4_Zo=260Meg
.param fp4_Zo=100G
.param C1d_Zo = {1 / (2 * pi * R1d_Zo * fz4_Zo)}
.param R2d_Zo = {R1d_Zo/ ((2 * pi * fp4_Zo * C1d_Zo
+* R1d_Zo) - 1)}
.param actual4_Zo = {R2d_Zo / (R1d_Zo + R2d_Zo)}
.param G4_Zo = {1/actual4_Zo}
.param R1e_Zo=1Meg
.param fz5_Zo=260Meg
.param fp5_Zo=100G
.param C1e_Zo = {1 / (2 * pi * R1e_Zo * fz5_Zo)}
.param R2e_Zo = {R1e_Zo/ ((2 * pi * fp5_Zo * C1e_Zo
+* R1e_Zo) - 1)}
.param actual5_Zo = {R2e_Zo / (R1e_Zo + R2e_Zo)}
.param G5_Zo = {1/actual5_Zo}
.param R1f_Zo=1Meg
.param fz6_Zo=700Meg
.param fp6_Zo=100G
.param C1f_Zo = {1 / (2 * pi * R1f_Zo * fz6_Zo)}
.param R2f_Zo = {R1f_Zo/ ((2 * pi * fp6_Zo * C1f_Zo
+* R1f_Zo) - 1)}
.param actual6_Zo = {R2f_Zo / (R1f_Zo + R2f_Zo)}
.param G6_Zo = {1/actual6_Zo}
.param R1a_Aol=1Meg
.param fz1_Aol=19Meg
.param fp1_Aol=550Meg
.param C1a_Aol = {1 / (2 * pi * R1a_Aol * fz1_Aol)}
.param R2a_Aol = {R1a_Aol/ ((2 * pi * fp1_Aol * C1a_Aol
+* R1a_Aol) - 1)}
.param actual1_Aol = {R2a_Aol / (R1a_Aol + R2a_Aol)}
.param G1_Aol={1/actual1_Aol}
.param R1b_Aol=1Meg
.param fz2_Aol=800Meg
.param fp2_Aol=5G
.param C1b_Aol={1 / (2 * pi * R1b_Aol * fz2_Aol)}
.param R2b_Aol = {R1b_Aol/ ((2 * pi * fp2_Aol * C1b_Aol
+* R1b_Aol) - 1)}
.param actual2_Aol = {R2b_Aol / (R1b_Aol + R2b_Aol)}
.param G2_Aol={1/actual2_Aol}
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param Rej_dc_PSRp=107
.param R1a_PSRp=1Meg
.param fz1_PSRp=18k
.param fp1_PSRp=10Meg
.param C1b_PSRp = {1 / (2 * pi * R1b_PSRp * fz2_PSRp)}
.param R2b_PSRp = {R1b_PSRp/ ((2 * pi * fp2_PSRp * C1b_PSRp
+* R1b_PSRp) - 1)}
.param actual2_PSRp = {R2b_PSRp / (R1b_PSRp + R2b_PSRp)}
.param G2_PSRp = {1/actual2_PSRp}
.param R1b_PSRp=1Meg
.param fz2_PSRp=4Meg
.param fp2_PSRp=10Meg
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param Rej_dc_PSRn=120
.param R1a_PSRn=1Meg
.param fz1_PSRn=210
.param fp1_PSRn=3Meg
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Rej_dc_CMR=110
.param R1a_CMR=1Meg
.param fz1_CMR=17k
.param fp1_CMR=100k
.param R1b_CMR=1Meg
.param fz2_CMR=150k
.param fp2_CMR=11Meg
.param C1b_CMR = {1 / (2 * pi * R1b_CMR * fz2_CMR)}
.param R2b_CMR = {R1b_CMR/ ((2 * pi * fp2_CMR * C1b_CMR
+* R1b_CMR) - 1)}
.param actual2_CMR = {R2b_CMR / (R1b_CMR + R2b_CMR)}
.param G2_CMR = {1/actual2_CMR}
.param R1a_E_n=1Meg
.param fz1_E_n=6Meg
.param fp1_E_n=17Meg
.param C1a_E_n = {1 / (2 * pi * R1a_E_n * fz1_E_n)}
.param R2a_E_n = {R1a_E_n/ ((2 * pi * fp1_E_n * C1a_E_n
+* R1a_E_n) - 1)}
.param actual1_E_n = {R2a_E_n / (R1a_E_n + R2a_E_n)}
.param G1_E_n = {1/actual1_E_n}
.param R1b_E_n=1Meg
.param fp2_E_n=700
.param fz2_E_n=825
.param C1b_E_n = {1 / (fz2_E_n * R1b_E_n * 2 * pi)}
.param R2b_E_n = {(1 / (fp2_E_n * C1b_E_n * 2 * pi))
+- R1b_E_n}
.param R1c_E_n=1Meg
.param fz3_E_n=700k
.param fp3_E_n=800k
.param R1d_E_n=1Meg
.param fz4_E_n=12.1Meg
.param fp4_E_n=30Meg
.param C1d_E_n = {1 / (2 * pi * R1d_E_n * fz4_E_n)}
.param R2d_E_n = {R1c_E_n/ ((2 * pi * fp4_E_n * C1d_E_n
+* R1d_E_n) - 1)}
.param actual4_E_n = {R2d_E_n / (R1d_E_n + R2d_E_n)}
.param G4_E_n = {1/actual4_E_n}
.param R1a_I_n=1Meg
.param fz1_I_n=12.2
.param fp1_I_n=13.55
.param C1b_I_n = {1 / (fz2_I_n * R1b_I_n * 2 * pi)}
.param R2b_I_n = {(1 / (fp2_I_n * C1b_I_n * 2 * pi))
+- R1b_I_n}
.param R1b_I_n=1Meg
.param fp2_I_n=202
.param fz2_I_n=248
.param C1a_I_n = {1 / (2 * pi * R1a_I_n * fz1_I_n)}
.param R2a_I_n = {R1a_I_n/ ((2 * pi * fp1_I_n * C1a_I_n
+* R1a_I_n) - 1)}
.param actual1_I_n = {R2a_I_n / (R1a_I_n + R2a_I_n)}
.param G1_I_n = {1/actual1_I_n}
.param BBp=685f FCp=3.22k EXPp=0.45 FAp=({BBp}*({FCp**Expp}))
.param C1c_E_n = {1 / (2 * pi * R1c_E_n * fz3_E_n)}
.param R2c_E_n = {R1c_E_n/ ((2 * pi * fp3_E_n * C1c_E_n
+* R1c_E_n) - 1)}
.param actual3_E_n = {R2c_E_n / (R1c_E_n + R2c_E_n)}
.param G3_E_n = {1/actual3_E_n}
.param CVsat=10p
.ends ADA4807

247
lib/sub/ADA4891-1.lib Normal file
View File

@@ -0,0 +1,247 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4891-1 1 2 3 4 5
C1 Clamp COM {Cfp1}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}*V(Aol1,COM), {Isink},1m),{Isrc},1m)
G2 0 Vcc_Int N031 0 1
G3 0 Vee_Int N033 0 1
R6 Vcc_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N029 Vcc_Int 1Meg Temp=-273.15
R9 N029 Vee_Int 1Meg Temp=-273.15
C2 N029 0 1
R25 Aol2 COM 1Meg Temp=-273.15
G7 COM Aol2 Clamp COM 1<>
C14 Vcc_Int 0 1n
C15 Vee_Int 0 1n
R1 N003 1 {Rser} Temp=-273.15
R82 N033 4 1<> Temp=-273.15
A1 Inn1 Inp1 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
R47 N031 3 1<> Temp=-273.15
R45 Vimon COM 1k Temp=-273.15
C34 COM 0 1n
G30 N031 N033 Vimon COM 1
C38 Aol2 COM {Cfp2}
Vimon N017 5 0
F1 COM Vimon Vimon 1m
DGP N025 Clamp DG
DGN Clamp N026 DG
B10 COM Satn I=1m*Max(Min(V(Vsatn1,COM), V(Vsatn2,COM)),V(Vsatn3,COM))
C19 Satn COM 1n
R21 Satn COM 1k Temp=-273.15
VGN N026 N028 0
VGP N025 N027 0
G18 N011 Inp1 N021 N020 1m
R51 Inp1 N011 1k Temp=-273.15
C32 N021 N022 {C1a_PSRp}
G19 COM N022 VCC_Int COM {G1_PSRp}
R52 N022 COM 1 Temp=-273.15
R55 N021 N022 {R1a_PSRp} Temp=-273.15
R56 N021 COM {R2a_PSRp} Temp=-273.15
C33 N020 N019 {C1a_PSRn}
G20 COM N019 VEE_Int COM {G1_PSRn}
R57 N019 COM 1 Temp=-273.15
R58 N020 N019 {R1a_PSRn} Temp=-273.15
R59 N020 COM {R2a_PSRn} Temp=-273.15
R76 N004 N009 1k Temp=-273.15
B17 N009 N004 I=1m*{Vos+Drift* (Temp-27)}
G32 N005 N006 N002 COM 1m
R77 N006 N005 1k Temp=-273.15
R79 N005 N004 1k Temp=-273.15
G33 N004 N005 E_n COM 1m
C39 N002 N001 {C1a_CMR}
G34 COM N001 N003 COM {G1_CMR}
R80 N002 N001 {R1a_CMR} Temp=-273.15
R81 N002 COM {R2a_CMR} Temp=-273.15
R83 N001 COM 1 Temp=-273.15
G35 COM IVR N003 COM 1m
G36 COM Inn1 N024 COM 1k
R84 COM IVR 1k Temp=-273.15
R85 COM Inn1 1m Temp=-273.15
C40 Inn1 COM 1.59n
C41 IVR COM 1.59f
Ibn N024 COM {Ib-Ios}
R2 N024 2 {Rser} Temp=-273.15
Cinp COM N003 {Ccm}
Cinn N024 COM {Ccm}
Rinn N024 COM {Rcm} Temp=-273.15
Rinp COM N003 {Rcm} Temp=-273.15
G28 COM N011 N006 COM 1k
R72 COM N011 1m Temp=-273.15
C42 N011 COM 1.59n
C43 Aol1 COM 1.59e-18
G15 COM N027 GRpi COM 1k
G16 COM N028 GRni COM 1k
R11 N027 COM 1m Temp=-273.15
R12 N028 COM 1m Temp=-273.15
R37 GRpi COM 1k Temp=-273.15
R44 GRni COM 1k Temp=-273.15
C6 GRni COM 10p
C7 GRpi COM 10p
S2 3 5 5 3 ESDO
S3 5 4 4 5 ESDO
DOP Vsatp N017 DO
DON N017 Vsatn DO
G5 COM Vsatp Satp COM 1k
R92 Vsatp COM 1m
G6 COM Vsatn Satn COM 1k
R93 Vsatn COM 1m
C10 Vimon COM 1.59f
S4 3 N009 N009 3 ESDI
S5 3 Inn1 Inn1 3 ESDI
S6 N009 4 4 N009 ESDI
S7 Inn1 4 4 Inn1 ESDI
C9 N017 Vsatp 1f
C16 N017 Vsatn 1f
C27 Clamp N027 1f
C44 Clamp N028 1f
Cdiff N003 N024 {Cdiff}
C17 Vsatp COM 1n
C23 Vsatn COM 1n
E1 COM 0 N029 0 1
R10 COM 0 1Meg Temp=-273.15
C51 N020 COM 1f
C52 N021 COM 1f
B3 COM CMpi I=1m*(V(3,COM)+{Vcm_max}) Cpar=1n
G17 COM CMp CMpi COM 1k
R53 COM CMp 1m Temp=-273.15
B8 COM CMni I=1m*(V(4,COM)+{Vcm_min}) Cpar=1n
G22 COM CMn CMni COM 1k
R54 COM CMn 1m Temp=-273.15
R62 CMpi COM 1k Temp=-273.15
R88 CMni COM 1k Temp=-273.15
DIP CMp IVR DI
DIN IVR CMn DI
C54 IVR CMn 1f
C48 IVR CMp 1f
G14 COM N009 IVR COM 1k
R14 COM N009 1m Temp=-273.15
C49 N009 COM 1.59n
Rdiff N003 N024 {Rdiff} Temp=-273.15
B2 COM Satp I=1m*Min(V(Vsatp1,COM), V(Vsatp2,COM))
C11 Satp COM 1n
R18 Satp COM 1k Temp=-273.15
R28 N012 COM 1Meg Temp=-273.15
C50 N012 COM {Cfp3}
R29 N013 COM 1Meg Temp=-273.15
G42 COM N013 N012 COM 1<>
C53 N013 COM {Cfp4}
R30 N014 COM 1Meg Temp=-273.15
G43 COM N014 N013 COM 1<>
C55 N014 COM {Cfp5}
R31 N015 COM 1Meg Temp=-273.15
G44 COM N015 N014 COM 1<>
C56 N015 COM {Cfp6}
B5 Vee_Int Vsatn1 I=1m*Max(Mn1*(-I(Vimon))+OSn1,OSn1)
R4 Vsatn1 Vee_Int 1k
C3 Vsatn1 Vee_Int 1n
B6 Vsatp1 Vcc_Int I=1m*Max(Mp1*(I(Vimon))+OSp1,OSp1)
R5 Vsatp1 Vcc_Int 1k
C4 Vsatp1 Vcc_Int 1n
B7 Vee_Int Vsatn2 I=1m*Max(Mn2*(-I(Vimon))+OSn2,OSn1)
R13 Vsatn2 Vee_Int 1k
C25 Vsatn2 Vee_Int 1n
B9 Vsatp2 Vcc_Int I=1m*Max(Mp2*(I(Vimon))+OSp2,OSp1)
R34 Vsatp2 Vcc_Int 1k
C26 Vsatp2 Vcc_Int 1n
B13 COM GRpi I=1m*({Zo_max}* {Iscp}+V(3,COM))
B14 COM GRni I=1m*({Zo_max}* {Iscn}+V(4,COM))
A3 COM COM COM COM COM COM E_n COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k EN=IF(freq>600, freq*Pwr(({A2}+{B2}*Pwr(freq,{C2})),(-1/{C2}))+0.36n, freq*Pwr(({A1}+{B1}*Pwr(freq,{C1})),(-1/{C1})))
R35 E_n COM 100k Temp=-273.15
Rx Zo_out N016 {Rx_Zo} Noiseless
Rdummy Zo_out COM {Rdummy_Zo} Noiseless
R3 N016 COM 1 Noiseless
B11 COM N016 I=Uplim(Dnlim({G1_Zo}* V(Zo_in,Zo_out), {Izon}, 25m), {Izop}, 25m)
G1 COM N012 Aol2 COM 1<>
Lout Zo_out N017 7n
Cout N017 COM 1.3p
R23 N007 COM 9.7724 Noiseless
L1 N007 N008 5.413e-9
C5 N008 N007 106.103e-12
G4 COM N007 N015 COM 0.1
G8 COM Zo_in N007 COM 1.0233
R16 Zo_in COM 1 Noiseless
Ibp N003 COM {Ib}
R17 Aol1 COM 1Meg Temp=-273.15
R19 Clamp COM 1Meg Temp=-273.15
Iq N031 N033 {Iq_on}
CP1 1 COM 1f
B4 Vee_Int Vsatn3 I=1m*Max(Mn3*(-I(Vimon))+OSn3,OSn1)
R20 Vsatn3 Vee_Int 1k
C8 Vsatn3 Vee_Int 1n
.param Vos=-675u Drift=6u
.param Ib=252.06p Ios=498.6p
.param Vcm_min=-0.3 Vcm_max=-0.8
.param Vsmin=2.7 Vsmax=5.5
.param Iscp=205m Iscn=-307m
.param Iq_on=4.4m Iq_off=0.8m
.param IZop={Rx_Zo*Iscp} IZon={Rx_Zo*Iscn}
.param ENVt=2.6 ENVh=10m
.param ENTon=166n ENToff=49n
.param Ipd_on=65n Ipd_off=-22u
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model DG D(Vfwd=10k Vrev=0 Revepsilon=0.5 Ron=1m Noiseless )
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1 Ron=1m Noiseless)
.model PD D(Ron=0.5 Epsilon=0.1 Noiseless)
.model ESDI SW(Ron=50 Roff=1T Vt=700m Vh=-350m Vser=0.1 Noiseless)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
.param Aol2_dB = {Aol_PB-40+1}
.param Aol2 = {pwr(10, (Aol2_dB)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Cfp3={1 / (2 * pi * fp3 * 1Meg)}
.param Cfp4={1 / (2 * pi * fp4 * 1Meg)}
.param Cfp5={1 / (2 * pi * fp5 * 1Meg)}
.param Cfp6={1 / (2 * pi * fp6 * 1Meg)}
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Aol_PB=83.6
.param SRp=204.1 SRn=-252.2
.param fp1=9k fp2=650Meg fp3=800Meg
.param fp4=1.2G fp5=1.5G fp6=1.7G
.param Rser=1m
.param Ccm=2.2p Rcm=5G
.param Cdiff=0.8p Rdiff=10Meg
.param Rej_dc_CMR=88
.param R1a_CMR=1Meg
.param fz1_CMR=27k
.param fp1_CMR=35Meg
.param Rej_dc_PSRp=65
.param R1a_PSRp=1Meg
.param fz1_PSRp=125k
.param fp1_PSRp=16Meg
.param Rej_dc_PSRn=63
.param R1a_PSRn=1Meg
.param fz1_PSRn=250k
.param fp1_PSRn=75Meg
.param Mp1=6.09 OSp1=30m
.param Mn1=5.12 OSn1=4.75m
.param Mp2=6.8 OSp2=-10m
.param Mn2=4.24 OSn2=20m
.param Mn3=8.47 OSn3=-360m
.param A1=-2.5 B1=5.17 C1=77.5m
.param A2=-79.9 B2=54.6 C2=211m
.param beta_Zo=1.13
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=35.81
.param Zo_max={Zo_dc}
.ends ADA4891-1

260
lib/sub/ADA4891-3.lib Normal file
View File

@@ -0,0 +1,260 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4891-3 1 2 3 4 5 6
C1 Clamp COM {Cfp1}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}*V(Aol1,COM), {Isink},1m),{Isrc},1m)
G2 0 Vcc_Int N031 0 1
G3 0 Vee_Int N033 0 1
R6 Vcc_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N029 Vcc_Int 1Meg Temp=-273.15
R9 N029 Vee_Int 1Meg Temp=-273.15
C2 N029 0 1
R25 Aol2 COM 1Meg Temp=-273.15
G7 COM Aol2 Clamp COM 1<>
C14 Vcc_Int 0 1n
C15 Vee_Int 0 1n
R1 N003 1 {Rser} Temp=-273.15
R82 N033 4 1<> Temp=-273.15
A1 Inn1 Inp1 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
R47 N031 3 1<> Temp=-273.15
R45 Vimon COM 1k Temp=-273.15
C34 COM 0 1n
G30 N031 N033 Vimon COM 1
C38 Aol2 COM {Cfp2}
Vimon N017 5 0
F1 COM Vimon Vimon 1m
DGP N025 Clamp DG
DGN Clamp N026 DG
C19 Satn COM 1n
R21 Satn COM 1k Temp=-273.15
VGN N026 N028 0
VGP N025 N027 0
G18 N011 Inp1 N021 N020 1m
R51 Inp1 N011 1k Temp=-273.15
C32 N021 N022 {C1a_PSRp}
G19 COM N022 VCC_Int COM {G1_PSRp}
R52 N022 COM 1 Temp=-273.15
R55 N021 N022 {R1a_PSRp} Temp=-273.15
R56 N021 COM {R2a_PSRp} Temp=-273.15
C33 N020 N019 {C1a_PSRn}
G20 COM N019 VEE_Int COM {G1_PSRn}
R57 N019 COM 1 Temp=-273.15
R58 N020 N019 {R1a_PSRn} Temp=-273.15
R59 N020 COM {R2a_PSRn} Temp=-273.15
R76 N004 N009 1k Temp=-273.15
B17 N009 N004 I=1m*{Vos+Drift* (Temp-27)}
G32 N005 N006 N002 COM 1m
R77 N006 N005 1k Temp=-273.15
R79 N005 N004 1k Temp=-273.15
G33 N004 N005 E_n COM 1m
C39 N002 N001 {C1a_CMR}
G34 COM N001 N003 COM {G1_CMR}
R80 N002 N001 {R1a_CMR} Temp=-273.15
R81 N002 COM {R2a_CMR} Temp=-273.15
R83 N001 COM 1 Temp=-273.15
G35 COM IVR N003 COM 1m
G36 COM Inn1 N024 COM 1k
R84 COM IVR 1k Temp=-273.15
R85 COM Inn1 1m Temp=-273.15
C40 Inn1 COM 1.59n
C41 IVR COM 1.59f
Ibn N024 COM {Ib-Ios}
R2 N024 2 {Rser} Temp=-273.15
Cinp COM N003 {Ccm}
Cinn N024 COM {Ccm}
Rinn N024 COM {Rcm} Temp=-273.15
Rinp COM N003 {Rcm} Temp=-273.15
G28 COM N011 N006 COM 1k
R72 COM N011 1m Temp=-273.15
C42 N011 COM 1.59n
C43 Aol1 COM 1.59e-18
G15 COM N027 GRpi COM 1k
G16 COM N028 GRni COM 1k
R11 N027 COM 1m Temp=-273.15
R12 N028 COM 1m Temp=-273.15
R37 GRpi COM 1k Temp=-273.15
R44 GRni COM 1k Temp=-273.15
C6 GRni COM 10p
C7 GRpi COM 10p
S2 3 5 5 3 ESDO
S3 5 4 4 5 ESDO
DOP Vsatp N017 DO
DON N017 Vsatn DO
G5 COM Vsatp Satp COM 1k
R92 Vsatp COM 1m
G6 COM Vsatn Satn COM 1k
R93 Vsatn COM 1m
C10 Vimon COM 1.59f
S4 3 N009 N009 3 ESDI
S5 3 Inn1 Inn1 3 ESDI
S6 N009 4 4 N009 ESDI
S7 Inn1 4 4 Inn1 ESDI
C9 N017 Vsatp 1f
C16 N017 Vsatn 1f
C27 Clamp N027 1f
C44 Clamp N028 1f
Cdiff N003 N024 {Cdiff}
C17 Vsatp COM 1n
C23 Vsatn COM 1n
E1 COM 0 N029 0 1
R10 COM 0 1Meg Temp=-273.15
C51 N020 COM 1f
C52 N021 COM 1f
B3 COM CMpi I=1m*(V(3,COM)+{Vcm_max}) Cpar=1n
G17 COM CMp CMpi COM 1k
R53 COM CMp 1m Temp=-273.15
B8 COM CMni I=1m*(V(4,COM)+{Vcm_min}) Cpar=1n
G22 COM CMn CMni COM 1k
R54 COM CMn 1m Temp=-273.15
R62 CMpi COM 1k Temp=-273.15
R88 CMni COM 1k Temp=-273.15
DIP CMp IVR DI
DIN IVR CMn DI
C54 IVR CMn 1f
C48 IVR CMp 1f
G14 COM N009 IVR COM 1k
R14 COM N009 1m Temp=-273.15
C49 N009 COM 1.59n
Rdiff N003 N024 {Rdiff} Temp=-273.15
B2 COM Satp I=1m*Min(V(Vsatp1,COM), V(Vsatp2,COM))
C11 Satp COM 1n
R18 Satp COM 1k Temp=-273.15
G9 COM Vs 3 4 1m
R19 Vs COM 1k Temp=-273.15
A9 Vs COM COM COM COM COM VminGD COM SCHMITT Vt={Vsmin-10m} Vh=10m Trise=5n
A10 Vs COM COM COM COM VmaxGD COM COM SCHMITT Vt={Vsmax+10m} Vh=10m Trise=5n
A11 VminGD COM COM ENgd VmaxGD COM EN COM AND Trise=5n
R20 EN COM 1G Temp=-273.15
R65 VmaxGD COM 1G Temp=-273.15
R66 COM VminGD 1G Temp=-273.15
A12 6 3 COM COM COM COM ENgd COM SCHMITT Vt={-ENVt} Vh={ENVh} Trise={ENTon*2} Tfall={ENToff*2}
S8 COM Clamp EN COM ENA
S9 COM Aol1 EN COM ENA
Biq N031 N033 I=IF(V(EN,COM)>0.5, {Iq_on},{Iq_off})
Bipd 6 COM I=IF(V(EN,COM)>0.5, {Ipd_on},{Ipd_off})
D2 6 Vcc_int PD
R22 Vcc_int 6 1G
R28 N012 COM 1Meg Temp=-273.15
C50 N012 COM {Cfp3}
R29 N013 COM 1Meg Temp=-273.15
G42 COM N013 N012 COM 1<>
C53 N013 COM {Cfp4}
R30 N014 COM 1Meg Temp=-273.15
G43 COM N014 N013 COM 1<>
C55 N014 COM {Cfp5}
R31 N015 COM 1Meg Temp=-273.15
G44 COM N015 N014 COM 1<>
C56 N015 COM {Cfp6}
B6 Vsatp1 Vcc_Int I=1m*Max(Mp1*(I(Vimon))+OSp1,OSp1)
R5 Vsatp1 Vcc_Int 1k
C4 Vsatp1 Vcc_Int 1n
B9 Vsatp2 Vcc_Int I=1m*Max(Mp2*(I(Vimon))+OSp2,OSp1)
R34 Vsatp2 Vcc_Int 1k
C26 Vsatp2 Vcc_Int 1n
B13 COM GRpi I=1m*({Zo_max}* {Iscp}+V(3,COM))
B14 COM GRni I=1m*({Zo_max}* {Iscn}+V(4,COM))
A3 COM COM COM COM COM COM E_n COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k EN=IF(freq>600, freq*Pwr(({A2}+{B2}*Pwr(freq,{C2})),(-1/{C2}))+0.36n, freq*Pwr(({A1}+{B1}*Pwr(freq,{C1})),(-1/{C1})))
R35 E_n COM 100k Temp=-273.15
Rx Zo_out N016 {Rx_Zo} Noiseless
Rdummy Zo_out COM {Rdummy_Zo} Noiseless
B11 COM N016 I=Uplim(Dnlim({G1_Zo}* V(Zo_in,Zo_out), {Izon}, 25m), {Izop}, 25m)
G1 COM N012 Aol2 COM 1<>
Lout Zo_out N017 7n
Cout N017 COM 1.3p
R23 N007 COM 9.7724 Noiseless
L1 N007 N008 5.413e-9
C5 N008 N007 106.103e-12
G4 COM N007 N015 COM 0.1
G8 COM Zo_in N007 COM 1.0233
R16 Zo_in COM 1 Noiseless
Ibp N003 COM {Ib}
S1 COM N016 EN COM ENZ
B4 Vee_Int Vsatn1 I=1m*Max(Mn1*(-I(Vimon))+OSn1,OSn1)
R3 Vsatn1 Vee_Int 1k
C3 Vsatn1 Vee_Int 1n
B5 Vee_Int Vsatn2 I=1m*Max(Mn2*(-I(Vimon))+OSn2,OSn1)
R4 Vsatn2 Vee_Int 1k
C8 Vsatn2 Vee_Int 1n
B7 Vee_Int Vsatn3 I=1m*Max(Mn3*(-I(Vimon))+OSn3,OSn1)
R13 Vsatn3 Vee_Int 1k
C12 Vsatn3 Vee_Int 1n
B10 COM Satn I=1m*Max(Min(V(Vsatn1,COM), V(Vsatn2,COM)),V(Vsatn3,COM))
.param Vos=-675u Drift=6u
.param Ib=252.06p Ios=498.6p
.param Vcm_min=-0.3 Vcm_max=-0.8
.param Vsmin=2.7 Vsmax=5.5
.param Iscp=205m Iscn=-307m
.param Iq_on=4.4m Iq_off=0.8m
.param IZop={Rx_Zo*Iscp} IZon={Rx_Zo*Iscn}
.param ENVt=2.6 ENVh=10m
.param ENTon=166n ENToff=49n
.param Ipd_on=65n Ipd_off=-22u
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model DG D(Vfwd=10k Vrev=0 Revepsilon=0.5 Ron=1m Noiseless )
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1 Ron=1m Noiseless)
.model PD D(Ron=0.5 Epsilon=0.1 Noiseless)
.model ESDI SW(Ron=50 Roff=1T Vt=700m Vh=-350m Vser=0.1 Noiseless)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
.model ENA SW(Ron=1Meg Roff=1u Vt=500m Vh=-100m Noiseless)
.model ENZ SW(Ron=1 Roff=1u Vt=500m Vh=-100m Noiseless)
.param Aol2_dB = {Aol_PB-40+1}
.param Aol2 = {pwr(10, (Aol2_dB)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Cfp3={1 / (2 * pi * fp3 * 1Meg)}
.param Cfp4={1 / (2 * pi * fp4 * 1Meg)}
.param Cfp5={1 / (2 * pi * fp5 * 1Meg)}
.param Cfp6={1 / (2 * pi * fp6 * 1Meg)}
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Aol_PB=83.6
.param SRp=204.1 SRn=-252.2
.param fp1=6.95k fp2=650Meg fp3=800Meg
.param fp4=1.2G fp5=1.5G fp6=1.7G
.param Rser=1m
.param Ccm=2.2p Rcm=5G
.param Cdiff=0.8p Rdiff=10Meg
.param Rej_dc_CMR=88
.param R1a_CMR=1Meg
.param fz1_CMR=27k
.param fp1_CMR=35Meg
.param Rej_dc_PSRp=65
.param R1a_PSRp=1Meg
.param fz1_PSRp=125k
.param fp1_PSRp=16Meg
.param Rej_dc_PSRn=63
.param R1a_PSRn=1Meg
.param fz1_PSRn=250k
.param fp1_PSRn=75Meg
.param A1=-2.5 B1=5.17 C1=77.5m
.param A2=-79.9 B2=54.6 C2=211m
.param beta_Zo=1.13
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=35.81
.param Zo_max={Zo_dc}
.param Mp1=6.09 OSp1=30m
.param Mn1=5.12 OSn1=4.75m
.param Mp2=6.8 OSp2=-10m
.param Mn2=4.24 OSn2=20m
.param Mn3=8.47 OSn3=-360m
.ends ADA4891-3

248
lib/sub/ADA4891-4.lib Normal file
View File

@@ -0,0 +1,248 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4891-4 1 2 3 4 5
C1 Clamp COM {Cfp1}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}*V(Aol1,COM), {Isink},1m),{Isrc},1m)
G2 0 Vcc_Int N031 0 1
G3 0 Vee_Int N033 0 1
R6 Vcc_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N029 Vcc_Int 1Meg Temp=-273.15
R9 N029 Vee_Int 1Meg Temp=-273.15
C2 N029 0 1
R25 Aol2 COM 1Meg Temp=-273.15
G7 COM Aol2 Clamp COM 1<>
C14 Vcc_Int 0 1n
C15 Vee_Int 0 1n
R1 N003 1 {Rser} Temp=-273.15
R82 N033 4 1<> Temp=-273.15
A1 Inn1 Inp1 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
R47 N031 3 1<> Temp=-273.15
R45 Vimon COM 1k Temp=-273.15
C34 COM 0 1n
G30 N031 N033 Vimon COM 1
C38 Aol2 COM {Cfp2}
Vimon N017 5 0
F1 COM Vimon Vimon 1m
DGP N025 Clamp DG
DGN Clamp N026 DG
C19 Satn COM 1n
R21 Satn COM 1k Temp=-273.15
VGN N026 N028 0
VGP N025 N027 0
G18 N011 Inp1 N021 N020 1m
R51 Inp1 N011 1k Temp=-273.15
C32 N021 N022 {C1a_PSRp}
G19 COM N022 VCC_Int COM {G1_PSRp}
R52 N022 COM 1 Temp=-273.15
R55 N021 N022 {R1a_PSRp} Temp=-273.15
R56 N021 COM {R2a_PSRp} Temp=-273.15
C33 N020 N019 {C1a_PSRn}
G20 COM N019 VEE_Int COM {G1_PSRn}
R57 N019 COM 1 Temp=-273.15
R58 N020 N019 {R1a_PSRn} Temp=-273.15
R59 N020 COM {R2a_PSRn} Temp=-273.15
R76 N004 N009 1k Temp=-273.15
B17 N009 N004 I=1m*{Vos+Drift* (Temp-27)}
G32 N005 N006 N002 COM 1m
R77 N006 N005 1k Temp=-273.15
R79 N005 N004 1k Temp=-273.15
G33 N004 N005 E_n COM 1m
C39 N002 N001 {C1a_CMR}
G34 COM N001 N003 COM {G1_CMR}
R80 N002 N001 {R1a_CMR} Temp=-273.15
R81 N002 COM {R2a_CMR} Temp=-273.15
R83 N001 COM 1 Temp=-273.15
G35 COM IVR N003 COM 1m
G36 COM Inn1 N024 COM 1k
R84 COM IVR 1k Temp=-273.15
R85 COM Inn1 1m Temp=-273.15
C40 Inn1 COM 1.59n
C41 IVR COM 1.59f
Ibn N024 COM {Ib-Ios}
R2 N024 2 {Rser} Temp=-273.15
Cinp COM N003 {Ccm}
Cinn N024 COM {Ccm}
Rinn N024 COM {Rcm} Temp=-273.15
Rinp COM N003 {Rcm} Temp=-273.15
G28 COM N011 N006 COM 1k
R72 COM N011 1m Temp=-273.15
C42 N011 COM 1.59n
C43 Aol1 COM 1.59e-18
G15 COM N027 GRpi COM 1k
G16 COM N028 GRni COM 1k
R11 N027 COM 1m Temp=-273.15
R12 N028 COM 1m Temp=-273.15
R37 GRpi COM 1k Temp=-273.15
R44 GRni COM 1k Temp=-273.15
C6 GRni COM 10p
C7 GRpi COM 10p
S2 3 5 5 3 ESDO
S3 5 4 4 5 ESDO
DOP Vsatp N017 DO
DON N017 Vsatn DO
G5 COM Vsatp Satp COM 1k
R92 Vsatp COM 1m
G6 COM Vsatn Satn COM 1k
R93 Vsatn COM 1m
C10 Vimon COM 1.59f
S4 3 N009 N009 3 ESDI
S5 3 Inn1 Inn1 3 ESDI
S6 N009 4 4 N009 ESDI
S7 Inn1 4 4 Inn1 ESDI
C9 N017 Vsatp 1f
C16 N017 Vsatn 1f
C27 Clamp N027 1f
C44 Clamp N028 1f
Cdiff N003 N024 {Cdiff}
C17 Vsatp COM 1n
C23 Vsatn COM 1n
E1 COM 0 N029 0 1
R10 COM 0 1Meg Temp=-273.15
C51 N020 COM 1f
C52 N021 COM 1f
B3 COM CMpi I=1m*(V(3,COM)+{Vcm_max}) Cpar=1n
G17 COM CMp CMpi COM 1k
R53 COM CMp 1m Temp=-273.15
B8 COM CMni I=1m*(V(4,COM)+{Vcm_min}) Cpar=1n
G22 COM CMn CMni COM 1k
R54 COM CMn 1m Temp=-273.15
R62 CMpi COM 1k Temp=-273.15
R88 CMni COM 1k Temp=-273.15
DIP CMp IVR DI
DIN IVR CMn DI
C54 IVR CMn 1f
C48 IVR CMp 1f
G14 COM N009 IVR COM 1k
R14 COM N009 1m Temp=-273.15
C49 N009 COM 1.59n
Rdiff N003 N024 {Rdiff} Temp=-273.15
B2 COM Satp I=1m*Min(V(Vsatp1,COM), V(Vsatp2,COM))
C11 Satp COM 1n
R18 Satp COM 1k Temp=-273.15
R28 N012 COM 1Meg Temp=-273.15
C50 N012 COM {Cfp3}
R29 N013 COM 1Meg Temp=-273.15
G42 COM N013 N012 COM 1<>
C53 N013 COM {Cfp4}
R30 N014 COM 1Meg Temp=-273.15
G43 COM N014 N013 COM 1<>
C55 N014 COM {Cfp5}
R31 N015 COM 1Meg Temp=-273.15
G44 COM N015 N014 COM 1<>
C56 N015 COM {Cfp6}
B6 Vsatp1 Vcc_Int I=1m*Max(Mp1*(I(Vimon))+OSp1,OSp1)
R5 Vsatp1 Vcc_Int 1k
C4 Vsatp1 Vcc_Int 1n
B9 Vsatp2 Vcc_Int I=1m*Max(Mp2*(I(Vimon))+OSp2,OSp1)
R34 Vsatp2 Vcc_Int 1k
C26 Vsatp2 Vcc_Int 1n
B13 COM GRpi I=1m*({Zo_max}* {Iscp}+V(3,COM))
B14 COM GRni I=1m*({Zo_max}* {Iscn}+V(4,COM))
A3 COM COM COM COM COM COM E_n COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k EN=IF(freq>600, freq*Pwr(({A2}+{B2}*Pwr(freq,{C2})),(-1/{C2}))+0.36n, freq*Pwr(({A1}+{B1}*Pwr(freq,{C1})),(-1/{C1})))
R35 E_n COM 100k Temp=-273.15
Rx Zo_out N016 {Rx_Zo} Noiseless
Rdummy Zo_out COM {Rdummy_Zo} Noiseless
B11 COM N016 I=Uplim(Dnlim({G1_Zo}* V(Zo_in,Zo_out), {Izon}, 25m), {Izop}, 25m)
G1 COM N012 Aol2 COM 1<>
Lout Zo_out N017 7n
Cout N017 COM 1.3p
R23 N007 COM 9.7724 Noiseless
L1 N007 N008 5.413e-9
C5 N008 N007 106.103e-12
G4 COM N007 N015 COM 0.1
G8 COM Zo_in N007 COM 1.0233
R16 Zo_in COM 1 Noiseless
Ibp N003 COM {Ib}
B4 Vee_Int Vsatn1 I=1m*Max(Mn1*(-I(Vimon))+OSn1,OSn1)
R3 Vsatn1 Vee_Int 1k
C3 Vsatn1 Vee_Int 1n
B5 Vee_Int Vsatn2 I=1m*Max(Mn2*(-I(Vimon))+OSn2,OSn1)
R4 Vsatn2 Vee_Int 1k
C8 Vsatn2 Vee_Int 1n
B7 Vee_Int Vsatn3 I=1m*Max(Mn3*(-I(Vimon))+OSn3,OSn1)
R13 Vsatn3 Vee_Int 1k
C12 Vsatn3 Vee_Int 1n
B10 COM Satn I=1m*Max(Min(V(Vsatn1,COM), V(Vsatn2,COM)),V(Vsatn3,COM))
R17 Aol1 COM 1Meg Temp=-273.15
R19 Clamp COM 1Meg Temp=-273.15
R20 N016 COM 1 Temp=-273.15
I2 N031 N033 {Iq_on}
.param Vos=-675u Drift=6u
.param Ib=252.06p Ios=498.6p
.param Vcm_min=-0.3 Vcm_max=-0.8
.param Vsmin=2.7 Vsmax=5.5
.param Iscp=205m Iscn=-307m
.param Iq_on=4.4m Iq_off=0.8m
.param IZop={Rx_Zo*Iscp} IZon={Rx_Zo*Iscn}
.param ENVt=2.6 ENVh=10m
.param ENTon=166n ENToff=49n
.param Ipd_on=65n Ipd_off=-22u
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model DG D(Vfwd=10k Vrev=0 Revepsilon=0.5 Ron=1m Noiseless )
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1 Ron=1m Noiseless)
.model PD D(Ron=0.5 Epsilon=0.1 Noiseless)
.model ESDI SW(Ron=50 Roff=1T Vt=700m Vh=-350m Vser=0.1 Noiseless)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
.model ENA SW(Ron=1Meg Roff=1u Vt=500m Vh=-100m Noiseless)
.model ENZ SW(Ron=1 Roff=1u Vt=500m Vh=-100m Noiseless)
.param Aol2_dB = {Aol_PB-40+1}
.param Aol2 = {pwr(10, (Aol2_dB)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Cfp3={1 / (2 * pi * fp3 * 1Meg)}
.param Cfp4={1 / (2 * pi * fp4 * 1Meg)}
.param Cfp5={1 / (2 * pi * fp5 * 1Meg)}
.param Cfp6={1 / (2 * pi * fp6 * 1Meg)}
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Aol_PB=83.6
.param SRp=204.1 SRn=-252.2
.param fp1=6.95k fp2=650Meg fp3=800Meg
.param fp4=1.2G fp5=1.5G fp6=1.7G
.param Rser=1m
.param Ccm=2.2p Rcm=5G
.param Cdiff=0.8p Rdiff=10Meg
.param Rej_dc_CMR=88
.param R1a_CMR=1Meg
.param fz1_CMR=27k
.param fp1_CMR=35Meg
.param Rej_dc_PSRp=65
.param R1a_PSRp=1Meg
.param fz1_PSRp=125k
.param fp1_PSRp=16Meg
.param Rej_dc_PSRn=63
.param R1a_PSRn=1Meg
.param fz1_PSRn=250k
.param fp1_PSRn=75Meg
.param A1=-2.5 B1=5.17 C1=77.5m
.param A2=-79.9 B2=54.6 C2=211m
.param beta_Zo=1.13
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=35.81
.param Zo_max={Zo_dc}
.param Mp1=6.09 OSp1=30m
.param Mn1=5.12 OSn1=4.75m
.param Mp2=6.8 OSp2=-10m
.param Mn2=4.24 OSn2=20m
.param Mn3=8.47 OSn3=-360m
.ends ADA4891-4

384
lib/sub/ADA4895.lib Normal file
View File

@@ -0,0 +1,384 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4895 1 2 3 4 5 6
C1 Clamp COM {Cfp1}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}*V(Aol1,COM), {Isink},1m),{Isrc},1m)
G2 0 Vcc_Int N051 0 1
G3 0 Vee_Int N053 0 1
R6 Vcc_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N049 Vcc_Int 1Meg Temp=-273.15
R9 N049 Vee_Int 1Meg Temp=-273.15
C2 N049 0 1
R25 Aol2 COM 1Meg Temp=-273.15
G7 COM Aol2 Clamp COM 1<>
C14 Vcc_Int 0 1n
C15 Vee_Int 0 1n
R1 N003 N019 {Rser} Temp=-273.15
R82 N053 4 1<> Temp=-273.15
A1 Inn1 Inp1 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
R47 N051 3 1<> Temp=-273.15
R45 Vimon COM 1k Temp=-273.15
C34 COM 0 1n
G30 N051 N053 Vimon COM 1
C38 Aol2 COM {Cfp2}
Vimon N016 5 0
F1 COM Vimon Vimon 1m
DGP N045 Clamp DG
DGN Clamp N046 DG
B10 Vee_Int Satn I=1m*Max(Mn*(-V(Vimon,COM)) +OSn,OSn)
C19 Satn Vee_Int 1n
R21 Satn Vee_Int 1k Temp=-273.15
S1 Cap2R Cap2L OL COM OL
F2 COM OLp VGP 1m
A2 OLp OLn COM COM COM COM OL COM OR Ref=100u Vh=50u Trise=10n
R3 OLp COM 1k
F3 COM OLn VGN -1m
R33 OLn COM 1k
C20 OLp COM 10n
C21 OLn COM 10n
C22 OL COM 10p
VGN N046 N048 0
VGP N045 N047 0
G18 N020 Inp1 N041 N040 1m
R51 Inp1 N020 1k Temp=-273.15
C32 N038 N039 {C1a_PSRp}
G19 COM N039 VCC_Int COM {G1_PSRp}
R52 N039 COM 1 Temp=-273.15
R55 N038 N039 {R1a_PSRp} Temp=-273.15
R56 N038 COM {R2a_PSRp} Temp=-273.15
C33 N025 N024 {C1a_PSRn}
G20 COM N024 VEE_Int COM {G1_PSRn}
R57 N024 COM 1 Temp=-273.15
R58 N025 N024 {R1a_PSRn} Temp=-273.15
R59 N025 COM {R2a_PSRn} Temp=-273.15
C35 N027 N026 {C1b_PSRn}
R60 N026 COM 1 Temp=-273.15
R61 N027 N026 {R1b_PSRn} Temp=-273.15
R63 N027 COM {R2b_PSRn} Temp=-273.15
G21 COM N028 N027 COM {G2_PSRn}
G23 COM N026 N025 COM 1
R68 N037 N036 {R1b_PSRp} Temp=-273.15
R69 N036 COM {R2b_PSRp} Temp=-273.15
G26 COM N035 N036 COM {G2_PSRp}
C37 N036 N037 {C1b_PSRp}
G27 COM N037 N038 COM 1
R70 N037 COM 1 Temp=-273.15
G29 COM I_np N056 COM 1
RI_np I_np COM 1 Temp=-273.15
R76 N009 N012 1k Temp=-273.15
B17 N012 N009 I=1m*{Vos+Drift* (Temp-27)}
G32 N010 N011 N002 COM 1m
R77 N011 N010 1k Temp=-273.15
R79 N010 N009 1k Temp=-273.15
G33 N009 N010 E_n COM 1m
C39 N002 N001 {C1a_CMR}
G34 COM N001 N003 COM {G1_CMR}
R80 N002 N001 {R1a_CMR} Temp=-273.15
R81 N002 COM {R2a_CMR} Temp=-273.15
R83 N001 COM 1 Temp=-273.15
G35 COM IVR N003 COM 1m
G36 COM Inn1 N044 COM 1k
R84 COM IVR 1k Temp=-273.15
R85 COM Inn1 1m Temp=-273.15
C40 Inn1 COM 1.59n
C41 IVR COM 1.59f
Ibn N044 COM {Ib-Ios}
G37 N003 COM I_np COM 1
G38 N044 COM I_nn COM 1
R2 N044 N043 {Rser} Temp=-273.15
Cinp COM N003 {Ccm}
Cinn N044 COM {Ccm}
Rinn N044 COM {Rcm} Temp=-273.15
Rinp COM N003 {Rcm} Temp=-273.15
G28 COM N020 N011 COM 1k
R72 COM N020 1m Temp=-273.15
C42 N020 COM 1.59n
C43 Aol1 COM 1.59e-18
G15 COM N047 GRpi COM 1k
G16 COM N048 GRni COM 1k
R11 N047 COM 1m Temp=-273.15
R12 N048 COM 1m Temp=-273.15
R37 GRpi COM 1k Temp=-273.15
R44 GRni COM 1k Temp=-273.15
C6 GRni COM 10p
C7 GRpi COM 10p
S2 3 5 5 3 ESDO
S3 5 4 4 5 ESDO
DOP Vsatp N016 DO
DON N016 Vsatn DO
G5 COM Vsatp Satp COM 1k
R92 Vsatp COM 1m
G6 COM Vsatn Satn COM 1k
R93 Vsatn COM 1m
C10 Vimon COM 1.59f
S4 3 N012 N012 3 ESDI
S5 3 Inn1 Inn1 3 ESDI
S6 N012 4 4 N012 ESDI
S7 Inn1 4 4 Inn1 ESDI
C9 N016 Vsatp 1f
C16 N016 Vsatn 1f
C27 Clamp N047 1f
C44 Clamp N048 1f
Cdiff N003 N044 {Cdiff}
C17 Vsatp COM 1n
C23 Vsatn COM 1n
E1 COM 0 N049 0 1
R10 COM 0 1Meg Temp=-273.15
C8 I_np COM 1.59p
C51 N040 COM 1.59p
C52 N041 COM 1.59p
R16 N019 1 1m Temp=-273.15
R17 N043 2 1m Temp=-273.15
B3 COM CMpi I=1m*(V(3,COM)+{Vcm_max}) Cpar=1n
G17 COM CMp CMpi COM 1k
R53 COM CMp 1m Temp=-273.15
B8 COM CMni I=1m*(V(4,COM)+{Vcm_min}) Cpar=1n
G22 COM CMn CMni COM 1k
R54 COM CMn 1m Temp=-273.15
R62 CMpi COM 1k Temp=-273.15
R88 CMni COM 1k Temp=-273.15
DIP CMp IVR DI
DIN IVR CMn DI
C54 IVR CMn 1f
C48 IVR CMp 1f
G14 COM N012 IVR COM 1k
R14 COM N012 1m Temp=-273.15
C49 N012 COM 1.59n
Rdiff N003 N044 {Rdiff} Temp=-273.15
Rx N016 N015 {Rx_Zo} Temp=-273.15
Rdummy N016 COM {Rdummy_Zo} Temp=-273.15
G4 COM Cap2L N023 N016 {G1_Zo}
R4 Cap2L COM 1 Temp=-273.15
R5 Cap2L Cap2R {R1a_Zo} Temp=-273.15
R13 Cap2R COM {R2a_Zo} Temp=-273.15
G8 COM N004 Cap2R COM {G2_Zo}
C3 Cap2R Cap2L {C1a_Zo}
B11 COM N015 I=Uplim(Dnlim({G5_Zo}* V(ZoF,COM), {Izon}, 25m), {Izop}, 25m)
R23 N006 COM 1 Temp=-273.15
R24 N008 ZoF {R1e_Zo} Temp=-273.15
R26 ZoF COM {R2e_Zo} Temp=-273.15
C4 ZoF N008 {C1e_Zo}
R27 N004 COM 1 Temp=-273.15
R28 N004 N005 {R1b_Zo} Temp=-273.15
R29 N005 COM {R2b_Zo} Temp=-273.15
G25 COM N006 N005 COM {G3_Zo}
C5 N005 N004 {C1b_Zo}
R30 N006 N007 {R2d_Zo} Temp=-273.15
R31 N007 N021 {R1d_Zo} Temp=-273.15
C18 COM N021 {C1d_Zo}
Gb1 COM N008 N007 COM 1
R32 N008 COM 1 Temp=-273.15
R43 N035 N034 {R1b_PSRp} Temp=-273.15
R46 N034 COM {R2b_PSRp} Temp=-273.15
G11 COM N033 N034 COM {G2_PSRp}
C28 N034 N035 {C1b_PSRp}
R48 N033 COM 1 Temp=-273.15
R86 N033 N032 {R1c_PSRp} Temp=-273.15
R87 N032 COM {R2c_PSRp} Temp=-273.15
G12 COM N041 N032 COM {G3_PSRp}
C29 N032 N033 {C1c_PSRp}
R34 N035 COM 1 Temp=-273.15
R35 N041 COM 1 Temp=-273.15
R89 N028 COM 1 Temp=-273.15
C30 N029 N028 {C1b_PSRn}
R90 N029 N028 {R1b_PSRn} Temp=-273.15
R91 N029 COM {R2b_PSRn} Temp=-273.15
G13 COM N030 N029 COM {G2_PSRn}
R100 N030 COM 1 Temp=-273.15
C31 N031 N030 {C1c_PSRn}
R101 N031 N030 {R1c_PSRn} Temp=-273.15
R102 N031 COM {R2c_PSRn} Temp=-273.15
G39 COM N040 N031 COM {G3_PSRn}
R103 N040 COM 1 Temp=-273.15
A6 COM COM COM COM COM COM N054 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={fAe}/(freq**{Me})
R36 N054 COM 100k Temp=-273.15
A7 COM N054 COM COM COM COM E_n COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={BBe}
R39 E_n COM 100k Temp=-273.15
A3 COM COM COM COM COM COM N055 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={fAi}/(freq**{Mi})
R40 N055 COM 100k Temp=-273.15
A8 COM N055 COM COM COM COM N056 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={BBi}
R41 N056 COM 100k Temp=-273.15
G1 COM I_nn N058 COM 1
RI_nn I_nn COM 1 Temp=-273.15
C24 I_nn COM 1.59p
A4 COM COM COM COM COM COM N057 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={fAi}/(freq**{Mi})
R42 N057 COM 100k Temp=-273.15
A5 COM N057 COM COM COM COM N058 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={BBi}
R64 N058 COM 100k Temp=-273.15
B2 Satp Vcc_Int I=1m*Max(Mp*(V(Vimon,COM)) +OSp,OSp)
C11 Satp Vcc_Int 1n
R18 Satp Vcc_Int 1k Temp=-273.15
G9 COM Vs 3 4 1m
R19 Vs COM 1k Temp=-273.15
A9 Vs COM COM COM COM COM VminGD COM SCHMITT Vt={Vsmin-50m} Vh=10m Trise=5n
A10 Vs COM COM COM COM VmaxGD COM COM SCHMITT Vt={Vsmax+50m} Vh=10m Trise=5n
A11 VminGD COM COM ENgd VmaxGD COM EN COM AND Trise=5n
R20 EN COM 1G Temp=-273.15
R65 VmaxGD COM 1G Temp=-273.15
R66 COM VminGD 1G Temp=-273.15
A12 6 3 COM COM COM COM ENgd COM SCHMITT Vt={-ENVt} Vh={ENVh} Trise={ENTon*2} Tfall={ENToff*2}
S8 COM Clamp EN COM ENA
S9 COM Aol1 EN COM ENA
S10 COM N015 EN COM ENZ
Biq N051 N053 I=IF(V(EN,COM)>0.5, {Iq_on},{Iq_off})
I2 GRni COM 198m
I3 COM GRpi 198m
Gb2 COM N013 Aol2 COM 1
R71 N013 N014 {R1f_Aol} Temp=-273.15
R73 N014 COM {R2f_Aol} Temp=-273.15
G24 COM N022 N014 COM {1u*G6_Aol}
C25 N014 N013 {C1f_Aol}
R74 N013 COM 1 Temp=-273.15
R75 N022 COM 1Meg Temp=-273.15
R78 N023 COM 1Meg Temp=-273.15
G31 COM N023 N022 COM 1<>
C26 N022 COM {Cfp3}
C36 N023 COM {Cfp4}
BIbp N003 COM I={Ib+Ibd* (Temp-27)}
Bipd 6 COM I=IF(V(EN,COM)>0.5, {Ipd_on},{Ipd_off})
D2 6 Vcc_int PD
R22 Vcc_int 6 1G
.param Vos=51.28u Drift=15n
.param Ib=-11u Ios=-9.4n Ibd=1.2n
.param Vcm_min=0.1 Vcm_max=-0.9
.param Vsmin=3 Vsmax=10
.param Iscp=111m Iscn=-116m
.param Iq_on=3m Iq_off=0.1m
.param IZop={Rx_Zo*Iscp} IZon={Rx_Zo*Iscn}
.param ENVt=1.25 ENVh=0.75
.param ENTon=250n ENToff=6u
.param Ipd_on=-1.1u Ipd_off=-40u
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model DG D(Vfwd=10k Vrev=0 Revepsilon=0.5 Ron=1m Noiseless )
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1 Ron=1m Noiseless)
.model ESDI SW(Ron=50 Roff=1T Vt=700m Vh=-350m Vser=0.1 Noiseless)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m Noiseless)
.model ENA SW(Ron=1Meg Roff=1u Vt=500m Vh=-100m Noiseless)
.model ENZ SW(Ron=1 Roff=1u Vt=500m Vh=-100m Noiseless)
.param Aol2_dB = {Aol_PB-40+1}
.param Aol2 = {pwr(10, (Aol2_dB)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Cfp3={1 / (2 * pi * fp3 * 1Meg)}
.param Cfp4={1 / (2 * pi * fp4 * 1Meg)}
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param C1b_PSRn = {1 / (2 * pi * R1b_PSRn * fz2_PSRn)}
.param R2b_PSRn = {R1b_PSRn/ ((2 * pi * fp2_PSRn * C1b_PSRn
+* R1b_PSRn) - 1)}
.param actual2_PSRn = {R2b_PSRn/ (R1b_PSRn + R2b_PSRn)}
.param G2_PSRn = {1/actual2_PSRn}
.param C1c_PSRn = {1 / (2 * pi * R1c_PSRn * fz3_PSRn)}
.param R2c_PSRn = {R1c_PSRn/ ((2 * pi * fp3_PSRn * C1c_PSRn
+* R1c_PSRn) - 1)}
.param actual3_PSRn = {R2c_PSRn/ (R1c_PSRn + R2c_PSRn)}
.param G3_PSRn = {1/actual3_PSRn}
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param C1b_PSRp={1 / (2 * pi * R1b_PSRp * fz2_PSRp)}
.param R2b_PSRp = {R1b_PSRp/ ((2 * pi * fp2_PSRp * C1b_PSRp
+* R1b_PSRp) - 1)}
.param actual2_PSRp = {R2b_PSRp / (R1b_PSRp + R2b_PSRp)}
.param G2_PSRp= {1/actual2_PSRp}
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param beta_Zo=1.13
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=623
.param Zo_max={Zo_dc}
.param R1a_Zo=10k
.param fz1_Zo=8k
.param fp1_Zo=41k
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
+* R1a_Zo) - 1)}
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
.param G2_Zo = {1/actual1_Zo}
.param R1b_Zo=10k
.param fz2_Zo=15Meg
.param fp2_Zo=20Meg
.param C1b_Zo = {1 / (2 * pi * R1b_Zo * fz2_Zo)}
.param R2b_Zo = {R1b_Zo/ ((2 * pi * fp2_Zo * C1b_Zo
+* R1b_Zo) - 1)}
.param actual3_Zo = {R2b_Zo / (R1b_Zo + R2b_Zo)}
.param G3_Zo = {1/actual3_Zo}
.param R1e_Zo=10k
.param fz5_Zo=700Meg
.param fp5_Zo=100G
.param C1e_Zo = {1 / (2 * pi * R1e_Zo * fz5_Zo)}
.param R2e_Zo = {R1e_Zo/ ((2 * pi * fp5_Zo * C1e_Zo
+* R1e_Zo) - 1)}
.param actual5_Zo = {R2e_Zo / (R1e_Zo + R2e_Zo)}
.param G5_Zo = {1/actual5_Zo}
.param R1d_Zo=10k
.param fp4_Zo=140Meg
.param fz4_Zo=900Meg
.param C1d_Zo = {1 / (fz4_Zo * R1d_Zo * 2 * pi)}
.param R2d_Zo = {(1 / (fp4_Zo * C1d_Zo * 2 * pi))
+- R1d_Zo}
.param Aol_PB=114.26
.param SRp=2.53k SRn={-SRp}
.param fp1=8k fp2=15Meg fp3=900Meg fp4=2G
.param Rser=1m
.param Ccm=3p Rcm=10Meg
.param Cdiff=11p Rdiff=10k
.param Rej_dc_CMR=109
.param R1a_CMR=1Meg
.param fz1_CMR=8k
.param fp1_CMR=200Meg
.param R1c_PSRp=1Meg
.param fz3_PSRp=9Meg
.param fp3_PSRp=50Meg
.param C1c_PSRp={1 / (2 * pi * R1c_PSRp * fz3_PSRp)}
.param R2c_PSRp = {R1c_PSRp/ ((2 * pi * fp3_PSRp * C1c_PSRp
+* R1c_PSRp) - 1)}
.param actual3_PSRp = {R2c_PSRp / (R1c_PSRp + R2c_PSRp)}
.param G3_PSRp= {1/actual3_PSRp}
.param Rej_dc_PSRp=136
.param R1a_PSRp=1Meg
.param fz1_PSRp=6k
.param fp1_PSRp=100Meg
.param R1b_PSRp=1Meg
.param fz2_PSRp={fz1_PSRp}
.param fp2_PSRp=20k
.param Rej_dc_PSRn=135
.param R1a_PSRn=1Meg
.param fz1_PSRn=6k
.param fp1_PSRn=100Meg
.param R1b_PSRn=1Meg
.param fz2_PSRn={fz1_PSRn}
.param fp2_PSRn=19k
.param R1c_PSRn=1Meg
.param fz3_PSRn=15Meg
.param fp3_PSRn=50Meg
.param BBe=1n fCe=26 Me=0.5 fAe={BBe*(fCe**Me)}
.param BBi=1.55p fCi=1.05k Mi=0.48 fAi={BBi*(fCi**Mi)}
.param Mp=4.45 OSp=20m
.param Mn=2.76 OSn=20m
.param R1f_Aol=10k
.param fz6_Aol=34Meg
.param fp6_Aol=10G
.param C1f_Aol = {1 / (2 * pi * R1f_Aol * fz6_Aol)}
.param R2f_Aol = {R1f_Aol/ ((2 * pi * fp6_Aol * C1f_Aol
+* R1f_Aol) - 1)}
.param actual6_Aol = {R2f_Aol / (R1f_Aol + R2f_Aol)}
.param G6_Aol = {1/actual6_Aol}
.model PD D(Ron=0.5 Epsilon=0.1 Noiseless)
.ends ADA4895

Some files were not shown because too many files have changed in this diff Show More