initial commit

This commit is contained in:
Joseph Hopfmüller
2023-01-23 08:17:09 +01:00
commit 1d8dca1c6c
11733 changed files with 1219458 additions and 0 deletions

BIN
lib/cmp/standard.bead Normal file

Binary file not shown.

BIN
lib/cmp/standard.bead.bak Normal file

Binary file not shown.

BIN
lib/cmp/standard.bjt Normal file

Binary file not shown.

BIN
lib/cmp/standard.bjt.bak Normal file

Binary file not shown.

BIN
lib/cmp/standard.cap Normal file

Binary file not shown.

BIN
lib/cmp/standard.cap.bak Normal file

Binary file not shown.

1328
lib/cmp/standard.dio Normal file

File diff suppressed because it is too large Load Diff

1309
lib/cmp/standard.dio.bak Normal file

File diff suppressed because it is too large Load Diff

BIN
lib/cmp/standard.ind Normal file

Binary file not shown.

BIN
lib/cmp/standard.ind.bak Normal file

Binary file not shown.

138
lib/cmp/standard.jft Normal file
View File

@@ -0,0 +1,138 @@
* Copyright (c) 2000-2023 Analog Devices, Inc. All rights reserved.
*
.model 2N3819 NJF(Beta=1.304m Betatce=-.5 Rd=1 Rs=1 Lambda=2.25m Vto=-3 Vtotc=-2.5m Is=33.57f Isr=322.4f N=1 Nr=2 Xti=3 Alpha=311.7u Vk=243.6 Cgd=1.6p M=.3622 Pb=1 Fc=.5 Cgs=2.414p Kf=9.882E-18 Af=1 mfg=Vishay)
.model 2N4117 NJF(Beta=0.033m Betatce=-0.5 Vto=-1.2 Vtotc=-2.5m Lambda=13m Is=5.261f Xti=3 Isr=51.03f Nr=2 N=1 Rd=1 Rs=1 Cgd=3.94p Cgs=4.93p Fc=0.5 Vk=90.45 M=435.9m Pb=1 Kf=45610f Af=1 Mfg=Linear_Systems)
.model 2N4118 NJF(Beta=0.05258m Betatce=-0.5 Vto=-1.732 Vtotc=-2.5m Lambda=15m Is=5.261f Xti=3 Isr=51.03f Nr=2 Alpha=0.7979u N=1 Rd=1 Rs=1 Cgd=3.94p Cgs=4.93p Fc=0.5 Vk=90.45 M=435m Pb=1 Kf=76700f Af=1 Mfg=Linear_Systems)
.model 2N4119 NJF(Beta=0.068m Betatce=-0.5 Vto=-2.536 Vtotc=-2.5m Lambda=19m Is=5.261f Xti=3 Isr=51.03f Nr=2 Alpha=0.7979u N=1 Rd=1 Rs=1 Cgd=3.94p Cgs=4.93p Fc=0.5 Vk=90.45 M=435m Pb=1 Kf=101800f Af=1 Mfg=Linear_Systems)
.model 2N4338 NJF(Beta=0.781m Betatce=-0.5 Vto=-.6606 Vtotc=-2.5m Lambda=1.167m Is=114.5f Xti=3 Isr=1091f Nr=2 Alpha=506.8u N=1 Rd=1 Rs=1 Cgd=2.8p Cgs=2.916p Fc=0.5 Vk=251.7 M=227m Pb=0.5 Kf=29180f Af=1 Mfg=Linear_Systems)
.model 2N4416 NJF(Beta=0.989m Betatce=-0.5 Vto=-3.07 Vtotc=-2.5m Lambda=5.5m Is=33.57f Xti=3 Isr=322.4f Nr=2 Alpha=311.7u N=1 Rd=1 Rs=1 Cgd=1.6p Cgs=2.414p Fc=0.5 Vk=243.6 M=362m Pb=1 Kf=74450f Af=1 Mfg=Linear_Systems)
.model 2N4393 NJF(Beta=9.109m Betatce=-0.5 Vto=-1.422 Vtotc=-2.5m Lambda=6m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=4.57p Cgs=4.06p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=12300f Af=1 Mfg=Linear_Systems)
.model 2N5432 NJF(Beta=9.109m Betatce=-.5 Rd=1 Rs=1 Lambda=50m Vto=-5.397 Vtotc=-2.5m Is=533.7f Isr=5.174p N=1 Nr=2 Xti=3 Alpha=152.8u Vk=111.9 Cgd=35.6p M=.4283 Pb=1 Fc=.5 Cgs=35.6p Kf=124.3E-18 Af=1 mfg=Fairchild)
.model 2N5434 NJF(Beta=18m Betatce=-.5 Rd=1 Rs=1 Lambda=25m Vto=-1.9 Vtotc=-2.5m Is=.5p Isr=5p Alpha=150u Vk=110 Cgd=35p M=.4283 Cgs=35p mfg=Vishay)
.model 2N5484 NJF(Is=.25p Alpha=1e-4 Vk=80 Vto=-1.5 Vtotc=-3m Beta=3.0m Lambda=10m Betatce=-.5 Rd=10 Rs=10 Cgs=4p Cgd=4p Kf=3e-17 mfg=Siliconix)
.model 2N5485 NJF(Is=.25p Alpha=1e-4 Vk=80 Vto=-2.0 Vtotc=-3m Beta=3.5m Lambda=10m Betatce=-.5 Rd=10 Rs=10 Cgs=4p Cgd=4p Kf=3e-17 mfg=Siliconix)
.model 2N5486 NJF(Is=.25p Alpha=1e-4 Vk=80 Vto=-4.0 Vtotc=-3m Beta=4.0m Lambda=10m Betatce=-.5 Rd=10 Rs=10 Cgs=4p Cgd=4p Kf=3e-17 mfg=Siliconix)
.model U309 NJF(Beta=4.682m Betatce=-0.5 Vto=-2.075 Vtotc=-2.5m Lambda=14.5m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=64120f Af=1 Mfg=Linear_Systems)
.model LSJ689A PJF(Beta=3.5m Betatce=-0.5 Vto=-1.40 Vtotc=-2.5m Lambda=1.1m Is=0.45f Xti=0 N=1 Rd=111 Rs=40 Cgd=10p Cgs=9p Fc=0.5 M=300m Pb=0.25 Kf=0.0011f Af=1 Gdsnoi=2.95 Nlev=3 Mfg=Linear_Systems)
.model LSJ689B PJF(Beta=3.0m Betatce=-0.5 Vto=-1.75 Vtotc=-2.5m Lambda=2.0m Is=0.45f Xti=0 N=1 Rd=99 Rs=37 Cgd=10p Cgs=9p Fc=0.5 M=300m Pb=0.25 Kf=0.0011f AF=1 Gdsnoi=2.95 Nlev=3 Mfg=Linear_Systems)
.model LSJ689C PJF(Beta=2.5m Betatce=-0.5 Vto=-3.05 Vtotc=-2.5m Lambda=2.0m Is=0.45f Xti=0 N=1 Rd=70 Rs=30 Cgd=10p Cgs=9p Fc=0.5 M=300m Pb=0.25 Kf=0.0011f Af=1 Gdsnoi=2.95 Nlev=3 Mfg=Linear_Systems)
.model LSK489A NJF(Beta=2.2m Betatce=-0.5 Vto=-1.13 Vtotc=-2.5m Lambda=4.3m Is=3f Xti=0 Isr=0 Alpha=30u N=1 Rd=11 Rs=30 Cgd=3.19p Cgs=2.92p Fc=0.5 Vk=120 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model LSK489B NJF(Beta=2.1m Betatce=-0.5 Vto=-1.80 Vtotc=-2.5m Lambda=5.7m Is=3f Xti=0 N=1 Rd=11 Rs=40 Cgd=3.19p Cgs=2.92p Fc=0.5 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model LSK489C NJF(Beta=2.1m Betatce=-0.5 Vto=-2.78 Vtotc=-2.5m Lambda=6.3m Is=3f Xti=0 N=1 Rd=11 Rs=55 Cgd=3.19p Cgs=2.92p Fc=0.5 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model 2N5114 PJF(Beta=0.510m Betatce=-0.5 Vto=-8.095 Vtotc=-2.5m Lambda=40m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=32960f Af=1 Mfg=Linear_Systems)
.model 2N5460 PJF(Is=1.5p Alpha=1e-4 Vk=300 Vto=-3.4 Vtotc=-3m Beta=1.0m Lambda=10m Betatce=-.5 Rd=10 Rs=10 Cgs=5p Cgd=5p Kf=3e-17 mfg=Siliconix)
.model 2N5461 PJF(Is=1.5p Alpha=1e-4 Vk=300 Vto=-4.3 Vtotc=-3m Beta=1.5m Lambda=10m Betatce=-.5 Rd=10 Rs=10 Cgs=5p Cgd=5p Kf=3e-17 mfg=Siliconix)
.model 2N5462 PJF(Is=1.5p Alpha=1e-4 Vk=300 Vto=-5.4 Vtotc=-3m Beta=2.0m Lambda=10m Betatce=-.5 Rd=10 Rs=10 Cgs=5p Cgd=5p Kf=3e-17 mfg=Siliconix)
.model LSJ74A PJF(Beta=38m Betatce=-0.5 Vto=-.38 Vtotc=-2.5m Lambda=3m Is=12980f Xti=3 Isr=0 Nr=2 Alpha=10u N=1 Rd=7.748 Rs=7.748 Cgd=85.67p Cgs=78.27p Fc=0.5 Vk=100 M=324m Pb=0.3905 Kf=26640f Mfg=Linear_Systems)
.model LSJ74B PJF(Beta(=9m Betatce=-0.5 Vto=-0.84 Vtotc=-2.5m Lambda=3m Is=6.32f RD=4.95 RS=4.45 CGD=115p CGS=52.5P Fc=0.5 Pb=1 Kf=0 Mfg=Linear_Systems)
.model LSJ74C PJF(Beta=10.6m Betatce=-0.5 Vto=-1.3 Vtotc=-2.5m Lambda=4m Is=12980f Xti=0 Nr=2 Alpha=10u N=1 Rd=7.748 Rs=7.748 Cgd=85.67p Cgs=78.27p Fc=0.5 Vk=100 M=324m Pb=0.3905 Kf=26640f Mfg=Linear_Systems)
.model LSJ74D PJF(Beta=9.4m Betatce=-0.5 Vto=-1.76 Vtotc=-2.5m Lambda=3.8m Is=12980f Xti=3 Nr=2 Alpha=10u N=1 Rd=7.748 Rs=7.748 Cgd=85.67p Cgs=78.27p Fc=0.5 Vk=100 M=324m Pb=0.3905 Kf=26640f Mfg=Linear_Systems)
.model J111 NJF(Beta=2.91m Betatce=-0.5 Vto=-4.047 Vtotc=-2.5m Lambda=17.5m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=6.46p Cgs=5.74p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=37860f Af=1 Mfg=Linear_Systems)
.model J112 NJF(Beta=5.695m Betatce=-0.5 Vto=-2.057 Vtotc=-2.5m Lambda=13m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=6.46p Cgs=5.74p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=75980f Af=1 Mfg=Linear_Systems)
.model SST112 NJF(Beta=5.695m Betatce=-0.5 Vto=-2.057 Vtotc=-2.5m Lambda=13m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=6.46p Cgs=5.74p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=75980f Af=1 Mfg=Linear_Systems)
.model J113 NJF(Beta=9.109m Betatce=-0.5 Vto=-1.382 Vtotc=-2.5m Lambda=8m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=6.46p Cgs=5.74p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=12300f Af=1 Mfg=Linear_Systems)
.model SST113 NJF(Beta=9.109m Betatce=-0.5 Vto=-1.382 Vtotc=-2.5m Lambda=8m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=6.46p Cgs=5.74p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=12300f Af=1 Mfg=Linear_Systems)
.model LSK170A NJF(Beta=37.86m Betatce=-0.5 Vto=-0.40 Vtotc=-2.5m Lambda=4.78m Is=35.58f N=1 Rd=11 Rs=7 Cgd=39.9p Cgs=40.7p Fc=0.5 M=790m Pb=0.98 Kf=0 Af=1 Mfg=Linear_Systems)
.model LSK170B NJF(Beta=35.07m Betatce=-0.5 Vto=-0.54 Vtotc=-2.5m Lambda=4.95m Is=27.62f N=1 Rd=8 Rs=7 Cgd=43.6p Cgs=43.6p Fc=0.5 M=890m Pb=1.2 Kf=0 Af=1 Mfg=Linear_Systems)
.model LSK170C NJF(Beta=27.85m Betatce=-0.5 Vto=0.80 Vtotc=-2.5m Lambda=12.24m Is=24.52f N=1 Rd=12 Rs=6 Cgd=42.2p Cgs=42.3p Fc=0.5 M=610m Pb=0.92 Kf=0 Af=1 Mfg=Linear_Systems)
.model J174 PJF(Beta=0.813m Betatce=-0.5 Vto=-6.552 Vtotc=-2.5m Lambda=40m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=52540f Af=1 Mfg=Linear_Systems)
.model SST174 PJF(Beta=0.813m Betatce=-0.5 Vto=-6.552 Vtotc=-2.5m Lambda=40m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=52540f Af=1 Mfg=Linear_Systems)
.model J175 PJF(Beta=1.031m Betatce=-0.5 Vto=-3.762 Vtotc=-2.5m Lambda=28m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=66610f Af=1 Mfg=Linear_Systems)
.model SST175 PJF(Beta=1.031m Betatce=-0.5 Vto=-3.762 Vtotc=-2.5m Lambda=28m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=66610f Af=1 Mfg=Linear_Systems)
.model J176 PJF(Beta=2.3m Betatce=-0.5 Vto=-1.82 Vtotc=-2.5m Lambda=21m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=148600f Af=1 Mfg=Linear_Systems)
.model SST176 PJF(Beta=2.3m Betatce=-0.5 Vto=-1.82 Vtotc=-2.5m Lambda=21m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=148600f Af=1 Mfg=Linear_Systems)
.model J177 PJF(Beta=3.3m Betatce=-0.5 Vto=-1.386 Vtotc=-2.5m Lambda=18.18m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=21320f Af=1 Mfg=Linear_Systems)
.model SST177 PJF(Beta=3.3m Betatce=-0.5 Vto=-1.386 Vtotc=-2.5m Lambda=18.18m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=21320f Af=1 Mfg=Linear_Systems)
.model J201 NJF(Beta=1.07m Betatce=-0.5 Vto=-0.93 Vtotc=-2.5m Lambda=6.75m Is=1.72f Xti=0 Rd=10 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model SST201 NJF(Beta=1.07m Betatce=-0.5 Vto=-0.93 Vtotc=-2.5m Lambda=6.75m Is=1.72f Xti=0 Rd=10 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model J202 NJF(Beta=0.88m Betatce=-0.5 Vto=-1.81 Vtotc=-2.5m Lambda=8.47m Is=2.56f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model SST202 NJF(Beta=0.88m Betatce=-0.5 Vto=-1.81 Vtotc=-2.5m Lambda=8.47m Is=2.56f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model J204 NJF(Beta=1.004m Betatce=-0.5 Vto=-1.139 Vtotc=-2.5m Lambda=3.333m Is=29.04f Xti=3 Isr=281.9f Nr=2 Alpha=698u N=1 Rd=1 Rs=1 Cgd=3.58p Cgs=5.4p Fc=0.5 Vk=270.4 M=360m Pb=1 Kf=16500f Af=1 Mfg=Linear_Systems)
.model SST204 NJF(Beta=1.004m Betatce=-0.5 Vto=-1.139 Vtotc=-2.5m Lambda=3.333m Is=29.04f Xti=3 Isr=281.9f Nr=2 Alpha=698u N=1 Rd=1 Rs=1 Cgd=3.58p Cgs=5.4p Fc=0.5 Vk=270.4 M=360m Pb=1 Kf=16500f Af=1 Mfg=Linear_Systems)
.model J210 NJF(Beta=2.222m Betatce=-0.5 Vto=-1.526 Vtotc=-2.5m Lambda=8.8m Is=101.9f Xti=3 Isr=977.5f Nr=2 Alpha=13.92u N=1 Rd=1 Rs=1 Cgd=3.913p Cgs=3.496p Fc=0.5 Vk=88.13 M=345m Pb=1 Kf=86240f Af=1 Mfg=Linear_Systems)
.model SSTJ210 NJF(Beta=2.222m Betatce=-0.5 Vto=-1.526 Vtotc=-2.5m Lambda=8.8m Is=101.9f Xti=3 Isr=977.5f Nr=2 Alpha=13.92u N=1 Rd=1 Rs=1 Cgd=3.913p Cgs=3.496p Fc=0.5 Vk=88.13 M=345m Pb=1 Kf=86240f Af=1 Mfg=Linear_Systems)
.model SSTJ211 NJF(Beta=1.808m Betatce=-0.5 Vto=-2.9 Vtotc=-2.5m Lambda=10m Is=101.9f Xti=3 Isr=977.5f Nr=2 Alpha=13.92u N=1 Rd=1 Rs=1 Cgd=3.913p Cgs=3.496p Fc=0.5 Vk=88.13 M=345m Pb=1 Kf=70150f Af=1 Mfg=Linear_Systems)
.model J211 NJF(Beta=1.808m Betatce=-0.5 Vto=-2.9 Vtotc=-2.5m Lambda=10m Is=101.9f Xti=3 Isr=977.5f Nr=2 Alpha=13.92u N=1 Rd=1 Rs=1 Cgd=3.913p Cgs=3.496p Fc=0.5 Vk=88.13 M=345m Pb=1 Kf=70150f Af=1 Mfg=Linear_Systems)
.model SSTJ212 NJF(Beta=0.873 Betatce=-0.5 Vto=-5.029 Vtotc=-2.5m Lambda=16m Is=101.9f Xti=3 Isr=977.5f Nr=2 Alpha=13.92u N=1 Rd=1 Rs=1 Cgd=3.913p Cgs=3.496p Fc=0.5 Vk=88.13 M=345m Pb=1 Kf=33750f Af=1 Mfg=Linear_Systems)
.model J212 NJF(Beta=0.873 Betatce=-0.5 Vto=-5.029 Vtotc=-2.5m Lambda=16m Is=101.9f Xti=3 Isr=977.5f Nr=2 Alpha=13.92u N=1 Rd=1 Rs=1 Cgd=3.913p Cgs=3.496p Fc=0.5 Vk=88.13 M=345m Pb=1 Kf=33750f Af=1 Mfg=Linear_Systems)
.model J308 NJF(Beta=3.688m Betatce=-0.5 Vto=-3.095 Vtotc=-2.5m Lambda=16m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=50510f Af=1 Mfg=Linear_Systems)
.model SST308 NJF(Beta=3.688m Betatce=-0.5 Vto=-3.095 Vtotc=-2.5m Lambda=16m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=50510f Af=1 Mfg=Linear_Systems)
.model U308 NJF(Beta=3.688m Betatce=-0.5 Vto=-3.095 Vtotc=-2.5m Lambda=16m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=50510f Af=1 Mfg=Linear_Systems)
.model J309 NJF(Beta=4.682m Betatce=-0.5 Vto=-2.075 Vtotc=-2.5m Lambda=14.5m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=64120f Af=1 Mfg=Linear_Systems)
.model SST309 NJF(Beta=4.682m Betatce=-0.5 Vto=-2.075 Vtotc=-2.5m Lambda=14.5m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=64120f Af=1 Mfg=Linear_Systems)
.model J310 NJF(Beta=3.384m Betatce=-0.5 Vto=-3.409 Vtotc=-2.5m Lambda=17m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=46340f Af=1 Mfg=Linear_Systems)
.model U310 NJF(Beta=3.384m Betatce=-0.5 Vto=-3.409 Vtotc=-2.5m Lambda=17m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=46340f Af=1 Mfg=Linear_Systems)
.model SST310 NJF(Beta=3.384m Betatce=-0.5 Vto=-3.409 Vtotc=-2.5m Lambda=17m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=46340f Af=1 Mfg=Linear_Systems)
.model LSK389A NJF(Beta=37.86m Betatce=-0.5 Vto=-0.40 Vtotc=-2.5m Lambda=4.78m Is=35.58f N=1 Rd=11 Rs=7 Cgd=39.9p Cgs=40.7p Fc=0.5 M=790m Pb=0.98 Kf=0 Af=1 Mfg=Linear_Systems)
.model LSK389B NJF(Beta=35.07m Betatce=-0.5 Vto=-0.54 Vtotc=-2.5m Lambda=4.95m Is=27.62f N=1 Rd=8 Rs=7 Cgd=43.6p Cgs=43.6p Fc=0.5 M=890m Pb=1.2 Kf=0 Af=1 Mfg=Linear_Systems)
.model LSK389C NJF(Beta=27.85m Betatce=-0.5 Vto=0.80 Vtotc=-2.5m Lambda=12.24m Is=24.52f N=1 Rd=12 Rs=6 Cgd=42.2p Cgs=42.3p Fc=0.5 M=610m Pb=0.92 Kf=0 Af=1 Mfg=Linear_Systems)
.model U401 NJF(Beta=1.577m Betatce=-0.5 Vto=-1.316 Vtotc=-2.5m Lambda=10m Is=19.73f Xti=3 Isr=191.3f Nr=2 Alpha=68.56u N=1 Rd=1 Rs=1 Cgd=5.6p Cgs=6.044p Fc=0.5 Vk=212.2 M=.3916 Pb=0.5 Kf=45920f Af=1 Mfg=Linear_Systems)
.model U402 NJF(Beta=1.61m Betatce=-0.5 Vto=-2.34 Vtotc=-2.5m Lambda=7.15m Is=1.65f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model U403 NJF(Beta=1.47m Betatce=-0.5 Vto=-3.25 Vtotc=-2.5m Lambda=9.12m Is=1.77f Xti=0 Rd=11 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model U404 NJF(Beta=2.38m Betatce=-0.5 Vto=-0.99 Vtotc=-2.5m Lambda=4.13m Is=11.92f Xti=0 Rd=13 Rs=14 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model U405 NJF(Beta=1.61m Betatce=-0.5 Vto=-2.34 Vtotc=-2.5m Lambda=7.15m Is=1.65f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model U406 NJF(Beta=1.577m Betatce=-0.5 Vto=-1.316 Vtotc=-2.5m Lambda=10m Is=19.73f Xti=3 Isr=191.3f Nr=2 Alpha=68.56u N=1 Rd=1 Rs=1 Cgd=5.6p Cgs=6.044p Fc=0.5 Vk=212.2 M=391.6m Pb=0.5 Kf=45920f Af=1 Mfg=Linear_Systems)
.model SST401 NJF(Beta=1.577m Betatce=-0.5 Vto=-1.316 Vtotc=-2.5m Lambda=10m Is=19.73f Xti=3 Isr=191.3f Nr=2 Alpha=68.56u N=1 Rd=1 Rs=1 Cgd=5.6p Cgs=6.044p Fc=0.5 Vk=212.2 M=.3916 Pb=0.5 Kf=45920f Af=1 Mfg=Linear_Systems)
.model SST402 NJF(Beta=1.61m Betatce=-0.5 Vto=-2.34 Vtotc=-2.5m Lambda=7.15m Is=1.65f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model SST403 NJF(Beta=1.47m Betatce=-0.5 Vto=-3.25 Vtotc=-2.5m Lambda=9.12m Is=1.77f Xti=0 Rd=11 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model SST404 NJF(Beta=2.38m Betatce=-0.5 Vto=-0.99 Vtotc=-2.5m Lambda=4.13m Is=11.92f Xti=0 Rd=13 Rs=14 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model SST405 NJF(Beta=1.61m Betatce=-0.5 Vto=-2.34 Vtotc=-2.5m Lambda=7.15m Is=1.65f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model SST406 NJF(Beta=1.577m Betatce=-0.5 Vto=-1.316 Vtotc=-2.5m Lambda=10m Is=19.73f Xti=3 Isr=191.3f Nr=2 Alpha=68.56u N=1 Rd=1 Rs=1 Cgd=5.6p Cgs=6.044p Fc=0.5 Vk=212.2 M=391.6m Pb=0.5 Kf=45920f Af=1 Mfg=Linear_Systems)
.model U440 NJF(Beta=1.978m Betatce=-0.5 Vto=-2.839 Vtotc=-2.5m Lambda=30m Is=36.18f Xti=3 Isr=346.4f Nr=2 Alpha=105u N=1 Rd=1 Rs=1 Cgd=2.11p Cgs=2.47p Fc=0.5 Vk=107 M=333m Pb=1 Kf=27880f Af=1 Mfg=Linear_Systems)
.model U441 NJF(Beta=1.978m Betatce=-0.5 Vto=-2.839 Vtotc=-2.5m Lambda=30m Is=36.18f Xti=3 Isr=346.4f Nr=2 Alpha=105u N=1 Rd=1 Rs=1 Cgd=2.11p Cgs=2.47p Fc=0.5 Vk=107 M=333m Pb=1 Kf=27880f Af=1 Mfg=Linear_Systems)
.model SST440 NJF(Beta=1.978m Betatce=-0.5 Vto=-2.839 Vtotc=-2.5m Lambda=30m Is=36.18f Xti=3 Isr=346.4f Nr=2 Alpha=105u N=1 Rd=1 Rs=1 Cgd=2.11p Cgs=2.47p Fc=0.5 Vk=107 M=333m Pb=1 Kf=27880f Af=1 Mfg=Linear_Systems)
.model SST441 NJF(Beta=1.978m Betatce=-0.5 Vto=-2.839 Vtotc=-2.5m Lambda=30m Is=36.18f Xti=3 Isr=346.4f Nr=2 Alpha=105u N=1 Rd=1 Rs=1 Cgd=2.11p Cgs=2.47p Fc=0.5 Vk=107 M=333m Pb=1 Kf=27880f Af=1 Mfg=Linear_Systems)
.model LSJ289A PJF(Beta=3.5m Betatce=-0.5 Vto=-1.40 Vtotc=-2.5m Lambda=1.1m Is=0.45f Xti=0 N=1 Rd=111 Rs=40 Cgd=10p Cgs=9p Fc=0.5 M=300m Pb=0.25 Kf=0.0011f Af=1 Gdsnoi=2.95 Nlev=3 Mfg=Linear_Systems)
.model LSJ289B PJF(Beta=3.0m Betatce=-0.5 Vto=-1.75 Vtotc=-2.5m Lambda=2.0m Is=0.45f Xti=0 N=1 Rd=99 Rs=37 Cgd=10p Cgs=9p Fc=0.5 M=300m Pb=0.25 Kf=0.0011f AF=1 Gdsnoi=2.95 Nlev=3 Mfg=Linear_Systems)
.model LSJ289C PJF(Beta=2.5m Betatce=-0.5 Vto=-3.05 Vtotc=-2.5m Lambda=2.0m Is=0.45f Xti=0 N=1 Rd=70 Rs=30 Cgd=10p Cgs=9p Fc=0.5 M=300m Pb=0.25 Kf=0.0011f Af=1 Gdsnoi=2.95 Nlev=3 Mfg=Linear_Systems)
.model LS830 NJF(Beta=0.23m Betatce=-0.5 Vto=-0.64 Vtotc=-2.5m Lambda=3.84m Is=0.18f Xti=0 Rd=25 Rs=32 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS831 NJF(Beta=0.15m Betatce=-0.5 Vto=-1.42 Vtotc=-2.5m Lambda=4.17m Is=1.24f Xti=0 Rd=17 Rs=21 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS832 NJF(Beta=0.10m Betatce=-0.5 Vto=-1.99 Vtotc=-2.5m Lambda=4.14m Is=1.14f Xti=0 Rd=16 Rs=20 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS840 NJF(Beta=0.88m Betatce=-0.5 Vto=-1.81 Vtotc=-2.5m Lambda=8.47m Is=2.56f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS841 NJF(Beta=0.88m Betatce=-0.5 Vto=-1.81 Vtotc=-2.5m Lambda=8.47m Is=2.56f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS842 NJF(Beta=0.81m Betatce=-0.5 Vto=-2.60 Vtotc=-2.5m Lambda=14.08m Is=2.50f Xti=0 Rd=10 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS843 NJF(Beta=2.38m Betatce=-0.5 Vto=-0.99 Vtotc=-2.5m Lambda=4.13m Is=11.92f Xti=0 Rd=13 Rs=14 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS844 NJF(Beta=1.61m Betatce=-0.5 Vto=-2.34 Vtotc=-2.5m Lambda=7.15m Is=1.65f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS845 NJF(Beta=1.47m Betatce=-0.5 Vto=-3.25 Vtotc=-2.5m Lambda=9.12m Is=1.77f Xti=0 Rd=11 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS3954A NJF(Beta=1.07m Betatce=-0.5 Vto=-0.93 Vtotc=-2.5m Lambda=6.75m Is=1.72f Xti=0 Rd=10 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS3955 NJF(Beta=0.88m Betatce=-0.5 Vto=-1.81 Vtotc=-2.5m Lambda=8.47m Is=2.56f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS3956 NJF(Beta=0.81m Betatce=-0.5 Vto=-2.60 Vtotc=-2.5m Lambda=14.08m Is=2.50f Xti=0 Rd=10 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS3958 NJF(Beta=0.768m Betatce=-0.5 Vto=-2.033 Vtotc=-2.5m Lambda=4.25m Is=24.55f Xti=3 Isr=240.1f Nr=2 Alpha=764.7u N=1 Rd=1 Rs=1 Cgd=1.71p Cgs=0.860p Fc=0.5 Vk=267.7 M=500m Pb=1 Kf=26360f Af=1 Mfg=Linear_Systems)
.model 2N4117A NJF(Beta=0.56m Betatce=-0.5 Vto=-1.209 Vtotc=-2.5m Lambda=7.5m Is=4.477f Xti=3 Isr=43.76f Nr=2 Alpha=18010u N=1 Rd=1 Rs=1 Cgd=4.49p Cgs=4.49p Fc=0.5 Vk=350.6 M=435.9m Pb=1 Kf=30820f Af=1 Mfg=Linear_Systems)
.model PN4117 NJF(Beta=2.80m Betatce=-0.5 Vto=-1.64 Vtotc=-2.5m Lambda=12.06m Is=2.71f Xti=0 Rd=7 Rs=9 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=45610f Af=1 Mfg=Linear_Systems)
.model 2N4118A NJF(Beta=0.095m Betatce=-0.5 Vto=-1.299 Vtotc=-2.5m Lambda=7.5m Is=4.477f Xti=3 Isr=43.76f Nr=2 Alpha=18010u N=1 Rd=1 Rs=1 Cgd=4.49p Cgs=4.49p Fc=0.5 Vk=350.6 M=435.9m Pb=1 Kf=76700f Af=1 Mfg=Linear_Systems)
.model PN4118 NJF(Beta=2.04m Betatce=-0.5 Vto=-2.37 Vtotc=-2.5m Lambda=10.26m Is=3.99f Xti=0 Rd=7 Rs=8 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=76700f Af=1 Mfg=Linear_Systems)
.model 2N4119A NJF(Beta=0.022m Betatce=-0.5 Vto=-4.5 Vtotc=-2.5m Lambda=10m Is=4.477f Xti=3 Isr=43.76f Nr=2 Alpha=18010u N=1 Rd=1 Rs=1 Cgd=4.49p Cgs=4.49p Fc=0.5 Vk=350.6 M=435.9m Pb=1 Kf=101800f Af=1 Mfg=Linear_Systems)
.model PN4119 NJF(Beta=1.49m Betatce=-0.5 Vto=-4.03 Vtotc=-2.5m Lambda=19.20m Is=3.39f Xti=0 Rd=7 Rs=9 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=101800f Af=1 Mfg=Linear_Systems)
.model 2N4391 NJF(Beta=3.084m Betatce=-0.5 Vto=-5.27 Vtotc=-2.5m Lambda=17.5m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=5.35p Cgs=4.76p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=40230f Af=1 Mfg=Linear_Systems)
.model PN4391 NJF(Beta=3.084m Betatce=-0.5 Vto=-5.27 Vtotc=-2.5m Lambda=17.5m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=5.35p Cgs=4.76p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=40230f Af=1 Mfg=Linear_Systems)
.model 2N4392 NJF(Beta=5.816m Betatce=-0.5 Vto=-2.808 Vtotc=-2.5m Lambda=12m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=4.83p Cgs=4.29p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=77640f Af=1 Mfg=Linear_Systems)
.model PN4392 NJF(Beta=5.816m Betatce=-0.5 Vto=-2.808 Vtotc=-2.5m Lambda=12m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=4.83p Cgs=4.29p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=77640f Af=1 Mfg=Linear_Systems)
.model PN4393 NJF(Beta=9.109m Betatce=-0.5 Vto=-1.417 Vtotc=-2.5m Lambda=8m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=4.57p Cgs=4.06p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=12300f Af=1 Mfg=Linear_Systems)
.model PN4416 NJF(Beta=0.989m Betatce=-0.5 Vto=-3.07 Vtotc=-2.5m Lambda=5.5m Is=33.57f Xti=3 Isr=322.4f Nr=2 Alpha=311.7u N=1 Rd=1 Rs=1 Cgd=1.6p Cgs=2.414p Fc=0.5 Vk=243.6 M=362m Pb=1 Kf=74450f Af=1 Mfg=Linear_Systems)
.model 2N5018 PJF(Beta=0.773m Betatce=-0.5 Vto=-4.15 Vtotc=-2.5m Lambda=40m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=4993f Af=1 Mfg=Linear_Systems)
.model PN5018 PJF(Beta=0.773m Betatce=-0.5 Vto=-4.15 Vtotc=-2.5m Lambda=40m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=4993f Af=1 Mfg=Linear_Systems)
.model 2N5019 PJF(Beta=1.775m Betatce=-0.5 Vto=-2.229 Vtotc=-2.5m Lambda=24m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=0.1145f Af=1 Mfg=Linear_Systems)
.model PN5019 PJF(Beta=1.775m Betatce=-0.5 Vto=-2.229 Vtotc=-2.5m Lambda=24m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=0.1145f Af=1 Mfg=Linear_Systems)
.model PN5114 PJF(Beta=0.510m Betatce=-0.5 Vto=-8.095 Vtotc=-2.5m Lambda=40m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=32960f Af=1 Mfg=Linear_Systems)
.model 2N5115 PJF(Beta=1.031m Betatce=-0.5 Vto=-4.896 Vtotc=-2.5m Lambda=32m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=278m Pb=1 Kf=66610f Af=1 Mfg=Linear_Systems)
.model 2N5116 PJF(Beta=1.71m Betatce=-0.5 Vto=-2.373 Lambda=25m Is=461.5f Xti=3 Nr=2 N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Pb=1 Af=1 Mfg=Linear_Systems)
.model PN5116 PJF(Beta=1.71m Betatce=-0.5 Vto=-2.373 Lambda=25m Is=461.5f Xti=3 Nr=2 N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Pb=1 Af=1 Mfg=Linear_Systems)
.model LS5301 NJF(Beta=0.0727m Betatce=-0.5 Vto=-1.798 Vtotc=-2.5m Lambda=15m Is=5.261f Xti=3 Isr=51.03f Nr=2 Alpha=0.797u N=1 Rd=1 Rs=1 Cgd=3.94p Cgs=4.93p Fc=0.5 Vk=90.45 M=435m Pb=1 Kf=10870f Af=1 Mfg=Linear_Systems)
.model PF5301 NJF(Beta=0.0727m Betatce=-0.5 Vto=-1.798 Vtotc=-2.5m Lambda=15m Is=5.261f Xti=3 Isr=51.03f Nr=2 Alpha=0.797u N=1 Rd=1 Rs=1 Cgd=3.94p Cgs=4.93p Fc=0.5 Vk=90.45 M=435m Pb=1 Kf=108700f Af=1 Mfg=Linear_Systems)
.model SST5301 NJF(Beta=0.0727m Betatce=-0.5 Vto=-1.798 Vtotc=-2.5m Lambda=15m Is=5.261f Xti=3 Isr=51.03f Nr=2 Alpha=0.797u N=1 Rd=1 Rs=1 Cgd=3.94p Cgs=4.93p Fc=0.5 Vk=90.45 M=435m Pb=1 Kf=108700f Af=1 Mfg=Linear_Systems)
.model 2N5564 NJF(Beta=9.109m Betatce=-0.5 Vto=-1.447 Vtotc=-2.5m Lambda=7.5m Is=94.42f Xti=3 Isr=921.9f Nr=2 Alpha=88.38u N=1 Rd=1 Rs=1 Cgd=8.67p Cgs=9.76p Fc=0.5 Vk=171.6 M=474.2m Pb=1 Kf=67860f Af=1 Mfg=Linear_Systems)
.model LS5905 NJF(Beta=0.23m Betatce=-0.5 Vto=-0.64 Vtotc=-2.5m Lambda=3.84m Is=0.18f Xti=0 Rd=25 Rs=32 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS5906 NJF(Beta=0.15m Betatce=-0.5 Vto=-1.42 Vtotc=-2.5m Lambda=4.17m Is=1.24f Xti=0 Rd=17 Rs=21 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS5907 NJF(Beta=0.10m Betatce=-0.5 Vto=-1.99 Vtotc=-2.5m Lambda=4.14m Is=1.14f Xti=0 Rd=16 Rs=20 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS5908 NJF(Beta=0.12m Betatce=-0.5 Vto=-1.652 Vtotc=-2.5m Lambda=0.900m Is=16.33f Xti=3 Isr=157.3f Nr=2 Alpha=0.026u N=1 Rd=1 Rs=1 Cgd=1.23p Cgs=1.23p Fc=0.5 Vk=211.9 M=333m Pb=1 Kf=0.3047f Af=1 Mfg=Linear_Systems)
.model LS5909 NJF(Beta=0.12m Betatce=-0.5 Vto=-1.652 Vtotc=-2.5m Lambda=0.900m Is=16.33f Xti=3 Isr=157.3f Nr=2 Alpha=0.026u N=1 Rd=1 Rs=1 Cgd=1.23p Cgs=1.23p Fc=0.5 Vk=211.9 M=333m Pb=1 Kf=0.3047f Af=1 Mfg=Linear_Systems)
.model LS5911 NJF(Beta=2.80m Betatce=-0.5 Vto=-1.64 Vtotc=-2.5m Lambda=12.06m Is=2.71f Xti=0 Rd=7 Rs=9 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS5912 NJF(Beta=2.04m Betatce=-0.5 Vto=-2.37 Vtotc=-2.5m Lambda=10.26m Is=3.99f Xti=0 Rd=7 Rs=8 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS5912C NJF(Beta=1.49m Betatce=-0.5 Vto=-4.03 Vtotc=-2.5m Lambda=19.20m Is=3.39f Xti=0 Rd=7 Rs=9 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LSK189A NJF(Beta=2.2m Betatce=-0.5 Vto=-1.13 Vtotc=-2.5m Lambda=4.3m Is=3f Xti=0 Isr=0 Alpha=30u N=1 Rd=11 Rs=30 Cgd=3.19p Cgs=2.92p Fc=0.5 Vk=120 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model LSK189B NJF(Beta=2.1m Betatce=-0.5 Vto=-1.80 Vtotc=-2.5m Lambda=5.7m Is=3f Xti=0 N=1 Rd=11 Rs=40 Cgd=3.19p Cgs=2.92p Fc=0.5 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model LSK189C NJF(Beta=2.1m Betatce=-0.5 Vto=-2.78 Vtotc=-2.5m Lambda=6.3m Is=3f Xti=0 N=1 Rd=11 Rs=55 Cgd=3.19p Cgs=2.92p Fc=0.5 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model LSK589A NJF(Beta=2.2m Betatce=-0.5 Vto=-1.13 Vtotc=-2.5m Lambda=4.3m Is=3f Xti=0 Isr=0 Alpha=30u N=1 Rd=11 Rs=30 Cgd=3.19p Cgs=2.92p Fc=0.5 Vk=120 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model LSK589B NJF(Beta=2.1m Betatce=-0.5 Vto=-1.80 Vtotc=-2.5m Lambda=5.7m Is=3f Xti=0 N=1 Rd=11 Rs=40 Cgd=3.19p Cgs=2.92p Fc=0.5 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model LSK589C NJF(Beta=2.1m Betatce=-0.5 Vto=-2.78 Vtotc=-2.5m Lambda=6.3m Is=3f Xti=0 N=1 Rd=11 Rs=55 Cgd=3.19p Cgs=2.92p Fc=0.5 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)

138
lib/cmp/standard.jft.bak Normal file
View File

@@ -0,0 +1,138 @@
* Copyright (c) 2000-2022 Analog Devices, Inc. All rights reserved.
*
.model 2N3819 NJF(Beta=1.304m Betatce=-.5 Rd=1 Rs=1 Lambda=2.25m Vto=-3 Vtotc=-2.5m Is=33.57f Isr=322.4f N=1 Nr=2 Xti=3 Alpha=311.7u Vk=243.6 Cgd=1.6p M=.3622 Pb=1 Fc=.5 Cgs=2.414p Kf=9.882E-18 Af=1 mfg=Vishay)
.model 2N4117 NJF(Beta=0.033m Betatce=-0.5 Vto=-1.2 Vtotc=-2.5m Lambda=13m Is=5.261f Xti=3 Isr=51.03f Nr=2 N=1 Rd=1 Rs=1 Cgd=3.94p Cgs=4.93p Fc=0.5 Vk=90.45 M=435.9m Pb=1 Kf=45610f Af=1 Mfg=Linear_Systems)
.model 2N4118 NJF(Beta=0.05258m Betatce=-0.5 Vto=-1.732 Vtotc=-2.5m Lambda=15m Is=5.261f Xti=3 Isr=51.03f Nr=2 Alpha=0.7979u N=1 Rd=1 Rs=1 Cgd=3.94p Cgs=4.93p Fc=0.5 Vk=90.45 M=435m Pb=1 Kf=76700f Af=1 Mfg=Linear_Systems)
.model 2N4119 NJF(Beta=0.068m Betatce=-0.5 Vto=-2.536 Vtotc=-2.5m Lambda=19m Is=5.261f Xti=3 Isr=51.03f Nr=2 Alpha=0.7979u N=1 Rd=1 Rs=1 Cgd=3.94p Cgs=4.93p Fc=0.5 Vk=90.45 M=435m Pb=1 Kf=101800f Af=1 Mfg=Linear_Systems)
.model 2N4338 NJF(Beta=0.781m Betatce=-0.5 Vto=-.6606 Vtotc=-2.5m Lambda=1.167m Is=114.5f Xti=3 Isr=1091f Nr=2 Alpha=506.8u N=1 Rd=1 Rs=1 Cgd=2.8p Cgs=2.916p Fc=0.5 Vk=251.7 M=227m Pb=0.5 Kf=29180f Af=1 Mfg=Linear_Systems)
.model 2N4416 NJF(Beta=0.989m Betatce=-0.5 Vto=-3.07 Vtotc=-2.5m Lambda=5.5m Is=33.57f Xti=3 Isr=322.4f Nr=2 Alpha=311.7u N=1 Rd=1 Rs=1 Cgd=1.6p Cgs=2.414p Fc=0.5 Vk=243.6 M=362m Pb=1 Kf=74450f Af=1 Mfg=Linear_Systems)
.model 2N4393 NJF(Beta=9.109m Betatce=-0.5 Vto=-1.422 Vtotc=-2.5m Lambda=6m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=4.57p Cgs=4.06p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=12300f Af=1 Mfg=Linear_Systems)
.model 2N5432 NJF(Beta=9.109m Betatce=-.5 Rd=1 Rs=1 Lambda=50m Vto=-5.397 Vtotc=-2.5m Is=533.7f Isr=5.174p N=1 Nr=2 Xti=3 Alpha=152.8u Vk=111.9 Cgd=35.6p M=.4283 Pb=1 Fc=.5 Cgs=35.6p Kf=124.3E-18 Af=1 mfg=Fairchild)
.model 2N5434 NJF(Beta=18m Betatce=-.5 Rd=1 Rs=1 Lambda=25m Vto=-1.9 Vtotc=-2.5m Is=.5p Isr=5p Alpha=150u Vk=110 Cgd=35p M=.4283 Cgs=35p mfg=Vishay)
.model 2N5484 NJF(Is=.25p Alpha=1e-4 Vk=80 Vto=-1.5 Vtotc=-3m Beta=3.0m Lambda=10m Betatce=-.5 Rd=10 Rs=10 Cgs=4p Cgd=4p Kf=3e-17 mfg=Siliconix)
.model 2N5485 NJF(Is=.25p Alpha=1e-4 Vk=80 Vto=-2.0 Vtotc=-3m Beta=3.5m Lambda=10m Betatce=-.5 Rd=10 Rs=10 Cgs=4p Cgd=4p Kf=3e-17 mfg=Siliconix)
.model 2N5486 NJF(Is=.25p Alpha=1e-4 Vk=80 Vto=-4.0 Vtotc=-3m Beta=4.0m Lambda=10m Betatce=-.5 Rd=10 Rs=10 Cgs=4p Cgd=4p Kf=3e-17 mfg=Siliconix)
.model U309 NJF(Beta=4.682m Betatce=-0.5 Vto=-2.075 Vtotc=-2.5m Lambda=14.5m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=64120f Af=1 Mfg=Linear_Systems)
.model LSJ689A PJF(Beta=3.5m Betatce=-0.5 Vto=-1.40 Vtotc=-2.5m Lambda=1.1m Is=0.45f Xti=0 N=1 Rd=111 Rs=40 Cgd=10p Cgs=9p Fc=0.5 M=300m Pb=0.25 Kf=0.0011f Af=1 Gdsnoi=2.95 Nlev=3 Mfg=Linear_Systems)
.model LSJ689B PJF(Beta=3.0m Betatce=-0.5 Vto=-1.75 Vtotc=-2.5m Lambda=2.0m Is=0.45f Xti=0 N=1 Rd=99 Rs=37 Cgd=10p Cgs=9p Fc=0.5 M=300m Pb=0.25 Kf=0.0011f AF=1 Gdsnoi=2.95 Nlev=3 Mfg=Linear_Systems)
.model LSJ689C PJF(Beta=2.5m Betatce=-0.5 Vto=-3.05 Vtotc=-2.5m Lambda=2.0m Is=0.45f Xti=0 N=1 Rd=70 Rs=30 Cgd=10p Cgs=9p Fc=0.5 M=300m Pb=0.25 Kf=0.0011f Af=1 Gdsnoi=2.95 Nlev=3 Mfg=Linear_Systems)
.model LSK489A NJF(Beta=2.2m Betatce=-0.5 Vto=-1.13 Vtotc=-2.5m Lambda=4.3m Is=3f Xti=0 Isr=0 Alpha=30u N=1 Rd=11 Rs=30 Cgd=3.19p Cgs=2.92p Fc=0.5 Vk=120 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model LSK489B NJF(Beta=2.1m Betatce=-0.5 Vto=-1.80 Vtotc=-2.5m Lambda=5.7m Is=3f Xti=0 N=1 Rd=11 Rs=40 Cgd=3.19p Cgs=2.92p Fc=0.5 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model LSK489C NJF(Beta=2.1m Betatce=-0.5 Vto=-2.78 Vtotc=-2.5m Lambda=6.3m Is=3f Xti=0 N=1 Rd=11 Rs=55 Cgd=3.19p Cgs=2.92p Fc=0.5 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model 2N5114 PJF(Beta=0.510m Betatce=-0.5 Vto=-8.095 Vtotc=-2.5m Lambda=40m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=32960f Af=1 Mfg=Linear_Systems)
.model 2N5460 PJF(Is=1.5p Alpha=1e-4 Vk=300 Vto=-3.4 Vtotc=-3m Beta=1.0m Lambda=10m Betatce=-.5 Rd=10 Rs=10 Cgs=5p Cgd=5p Kf=3e-17 mfg=Siliconix)
.model 2N5461 PJF(Is=1.5p Alpha=1e-4 Vk=300 Vto=-4.3 Vtotc=-3m Beta=1.5m Lambda=10m Betatce=-.5 Rd=10 Rs=10 Cgs=5p Cgd=5p Kf=3e-17 mfg=Siliconix)
.model 2N5462 PJF(Is=1.5p Alpha=1e-4 Vk=300 Vto=-5.4 Vtotc=-3m Beta=2.0m Lambda=10m Betatce=-.5 Rd=10 Rs=10 Cgs=5p Cgd=5p Kf=3e-17 mfg=Siliconix)
.model LSJ74A PJF(Beta=38m Betatce=-0.5 Vto=-.38 Vtotc=-2.5m Lambda=3m Is=12980f Xti=3 Isr=0 Nr=2 Alpha=10u N=1 Rd=7.748 Rs=7.748 Cgd=85.67p Cgs=78.27p Fc=0.5 Vk=100 M=324m Pb=0.3905 Kf=26640f Mfg=Linear_Systems)
.model LSJ74B PJF(Beta(=9m Betatce=-0.5 Vto=-0.84 Vtotc=-2.5m Lambda=3m Is=6.32f RD=4.95 RS=4.45 CGD=115p CGS=52.5P Fc=0.5 Pb=1 Kf=0 Mfg=Linear_Systems)
.model LSJ74C PJF(Beta=10.6m Betatce=-0.5 Vto=-1.3 Vtotc=-2.5m Lambda=4m Is=12980f Xti=0 Nr=2 Alpha=10u N=1 Rd=7.748 Rs=7.748 Cgd=85.67p Cgs=78.27p Fc=0.5 Vk=100 M=324m Pb=0.3905 Kf=26640f Mfg=Linear_Systems)
.model LSJ74D PJF(Beta=9.4m Betatce=-0.5 Vto=-1.76 Vtotc=-2.5m Lambda=3.8m Is=12980f Xti=3 Nr=2 Alpha=10u N=1 Rd=7.748 Rs=7.748 Cgd=85.67p Cgs=78.27p Fc=0.5 Vk=100 M=324m Pb=0.3905 Kf=26640f Mfg=Linear_Systems)
.model J111 NJF(Beta=2.91m Betatce=-0.5 Vto=-4.047 Vtotc=-2.5m Lambda=17.5m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=6.46p Cgs=5.74p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=37860f Af=1 Mfg=Linear_Systems)
.model J112 NJF(Beta=5.695m Betatce=-0.5 Vto=-2.057 Vtotc=-2.5m Lambda=13m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=6.46p Cgs=5.74p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=75980f Af=1 Mfg=Linear_Systems)
.model SST112 NJF(Beta=5.695m Betatce=-0.5 Vto=-2.057 Vtotc=-2.5m Lambda=13m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=6.46p Cgs=5.74p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=75980f Af=1 Mfg=Linear_Systems)
.model J113 NJF(Beta=9.109m Betatce=-0.5 Vto=-1.382 Vtotc=-2.5m Lambda=8m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=6.46p Cgs=5.74p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=12300f Af=1 Mfg=Linear_Systems)
.model SST113 NJF(Beta=9.109m Betatce=-0.5 Vto=-1.382 Vtotc=-2.5m Lambda=8m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=6.46p Cgs=5.74p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=12300f Af=1 Mfg=Linear_Systems)
.model LSK170A NJF(Beta=37.86m Betatce=-0.5 Vto=-0.40 Vtotc=-2.5m Lambda=4.78m Is=35.58f N=1 Rd=11 Rs=7 Cgd=39.9p Cgs=40.7p Fc=0.5 M=790m Pb=0.98 Kf=0 Af=1 Mfg=Linear_Systems)
.model LSK170B NJF(Beta=35.07m Betatce=-0.5 Vto=-0.54 Vtotc=-2.5m Lambda=4.95m Is=27.62f N=1 Rd=8 Rs=7 Cgd=43.6p Cgs=43.6p Fc=0.5 M=890m Pb=1.2 Kf=0 Af=1 Mfg=Linear_Systems)
.model LSK170C NJF(Beta=27.85m Betatce=-0.5 Vto=0.80 Vtotc=-2.5m Lambda=12.24m Is=24.52f N=1 Rd=12 Rs=6 Cgd=42.2p Cgs=42.3p Fc=0.5 M=610m Pb=0.92 Kf=0 Af=1 Mfg=Linear_Systems)
.model J174 PJF(Beta=0.813m Betatce=-0.5 Vto=-6.552 Vtotc=-2.5m Lambda=40m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=52540f Af=1 Mfg=Linear_Systems)
.model SST174 PJF(Beta=0.813m Betatce=-0.5 Vto=-6.552 Vtotc=-2.5m Lambda=40m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=52540f Af=1 Mfg=Linear_Systems)
.model J175 PJF(Beta=1.031m Betatce=-0.5 Vto=-3.762 Vtotc=-2.5m Lambda=28m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=66610f Af=1 Mfg=Linear_Systems)
.model SST175 PJF(Beta=1.031m Betatce=-0.5 Vto=-3.762 Vtotc=-2.5m Lambda=28m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=66610f Af=1 Mfg=Linear_Systems)
.model J176 PJF(Beta=2.3m Betatce=-0.5 Vto=-1.82 Vtotc=-2.5m Lambda=21m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=148600f Af=1 Mfg=Linear_Systems)
.model SST176 PJF(Beta=2.3m Betatce=-0.5 Vto=-1.82 Vtotc=-2.5m Lambda=21m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=148600f Af=1 Mfg=Linear_Systems)
.model J177 PJF(Beta=3.3m Betatce=-0.5 Vto=-1.386 Vtotc=-2.5m Lambda=18.18m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=21320f Af=1 Mfg=Linear_Systems)
.model SST177 PJF(Beta=3.3m Betatce=-0.5 Vto=-1.386 Vtotc=-2.5m Lambda=18.18m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=21320f Af=1 Mfg=Linear_Systems)
.model J201 NJF(Beta=1.07m Betatce=-0.5 Vto=-0.93 Vtotc=-2.5m Lambda=6.75m Is=1.72f Xti=0 Rd=10 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model SST201 NJF(Beta=1.07m Betatce=-0.5 Vto=-0.93 Vtotc=-2.5m Lambda=6.75m Is=1.72f Xti=0 Rd=10 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model J202 NJF(Beta=0.88m Betatce=-0.5 Vto=-1.81 Vtotc=-2.5m Lambda=8.47m Is=2.56f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model SST202 NJF(Beta=0.88m Betatce=-0.5 Vto=-1.81 Vtotc=-2.5m Lambda=8.47m Is=2.56f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model J204 NJF(Beta=1.004m Betatce=-0.5 Vto=-1.139 Vtotc=-2.5m Lambda=3.333m Is=29.04f Xti=3 Isr=281.9f Nr=2 Alpha=698u N=1 Rd=1 Rs=1 Cgd=3.58p Cgs=5.4p Fc=0.5 Vk=270.4 M=360m Pb=1 Kf=16500f Af=1 Mfg=Linear_Systems)
.model SST204 NJF(Beta=1.004m Betatce=-0.5 Vto=-1.139 Vtotc=-2.5m Lambda=3.333m Is=29.04f Xti=3 Isr=281.9f Nr=2 Alpha=698u N=1 Rd=1 Rs=1 Cgd=3.58p Cgs=5.4p Fc=0.5 Vk=270.4 M=360m Pb=1 Kf=16500f Af=1 Mfg=Linear_Systems)
.model J210 NJF(Beta=2.222m Betatce=-0.5 Vto=-1.526 Vtotc=-2.5m Lambda=8.8m Is=101.9f Xti=3 Isr=977.5f Nr=2 Alpha=13.92u N=1 Rd=1 Rs=1 Cgd=3.913p Cgs=3.496p Fc=0.5 Vk=88.13 M=345m Pb=1 Kf=86240f Af=1 Mfg=Linear_Systems)
.model SSTJ210 NJF(Beta=2.222m Betatce=-0.5 Vto=-1.526 Vtotc=-2.5m Lambda=8.8m Is=101.9f Xti=3 Isr=977.5f Nr=2 Alpha=13.92u N=1 Rd=1 Rs=1 Cgd=3.913p Cgs=3.496p Fc=0.5 Vk=88.13 M=345m Pb=1 Kf=86240f Af=1 Mfg=Linear_Systems)
.model SSTJ211 NJF(Beta=1.808m Betatce=-0.5 Vto=-2.9 Vtotc=-2.5m Lambda=10m Is=101.9f Xti=3 Isr=977.5f Nr=2 Alpha=13.92u N=1 Rd=1 Rs=1 Cgd=3.913p Cgs=3.496p Fc=0.5 Vk=88.13 M=345m Pb=1 Kf=70150f Af=1 Mfg=Linear_Systems)
.model J211 NJF(Beta=1.808m Betatce=-0.5 Vto=-2.9 Vtotc=-2.5m Lambda=10m Is=101.9f Xti=3 Isr=977.5f Nr=2 Alpha=13.92u N=1 Rd=1 Rs=1 Cgd=3.913p Cgs=3.496p Fc=0.5 Vk=88.13 M=345m Pb=1 Kf=70150f Af=1 Mfg=Linear_Systems)
.model SSTJ212 NJF(Beta=0.873 Betatce=-0.5 Vto=-5.029 Vtotc=-2.5m Lambda=16m Is=101.9f Xti=3 Isr=977.5f Nr=2 Alpha=13.92u N=1 Rd=1 Rs=1 Cgd=3.913p Cgs=3.496p Fc=0.5 Vk=88.13 M=345m Pb=1 Kf=33750f Af=1 Mfg=Linear_Systems)
.model J212 NJF(Beta=0.873 Betatce=-0.5 Vto=-5.029 Vtotc=-2.5m Lambda=16m Is=101.9f Xti=3 Isr=977.5f Nr=2 Alpha=13.92u N=1 Rd=1 Rs=1 Cgd=3.913p Cgs=3.496p Fc=0.5 Vk=88.13 M=345m Pb=1 Kf=33750f Af=1 Mfg=Linear_Systems)
.model J308 NJF(Beta=3.688m Betatce=-0.5 Vto=-3.095 Vtotc=-2.5m Lambda=16m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=50510f Af=1 Mfg=Linear_Systems)
.model SST308 NJF(Beta=3.688m Betatce=-0.5 Vto=-3.095 Vtotc=-2.5m Lambda=16m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=50510f Af=1 Mfg=Linear_Systems)
.model U308 NJF(Beta=3.688m Betatce=-0.5 Vto=-3.095 Vtotc=-2.5m Lambda=16m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=50510f Af=1 Mfg=Linear_Systems)
.model J309 NJF(Beta=4.682m Betatce=-0.5 Vto=-2.075 Vtotc=-2.5m Lambda=14.5m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=64120f Af=1 Mfg=Linear_Systems)
.model SST309 NJF(Beta=4.682m Betatce=-0.5 Vto=-2.075 Vtotc=-2.5m Lambda=14.5m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=64120f Af=1 Mfg=Linear_Systems)
.model J310 NJF(Beta=3.384m Betatce=-0.5 Vto=-3.409 Vtotc=-2.5m Lambda=17m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=46340f Af=1 Mfg=Linear_Systems)
.model U310 NJF(Beta=3.384m Betatce=-0.5 Vto=-3.409 Vtotc=-2.5m Lambda=17m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=46340f Af=1 Mfg=Linear_Systems)
.model SST310 NJF(Beta=3.384m Betatce=-0.5 Vto=-3.409 Vtotc=-2.5m Lambda=17m Is=193.9f Xti=3 Isr=1881f Nr=2 Alpha=7.533u N=1 Rd=1 Rs=1 Cgd=6.2p Cgs=6.2p Fc=0.5 Vk=74.1 M=465m Pb=1 Kf=46340f Af=1 Mfg=Linear_Systems)
.model LSK389A NJF(Beta=37.86m Betatce=-0.5 Vto=-0.40 Vtotc=-2.5m Lambda=4.78m Is=35.58f N=1 Rd=11 Rs=7 Cgd=39.9p Cgs=40.7p Fc=0.5 M=790m Pb=0.98 Kf=0 Af=1 Mfg=Linear_Systems)
.model LSK389B NJF(Beta=35.07m Betatce=-0.5 Vto=-0.54 Vtotc=-2.5m Lambda=4.95m Is=27.62f N=1 Rd=8 Rs=7 Cgd=43.6p Cgs=43.6p Fc=0.5 M=890m Pb=1.2 Kf=0 Af=1 Mfg=Linear_Systems)
.model LSK389C NJF(Beta=27.85m Betatce=-0.5 Vto=0.80 Vtotc=-2.5m Lambda=12.24m Is=24.52f N=1 Rd=12 Rs=6 Cgd=42.2p Cgs=42.3p Fc=0.5 M=610m Pb=0.92 Kf=0 Af=1 Mfg=Linear_Systems)
.model U401 NJF(Beta=1.577m Betatce=-0.5 Vto=-1.316 Vtotc=-2.5m Lambda=10m Is=19.73f Xti=3 Isr=191.3f Nr=2 Alpha=68.56u N=1 Rd=1 Rs=1 Cgd=5.6p Cgs=6.044p Fc=0.5 Vk=212.2 M=.3916 Pb=0.5 Kf=45920f Af=1 Mfg=Linear_Systems)
.model U402 NJF(Beta=1.61m Betatce=-0.5 Vto=-2.34 Vtotc=-2.5m Lambda=7.15m Is=1.65f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model U403 NJF(Beta=1.47m Betatce=-0.5 Vto=-3.25 Vtotc=-2.5m Lambda=9.12m Is=1.77f Xti=0 Rd=11 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model U404 NJF(Beta=2.38m Betatce=-0.5 Vto=-0.99 Vtotc=-2.5m Lambda=4.13m Is=11.92f Xti=0 Rd=13 Rs=14 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model U405 NJF(Beta=1.61m Betatce=-0.5 Vto=-2.34 Vtotc=-2.5m Lambda=7.15m Is=1.65f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model U406 NJF(Beta=1.577m Betatce=-0.5 Vto=-1.316 Vtotc=-2.5m Lambda=10m Is=19.73f Xti=3 Isr=191.3f Nr=2 Alpha=68.56u N=1 Rd=1 Rs=1 Cgd=5.6p Cgs=6.044p Fc=0.5 Vk=212.2 M=391.6m Pb=0.5 Kf=45920f Af=1 Mfg=Linear_Systems)
.model SST401 NJF(Beta=1.577m Betatce=-0.5 Vto=-1.316 Vtotc=-2.5m Lambda=10m Is=19.73f Xti=3 Isr=191.3f Nr=2 Alpha=68.56u N=1 Rd=1 Rs=1 Cgd=5.6p Cgs=6.044p Fc=0.5 Vk=212.2 M=.3916 Pb=0.5 Kf=45920f Af=1 Mfg=Linear_Systems)
.model SST402 NJF(Beta=1.61m Betatce=-0.5 Vto=-2.34 Vtotc=-2.5m Lambda=7.15m Is=1.65f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model SST403 NJF(Beta=1.47m Betatce=-0.5 Vto=-3.25 Vtotc=-2.5m Lambda=9.12m Is=1.77f Xti=0 Rd=11 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model SST404 NJF(Beta=2.38m Betatce=-0.5 Vto=-0.99 Vtotc=-2.5m Lambda=4.13m Is=11.92f Xti=0 Rd=13 Rs=14 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model SST405 NJF(Beta=1.61m Betatce=-0.5 Vto=-2.34 Vtotc=-2.5m Lambda=7.15m Is=1.65f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model SST406 NJF(Beta=1.577m Betatce=-0.5 Vto=-1.316 Vtotc=-2.5m Lambda=10m Is=19.73f Xti=3 Isr=191.3f Nr=2 Alpha=68.56u N=1 Rd=1 Rs=1 Cgd=5.6p Cgs=6.044p Fc=0.5 Vk=212.2 M=391.6m Pb=0.5 Kf=45920f Af=1 Mfg=Linear_Systems)
.model U440 NJF(Beta=1.978m Betatce=-0.5 Vto=-2.839 Vtotc=-2.5m Lambda=30m Is=36.18f Xti=3 Isr=346.4f Nr=2 Alpha=105u N=1 Rd=1 Rs=1 Cgd=2.11p Cgs=2.47p Fc=0.5 Vk=107 M=333m Pb=1 Kf=27880f Af=1 Mfg=Linear_Systems)
.model U441 NJF(Beta=1.978m Betatce=-0.5 Vto=-2.839 Vtotc=-2.5m Lambda=30m Is=36.18f Xti=3 Isr=346.4f Nr=2 Alpha=105u N=1 Rd=1 Rs=1 Cgd=2.11p Cgs=2.47p Fc=0.5 Vk=107 M=333m Pb=1 Kf=27880f Af=1 Mfg=Linear_Systems)
.model SST440 NJF(Beta=1.978m Betatce=-0.5 Vto=-2.839 Vtotc=-2.5m Lambda=30m Is=36.18f Xti=3 Isr=346.4f Nr=2 Alpha=105u N=1 Rd=1 Rs=1 Cgd=2.11p Cgs=2.47p Fc=0.5 Vk=107 M=333m Pb=1 Kf=27880f Af=1 Mfg=Linear_Systems)
.model SST441 NJF(Beta=1.978m Betatce=-0.5 Vto=-2.839 Vtotc=-2.5m Lambda=30m Is=36.18f Xti=3 Isr=346.4f Nr=2 Alpha=105u N=1 Rd=1 Rs=1 Cgd=2.11p Cgs=2.47p Fc=0.5 Vk=107 M=333m Pb=1 Kf=27880f Af=1 Mfg=Linear_Systems)
.model LSJ289A PJF(Beta=3.5m Betatce=-0.5 Vto=-1.40 Vtotc=-2.5m Lambda=1.1m Is=0.45f Xti=0 N=1 Rd=111 Rs=40 Cgd=10p Cgs=9p Fc=0.5 M=300m Pb=0.25 Kf=0.0011f Af=1 Gdsnoi=2.95 Nlev=3 Mfg=Linear_Systems)
.model LSJ289B PJF(Beta=3.0m Betatce=-0.5 Vto=-1.75 Vtotc=-2.5m Lambda=2.0m Is=0.45f Xti=0 N=1 Rd=99 Rs=37 Cgd=10p Cgs=9p Fc=0.5 M=300m Pb=0.25 Kf=0.0011f AF=1 Gdsnoi=2.95 Nlev=3 Mfg=Linear_Systems)
.model LSJ289C PJF(Beta=2.5m Betatce=-0.5 Vto=-3.05 Vtotc=-2.5m Lambda=2.0m Is=0.45f Xti=0 N=1 Rd=70 Rs=30 Cgd=10p Cgs=9p Fc=0.5 M=300m Pb=0.25 Kf=0.0011f Af=1 Gdsnoi=2.95 Nlev=3 Mfg=Linear_Systems)
.model LS830 NJF(Beta=0.23m Betatce=-0.5 Vto=-0.64 Vtotc=-2.5m Lambda=3.84m Is=0.18f Xti=0 Rd=25 Rs=32 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS831 NJF(Beta=0.15m Betatce=-0.5 Vto=-1.42 Vtotc=-2.5m Lambda=4.17m Is=1.24f Xti=0 Rd=17 Rs=21 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS832 NJF(Beta=0.10m Betatce=-0.5 Vto=-1.99 Vtotc=-2.5m Lambda=4.14m Is=1.14f Xti=0 Rd=16 Rs=20 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS840 NJF(Beta=0.88m Betatce=-0.5 Vto=-1.81 Vtotc=-2.5m Lambda=8.47m Is=2.56f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS841 NJF(Beta=0.88m Betatce=-0.5 Vto=-1.81 Vtotc=-2.5m Lambda=8.47m Is=2.56f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS842 NJF(Beta=0.81m Betatce=-0.5 Vto=-2.60 Vtotc=-2.5m Lambda=14.08m Is=2.50f Xti=0 Rd=10 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS843 NJF(Beta=2.38m Betatce=-0.5 Vto=-0.99 Vtotc=-2.5m Lambda=4.13m Is=11.92f Xti=0 Rd=13 Rs=14 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS844 NJF(Beta=1.61m Betatce=-0.5 Vto=-2.34 Vtotc=-2.5m Lambda=7.15m Is=1.65f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS845 NJF(Beta=1.47m Betatce=-0.5 Vto=-3.25 Vtotc=-2.5m Lambda=9.12m Is=1.77f Xti=0 Rd=11 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS3954A NJF(Beta=1.07m Betatce=-0.5 Vto=-0.93 Vtotc=-2.5m Lambda=6.75m Is=1.72f Xti=0 Rd=10 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS3955 NJF(Beta=0.88m Betatce=-0.5 Vto=-1.81 Vtotc=-2.5m Lambda=8.47m Is=2.56f Xti=0 Rd=11 Rs=13 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS3956 NJF(Beta=0.81m Betatce=-0.5 Vto=-2.60 Vtotc=-2.5m Lambda=14.08m Is=2.50f Xti=0 Rd=10 Rs=12 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS3958 NJF(Beta=0.768m Betatce=-0.5 Vto=-2.033 Vtotc=-2.5m Lambda=4.25m Is=24.55f Xti=3 Isr=240.1f Nr=2 Alpha=764.7u N=1 Rd=1 Rs=1 Cgd=1.71p Cgs=0.860p Fc=0.5 Vk=267.7 M=500m Pb=1 Kf=26360f Af=1 Mfg=Linear_Systems)
.model 2N4117A NJF(Beta=0.56m Betatce=-0.5 Vto=-1.209 Vtotc=-2.5m Lambda=7.5m Is=4.477f Xti=3 Isr=43.76f Nr=2 Alpha=18010u N=1 Rd=1 Rs=1 Cgd=4.49p Cgs=4.49p Fc=0.5 Vk=350.6 M=435.9m Pb=1 Kf=30820f Af=1 Mfg=Linear_Systems)
.model PN4117 NJF(Beta=2.80m Betatce=-0.5 Vto=-1.64 Vtotc=-2.5m Lambda=12.06m Is=2.71f Xti=0 Rd=7 Rs=9 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=45610f Af=1 Mfg=Linear_Systems)
.model 2N4118A NJF(Beta=0.095m Betatce=-0.5 Vto=-1.299 Vtotc=-2.5m Lambda=7.5m Is=4.477f Xti=3 Isr=43.76f Nr=2 Alpha=18010u N=1 Rd=1 Rs=1 Cgd=4.49p Cgs=4.49p Fc=0.5 Vk=350.6 M=435.9m Pb=1 Kf=76700f Af=1 Mfg=Linear_Systems)
.model PN4118 NJF(Beta=2.04m Betatce=-0.5 Vto=-2.37 Vtotc=-2.5m Lambda=10.26m Is=3.99f Xti=0 Rd=7 Rs=8 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=76700f Af=1 Mfg=Linear_Systems)
.model 2N4119A NJF(Beta=0.022m Betatce=-0.5 Vto=-4.5 Vtotc=-2.5m Lambda=10m Is=4.477f Xti=3 Isr=43.76f Nr=2 Alpha=18010u N=1 Rd=1 Rs=1 Cgd=4.49p Cgs=4.49p Fc=0.5 Vk=350.6 M=435.9m Pb=1 Kf=101800f Af=1 Mfg=Linear_Systems)
.model PN4119 NJF(Beta=1.49m Betatce=-0.5 Vto=-4.03 Vtotc=-2.5m Lambda=19.20m Is=3.39f Xti=0 Rd=7 Rs=9 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=101800f Af=1 Mfg=Linear_Systems)
.model 2N4391 NJF(Beta=3.084m Betatce=-0.5 Vto=-5.27 Vtotc=-2.5m Lambda=17.5m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=5.35p Cgs=4.76p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=40230f Af=1 Mfg=Linear_Systems)
.model PN4391 NJF(Beta=3.084m Betatce=-0.5 Vto=-5.27 Vtotc=-2.5m Lambda=17.5m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=5.35p Cgs=4.76p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=40230f Af=1 Mfg=Linear_Systems)
.model 2N4392 NJF(Beta=5.816m Betatce=-0.5 Vto=-2.808 Vtotc=-2.5m Lambda=12m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=4.83p Cgs=4.29p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=77640f Af=1 Mfg=Linear_Systems)
.model PN4392 NJF(Beta=5.816m Betatce=-0.5 Vto=-2.808 Vtotc=-2.5m Lambda=12m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=4.83p Cgs=4.29p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=77640f Af=1 Mfg=Linear_Systems)
.model PN4393 NJF(Beta=9.109m Betatce=-0.5 Vto=-1.417 Vtotc=-2.5m Lambda=8m Is=205.2f Xti=3 Isr=1988f Nr=2 Alpha=20.98u N=1 Rd=1 Rs=1 Cgd=4.57p Cgs=4.06p Fc=0.5 Vk=123.7 M=407m Pb=1 Kf=12300f Af=1 Mfg=Linear_Systems)
.model PN4416 NJF(Beta=0.989m Betatce=-0.5 Vto=-3.07 Vtotc=-2.5m Lambda=5.5m Is=33.57f Xti=3 Isr=322.4f Nr=2 Alpha=311.7u N=1 Rd=1 Rs=1 Cgd=1.6p Cgs=2.414p Fc=0.5 Vk=243.6 M=362m Pb=1 Kf=74450f Af=1 Mfg=Linear_Systems)
.model 2N5018 PJF(Beta=0.773m Betatce=-0.5 Vto=-4.15 Vtotc=-2.5m Lambda=40m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=4993f Af=1 Mfg=Linear_Systems)
.model PN5018 PJF(Beta=0.773m Betatce=-0.5 Vto=-4.15 Vtotc=-2.5m Lambda=40m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=4993f Af=1 Mfg=Linear_Systems)
.model 2N5019 PJF(Beta=1.775m Betatce=-0.5 Vto=-2.229 Vtotc=-2.5m Lambda=24m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=0.1145f Af=1 Mfg=Linear_Systems)
.model PN5019 PJF(Beta=1.775m Betatce=-0.5 Vto=-2.229 Vtotc=-2.5m Lambda=24m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=0.1145f Af=1 Mfg=Linear_Systems)
.model PN5114 PJF(Beta=0.510m Betatce=-0.5 Vto=-8.095 Vtotc=-2.5m Lambda=40m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=279m Pb=1 Kf=32960f Af=1 Mfg=Linear_Systems)
.model 2N5115 PJF(Beta=1.031m Betatce=-0.5 Vto=-4.896 Vtotc=-2.5m Lambda=32m Is=461.5f Xti=3 Isr=4402f Nr=2 Alpha=32.54u N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Vk=393.2 M=278m Pb=1 Kf=66610f Af=1 Mfg=Linear_Systems)
.model 2N5116 PJF(Beta=1.71m Betatce=-0.5 Vto=-2.373 Lambda=25m Is=461.5f Xti=3 Nr=2 N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Pb=1 Af=1 Mfg=Linear_Systems)
.model PN5116 PJF(Beta=1.71m Betatce=-0.5 Vto=-2.373 Lambda=25m Is=461.5f Xti=3 Nr=2 N=1 Rd=1 Rs=1 Cgd=6.5p Cgs=9p Fc=0.5 Pb=1 Af=1 Mfg=Linear_Systems)
.model LS5301 NJF(Beta=0.0727m Betatce=-0.5 Vto=-1.798 Vtotc=-2.5m Lambda=15m Is=5.261f Xti=3 Isr=51.03f Nr=2 Alpha=0.797u N=1 Rd=1 Rs=1 Cgd=3.94p Cgs=4.93p Fc=0.5 Vk=90.45 M=435m Pb=1 Kf=10870f Af=1 Mfg=Linear_Systems)
.model PF5301 NJF(Beta=0.0727m Betatce=-0.5 Vto=-1.798 Vtotc=-2.5m Lambda=15m Is=5.261f Xti=3 Isr=51.03f Nr=2 Alpha=0.797u N=1 Rd=1 Rs=1 Cgd=3.94p Cgs=4.93p Fc=0.5 Vk=90.45 M=435m Pb=1 Kf=108700f Af=1 Mfg=Linear_Systems)
.model SST5301 NJF(Beta=0.0727m Betatce=-0.5 Vto=-1.798 Vtotc=-2.5m Lambda=15m Is=5.261f Xti=3 Isr=51.03f Nr=2 Alpha=0.797u N=1 Rd=1 Rs=1 Cgd=3.94p Cgs=4.93p Fc=0.5 Vk=90.45 M=435m Pb=1 Kf=108700f Af=1 Mfg=Linear_Systems)
.model 2N5564 NJF(Beta=9.109m Betatce=-0.5 Vto=-1.447 Vtotc=-2.5m Lambda=7.5m Is=94.42f Xti=3 Isr=921.9f Nr=2 Alpha=88.38u N=1 Rd=1 Rs=1 Cgd=8.67p Cgs=9.76p Fc=0.5 Vk=171.6 M=474.2m Pb=1 Kf=67860f Af=1 Mfg=Linear_Systems)
.model LS5905 NJF(Beta=0.23m Betatce=-0.5 Vto=-0.64 Vtotc=-2.5m Lambda=3.84m Is=0.18f Xti=0 Rd=25 Rs=32 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS5906 NJF(Beta=0.15m Betatce=-0.5 Vto=-1.42 Vtotc=-2.5m Lambda=4.17m Is=1.24f Xti=0 Rd=17 Rs=21 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS5907 NJF(Beta=0.10m Betatce=-0.5 Vto=-1.99 Vtotc=-2.5m Lambda=4.14m Is=1.14f Xti=0 Rd=16 Rs=20 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS5908 NJF(Beta=0.12m Betatce=-0.5 Vto=-1.652 Vtotc=-2.5m Lambda=0.900m Is=16.33f Xti=3 Isr=157.3f Nr=2 Alpha=0.026u N=1 Rd=1 Rs=1 Cgd=1.23p Cgs=1.23p Fc=0.5 Vk=211.9 M=333m Pb=1 Kf=0.3047f Af=1 Mfg=Linear_Systems)
.model LS5909 NJF(Beta=0.12m Betatce=-0.5 Vto=-1.652 Vtotc=-2.5m Lambda=0.900m Is=16.33f Xti=3 Isr=157.3f Nr=2 Alpha=0.026u N=1 Rd=1 Rs=1 Cgd=1.23p Cgs=1.23p Fc=0.5 Vk=211.9 M=333m Pb=1 Kf=0.3047f Af=1 Mfg=Linear_Systems)
.model LS5911 NJF(Beta=2.80m Betatce=-0.5 Vto=-1.64 Vtotc=-2.5m Lambda=12.06m Is=2.71f Xti=0 Rd=7 Rs=9 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS5912 NJF(Beta=2.04m Betatce=-0.5 Vto=-2.37 Vtotc=-2.5m Lambda=10.26m Is=3.99f Xti=0 Rd=7 Rs=8 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LS5912C NJF(Beta=1.49m Betatce=-0.5 Vto=-4.03 Vtotc=-2.5m Lambda=19.20m Is=3.39f Xti=0 Rd=7 Rs=9 Cgd=1p Cgs=1p Fc=0.5 M=500m Pb=0.8 Kf=0 Af=1 Mfg=Linear_Systems)
.model LSK189A NJF(Beta=2.2m Betatce=-0.5 Vto=-1.13 Vtotc=-2.5m Lambda=4.3m Is=3f Xti=0 Isr=0 Alpha=30u N=1 Rd=11 Rs=30 Cgd=3.19p Cgs=2.92p Fc=0.5 Vk=120 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model LSK189B NJF(Beta=2.1m Betatce=-0.5 Vto=-1.80 Vtotc=-2.5m Lambda=5.7m Is=3f Xti=0 N=1 Rd=11 Rs=40 Cgd=3.19p Cgs=2.92p Fc=0.5 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model LSK189C NJF(Beta=2.1m Betatce=-0.5 Vto=-2.78 Vtotc=-2.5m Lambda=6.3m Is=3f Xti=0 N=1 Rd=11 Rs=55 Cgd=3.19p Cgs=2.92p Fc=0.5 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model LSK589A NJF(Beta=2.2m Betatce=-0.5 Vto=-1.13 Vtotc=-2.5m Lambda=4.3m Is=3f Xti=0 Isr=0 Alpha=30u N=1 Rd=11 Rs=30 Cgd=3.19p Cgs=2.92p Fc=0.5 Vk=120 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model LSK589B NJF(Beta=2.1m Betatce=-0.5 Vto=-1.80 Vtotc=-2.5m Lambda=5.7m Is=3f Xti=0 N=1 Rd=11 Rs=40 Cgd=3.19p Cgs=2.92p Fc=0.5 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)
.model LSK589C NJF(Beta=2.1m Betatce=-0.5 Vto=-2.78 Vtotc=-2.5m Lambda=6.3m Is=3f Xti=0 N=1 Rd=11 Rs=55 Cgd=3.19p Cgs=2.92p Fc=0.5 M=320m Pb=0.8 Kf=0.0009f Af=1 Gdsnoi=2.15 Nlev=3 Mfg=Linear_Systems)

1208
lib/cmp/standard.mos Normal file

File diff suppressed because it is too large Load Diff

1116
lib/cmp/standard.mos.bak Normal file

File diff suppressed because it is too large Load Diff

BIN
lib/cmp/standard.res Normal file

Binary file not shown.

BIN
lib/cmp/standard.res.bak Normal file

Binary file not shown.

1
lib/stamp.bin Normal file
View File

@@ -0,0 +1 @@
<EFBFBD>$fn<><6E>A

View File

@@ -0,0 +1,14 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005. All rights reserved.
*
.subckt 2ndOrderAllpass 1 2
G1 0 N002 1 0 {2/R1}
L2 N002 0 {L1} Rpar={R1} Cpar={C1}
G2 0 N003 1 0 {1/R1}
G3 N003 0 N002 0 {1/R1}
R1 N003 0 {R1}
G4 0 2 N003 0 {10*H}
R2 2 0 .1
.param R1=1k
.param C1=Q/(2*pi*f0*R1)
.param L1= 1/(C1*(2*pi*f0)**2)
.ends 2ndOrderAllpass

View File

@@ -0,0 +1,13 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005. All rights reserved.
*
.subckt 2ndOrderBandpass 1 2
L1 N003 0 {L1} Cpar={C1}
G1 0 N002 1 0 {2/R1}
R1 N002 0 {R1/2}
R2 N003 N002 {R1/2}
G2 0 2 N003 0 {10*H}
R3 2 0 .1
.param R1=1k
.param L1=1/(C1*(2*pi*f0)**2)
.param C1=Q/(R1*2*pi*f0)
.ends 2ndOrderBandpass

View File

@@ -0,0 +1,20 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005. All rights reserved.
*
.subckt 2ndOrderComplexzero 1 2
G1 0 N002 1 0 {2*f0**2/(R1*fn**2)}
R2 N002 0 {R1/2}
G2 0 N003 N002 N005 {2m*K1}
R4 N003 0 1k
L1 N005 N006 {L1}
R1 N002 N005 {R1/2}
C2 N006 0 {C1}
G3 0 N003 N005 N006 {1m}
G4 0 N003 N006 0 {1m*K2}
G5 0 2 N003 0 {10*H}
R3 2 0 .1
.param R1=1k
.param K1 = (fn*Q)/(f0*Qn)
.param K2 = (fn/f0)**2
.param L1 = R1*Q/(2*pi*f0)
.param C1 = 1/(L1*(2*pi*f0)**2)
.ends 2ndOrderComplexzero

View File

@@ -0,0 +1,13 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005. All rights reserved.
*
.subckt 2ndOrderHighpass 1 2
L1 N003 0 {L1}
C1 N002 N003 {C1} Rser={R1/2}
G1 0 N002 1 0 {2/R1}
R1 N002 0 {R1/2}
G2 0 2 N003 0 {10*H}
R2 2 0 .1
.param R1=1k
.param L1=R1*Q/(2*pi*f0)
.param C1=1/(L1*(2*pi*f0)**2)
.ends 2ndOrderHighpass

View File

@@ -0,0 +1,13 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005. All rights reserved.
*
.subckt 2ndOrderLowpass 1 2
G1 0 N002 1 0 {2/R1}
R2 N002 0 {R1/2}
R4 2 0 .1
L1 N002 N004 {L1} Rser={R1/2}
C2 N004 0 {C1}
G4 0 2 N004 0 {10*H}
.param R1=1k
.param L1 = R1*Q/(2*pi*f0)
.param C1 = 1/(L1*(2*pi*f0)**2)
.ends 2ndOrderLowpass

14
lib/sub/2ndOrderNotch.sub Normal file
View File

@@ -0,0 +1,14 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005. All rights reserved.
*
.subckt 2ndOrderNotch 1 2
G1 0 N002 1 0 {4/R1}
R1 N002 0 {R1/2}
R2 N003 N002 {R1/2}
R3 N003 0 {R1}
C1 N003 0 {C1} Lser={L1}
G2 0 2 N003 0 {10*H}
R4 2 0 .1
.param R1=1k
.param L1=R1*Q/(4*pi*f0)
.param C1=1/(L1*(2*pi*f0)**2)
.ends 2ndOrderNotch

11
lib/sub/4N25.sub Normal file
View File

@@ -0,0 +1,11 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000. All rights reserved.
*
.subckt 4N25 1 2 3 4 5
R1 N003 2 2
D1 1 N003 LD
G1 3 5 N003 2 .876m
C1 1 2 18p
Q1 3 5 4 [4] NP
.model LD D(Is=1e-20 Cjo=18p)
.model NP NPN(Bf=610 Vaf=140 Ikf=15m Rc=1 Cjc=19p Cje=7p Cjs=7p C2=1e-15)
.ends 4N25

11
lib/sub/4N27.sub Normal file
View File

@@ -0,0 +1,11 @@
* Copyright <20> Linear Technology Corp. 1998, 1999, 2000. All rights reserved.
*
.subckt 4N27 1 2 3 4 5
R1 N003 2 2
D1 1 N003 LD
G1 3 5 N003 2 .582m
C1 1 2 18p
Q1 3 5 4 [4] NP
.model LD D(Is=1e-20 Cjo=18p)
.model NP NPN(Bf=610 Vaf=140 Ikf=15m Rc=1 Cjc=19p Cje=7p Cjs=7p C2=1e-15)
.ends 4N27

BIN
lib/sub/AD3541R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD3542R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD3551R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD3552R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4000.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4001.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4002.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4003.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4004.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4005.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4006.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4007.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4008.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4010.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4011.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4020.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4021.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4022.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4030-24.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4130-8.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4630-16.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4630-24.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4695.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4696.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4697.sub Normal file

Binary file not shown.

BIN
lib/sub/AD4698.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5535Bopamp.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5671R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5672R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5673R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5674R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5675R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5676R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5677R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5679R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5681R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5682R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5683R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5684R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5685R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5686R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5687R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5689R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5691R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5692R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5693R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5694R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5695R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5696R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5697R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5766.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5770R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5772R.sub Normal file

Binary file not shown.

BIN
lib/sub/AD5791.sub Normal file

Binary file not shown.

BIN
lib/sub/AD7380.sub Normal file

Binary file not shown.

164
lib/sub/AD8137.lib Normal file
View File

@@ -0,0 +1,164 @@
* AD8137 SPICE Macro-model
* Description: Amplifier
* Generic Desc: Low Power/Cost Diff 10-12 bit ADC Driver
* Developed by: TRW/ADI
* Revision History: 08/10/2012 - Updated to new header style
* 07/06/2021 - Corrected current draw from the supplies
* 4.0 (07/2006)
* Copyright 2006, 2012 by Analog Devices, Inc.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance with the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
* vnoise, not included in this version
* inoise, not included in this version
* distortion is not characterized
* cmrr is not characterized in this version.
*
* Parameters modeled include:
* closed loop gain and phase vs bandwidth
* output current and voltage limiting
* offset voltage (is non-static, will vary with gain)
* ibias (again, is static, will not vary with vcm)
* slew rate and step response performance
* (slew rate is based on 10-90% of step response)
* current on output will be reflected to the supplies
* Vocm is variable and include input typical offset
*
* END Notes:
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output positive
* | | | | | output negative
* | | | | | | vocm input
* | | | | | | |
.SUBCKT AD8137 3a 9 99 50 71b 71 110
*** INPUT STAGE ***
*** POSITIVE INPUT, LEFT SIDE ***
I1 99BUF 5 .4E-3
Q1 50BUF 2 5 QX
VOS 3a 2 -1.95E-3
*** RAIL CLIPPING ***
Dlim+ 75 14b dx
Vlim+ 99BUF 14b 1.55
Dlim 14c 75 dx
Vlim 14c 50BUF 1.55
Dlim- 13b 76 DX
Vlim- 13b 50BUF 1.5
Dlim-B 76 13C dx
Vlim-B 99BUF 13C 1.5
*** VOCM INPUT RAIL CLIPPING ***
DOCMa 100 100A dx
VOCMa 99BUF 100A 2.04
DOCMb 100b 100 DX
VOCMb 100b 50BUF 2.04
*** NEGATIVE INPUT, RIGHT SIDE ***
I2 99BUF 6 .4E-3
Q2 50BUF 9 6 QX
*** INPUT IMPEDANCE ***
Cin 3a 9 1p
*** POLE, ZERO POLE STAGE ***
G1 13 14 5 6 5e-3
C1 14 13 1.7p
C2 13 98 11.5p
C3 14 98 11.5p
R11 13 98 250k
R12 14 98 250k
*** POLE ZERO STAGE (POSITIVE SIDE) ***
GP1 0 75 14 98 1
RP1 75 0 1
CP1 75 0 2e-9
*** POLE ZERO STAGE (NEGATIVE SIDE) ***
GP2 0 76 13 98 1
RP2 76 0 1
CP2 76 0 2e-9
*** OUTPUT STAGE (NEGATIVE SIDE) ***
D17 76 84 DX
VO1 84 70 .177V
VO2 70 85 .177V
D16 85 76 DX
G30 70 99c 99BUF 76 91E-3
G31 98c 70 76 50BUF 91E-3
RO30 70 99c 11
RO31 98c 70 11
VIOUT1 99BUF 99c 0V ;current mon from V+
VIOUT2 50BUF 98c 0V ;current mon from V-
VIOUT3 70 71 0V ;current mon from OUT-
*** OUTPUT STAGE (POSITIVE SIDE) ***
D17b 75 84b DX
VO1b 84b 70b .177V
VO2b 70b 85b .177V
D16b 85b 75 DX
G30b 70b 99d 99BUF 75 91E-3
G31b 98d 70b 75 50BUF 91E-3
RO30b 70b 99d 11
RO31b 98d 70b 11
VIOUTB1 99BUF 99d 0V
VIOUTB2 98d 50BUF 0V
VIOUTB3 70b 71b 0V
*** VOCM STAGE ***
Gocm_a 0 75 100 0 1
Gocm_b 0 76 100 0 1
Rocm1 99BUF 100 70k
Rocm2 100 50BUF 70k
Vocmo 110 100 1e-3
*** REFERENCE STAGE ***
Eref 98 0 poly(2) 99BUF 0 50BUF 0 0 0.5 0.5
*** POWER SUPPLY BUFFER ***
E99 99BUF 0 99 0 1
E50 50BUF 0 50 0 1
*** CURRENT MIRROR TO SUPPLIES
GIQ 99 50 VALUE={2.3m + I(VIOUT3)+ I(VIOUTB3)}
;*** CURRENT MIRROR TO SUPPLIES, POSITIVE SIDE ***
;FO1 0 99 poly(2) VIOUT1 VI1 -1.803E-3 1 -1
;FO2 0 50 poly(2) VIOUT2 VI2 -1.803E-3 1 -1
;FO3 0 400 VIOUT1 1
;VI1 401 0 0
;VI2 0 402 0
;DM1 400 401 DX
;DM2 402 400 DX
;*** CURRENT MIRROR TO SUPPLIES, NEGATIVE SIDE ***
;FO2B 0 50 poly(2) VIOUTB2 VIB2 +200E-6 1 -1
;FO1B 0 99 poly(2) VIOUTB1 VIB1 0 1 -1
;FO3B 0 400B VIOUTB1 1
;VIB1 401B 0 0
;VIB2 0 402B 0
;DMB1 400B 401B DX
;DMB2 402B 400B DX
.MODEL QX PNP (BF=228.57 Is=1E-15)
.MODEL DX D(IS=1E-15)
.ENDS

102
lib/sub/AD8237.lib Normal file
View File

@@ -0,0 +1,102 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt AD8237 1 2 3 4 5 6 7 8
VOS N014 IN+ 37.5e-6
VOS1 N025 REF 37.5e-6
I23 IN- 0 -1e-12
I24 FB 0 -1e-12
I1 IN+ 0 -650e-12
I2 REF 0 -650e-12
G7 0 V+ N016 V+ 1
R4 0 V+ 10E9
G8 0 V- N004 V- 1
R5 0 V- 10E9
G1 0 IN+ N021 N023 1.26e-9
R13 N023 IN+ 10e9
G2 0 IN- N021 N023 1.26e-9
R14 IN- N021 10E9
R16 N023 -Vs 10E9
R15 +Vs N023 10E9
E10 VPOSx 0 +Vs 0 1
E11 VNEGx 0 -Vs 0 1
I3 +Vs -Vs 130E-6
H3 N003 IN- V24 67.3
V24 N001 0 0
R19 N001 0 0.0166
G4 0 Out_inp V- V+ 100E-6
G5 0 Out_inp FB N025 100E-6
R10 Out_inp 0 10E9
R11 Out_inp 0 10E9
G6 0 sub_out 0 Out_inp 1
R1 0 sub_out 10E9
C1 N020 sub_out 85E-12
C2 N019 N020 25E-12
D7 V+ N012 D
D8 N018 V+ D
V3 VPOSx N012 0.55
V4 N018 VNEGx 0.6
D9 V- N002 D
D10 N006 V- D
V5 VPOSx N002 0.55
V6 N006 VNEGx 0.6
EPSRR+ N015 N014 N100 N200 1
E1 N100 0 N024 0 1
R6 N100 N200 1
R7 N200 0 1E6
C3 N200 0 0.3E-6
R9 N024 0 1E6
C4 +Vs N024 100e-6
EPSRR- N004 N003 N300 N400 1
E2 N300 0 N026 0 1
R12 N300 N400 0.5
R17 N400 0 1E6
C5 N400 0 0.5E-6
R18 N026 0 1E6
C6 -Vs N026 100e-6
D16 N9999 N009 DX
D18 N017 N9999 DX
V1 N017 N022 0.7
V13 N005 N009 0.7
H1 VPOSx N005 POLY(1) V_current 0 -29.4 5880.5 -500000000
H2 N022 VNEGx POLY(1) V_current 0 50 -18820 590000000
V_current VOUT N9999 0
ECMRR N016 N015 cmrr_out 0 1
L2 N028 0 15
R24 N028 cmrr_out 500
G12 0 cmrr_out VCM 0 8E-10
R22 IN+ VCM 10e9
R23 IN- VCM 10e9
G11 IN+ IN- IN+ IN- -0.5e-8
S1 N020 N019 BW 0 SW
G9 0 N013 sub_out 0 0.0023
R21 N013 0 500
C7 N013 0 2e-9
C8 IN- 0 10e-12
C10 IN+ 0 10e-12
E3 N010 V- VPOSX N007 1
E4 V- N011 VPOSX N008 1
D1 V+ N010 D
D2 N011 V+ D
V7 N007 VNEGX 1.6
V8 N008 VNEGX 1.6
G3 0 REF N027 N029 1.26e-9
R8 FB N027 10e9
R20 REF N027 10e9
G10 0 FB N027 N029 1.26e-9
R2 N029 +Vs 10e9
R3 N029 -Vs 10e9
R28 Out_inp N019 10k
R9999 N9999 N013 0.01
R25 +Vs 5 1<> Noiseless
R26 IN+ 2 1<> Noiseless
R27 IN- 3 1<> Noiseless
R29 REF 6 1<> Noiseless
R30 -Vs 4 1<> Noiseless
R31 BW 1 1<> Noiseless
R32 8 VOUT 1<> Noiseless
R33 7 FB 1<> Noiseless
I4 BW 0 1f
.model SW Vswitch (Ron=1e-3 Roff=1e9 Von=-2.5 Voff=+2.5 Vh=0)
.model D D
.model DX D IS=1E-14 EG=0.6
.ends AD8237

493
lib/sub/AD8253.lib Normal file
View File

@@ -0,0 +1,493 @@
* AD8253 SPICE Macromodel Rev H. 11/2021
* Function: PGIA
* Description:
* This spice model covers the AD8253 Programmable Gain Instrumentation Amplifier (PGIA).
* Gain options are 1, 10, 100, and 1000
* Revision History:
* Rev D. Prior releases, 5/2011
* Rev E. 10/2013 - Relocates .ends for AD8253 subcircuit to before the digital section to
* accommodate spice errors in some SPICE packages. (Where Sub circuit nesting is not allowed)
* Rev F. 7/2015 - Replace flipflops and gates with equivalent MOSFET circuit to package the model without any more additional subcircuit.
* Rev G. 9/2018 - Fixed Gain mode bug on LTSPICE platform.
* Rev. H 11/2021 - Fixed input bias current.
* Developed by: ADI
*
* Spice model Copyright 2013 Analog Devices Inc
*
* Temperature variations for the AD8250 are NOT included
* in this model.
*
* Voltage Noise parameters for this model will closely model
* typical AD8253 characteristics. Current Noise parameters
* will be slightly higher than typical AD8253 characteristics
* due to modeling limitations.
*
* Node Assignments
* inverting input
* | digital ground
* | | negative supply
* | | | A0 (digital gain control)
* | | | | A1 (digital gain control)
* | | | | | Digital Write
* | | | | | | output
* | | | | | | | positive supply
* | | | | | | | | reference
* | | | | | | | | | non-inverting input
*$
.SUBCKT AD8253 -IN DGND -Vs A0 A1 WR OUT +Vs REF +IN
*
*Power Supply
*
*Analog Power Supply
R6 0 90 0.0001
R5 0 AGND_1 0.0001
I2 90 -Vs 0.0045
I1 +Vs AGND_1 0.0046
EV6 50 90 -Vs 90 1
EV5 99 AGND_1 +Vs AGND_1 1
*
*Digital power supply
VDD1 D99 0 5
*
*power consumption correction
ICORR_P1 99 0 1.6m
ICORR_N1 0 50 1.5m
*
*Internal Voltage Reference
EREF1 98 0 40 0 1
CREF1 40 0 5e-006
RREF2 40 50 500000
RREF1 99 40 500000
*
*
*GAIN CONTROL
*
*gain of 1000
Rfb9 104 116 49.95k
Rfb8 116 115 100
Rfb7 103 115 49.95k
SGC16 116 72 A1int 0 SW1
SGC15 72 Rg+ A0int 0 SW1
SGC14 13 115 A1int 0 SW1
SGC13 Rg- 13 A0int 0 SW1
*
*gain of 100
Rfb6 104 112 19.8k
Rfb5 112 111 400
Rfb4 103 111 19.8k
SGC12 114 Rg+ A0barint 0 SW1
SGC11 112 114 A1int 0 SW1
SGC10 6 111 A1int 0 SW1
SGC9 Rg- 6 A0barint 0 SW1
*
*Gain of 10
Rfb3 104 108 6750
Rfb2 108 107 1.5k
Rfb1 103 107 6750
SGC8 110 Rg+ A0int 0 SW1
SGC7 108 110 A1barint 0 SW1
SGC6 5 107 A1barint 0 SW1
SGC5 Rg- 5 A0int 0 SW1
*
*Gain of 1
SGC4 104 134 A1barint 0 SW1
SGC3 134 Rg+ A0barint 0 SW1
SGC2 7 103 A1barint 0 SW1
SGC1 Rg- 7 A0barint 0 SW1
*
*Switches for bypassing flipflops
*If WR is less than -3V, flipflops are
*bypassed and A0 and A1 are passed
*directly through
*
SBP4 A1bar A1barint 0 WR SW2
SBP3 A1 A1int 0 WR SW2
MN2 A1bar A1 D99 D99 PMOS L=3e-006 W=1.5e-005
MI2 A1bar A1 DGND DGND NMOS L=3e-006 W=6e-006
SBP2 A0bar A0barint 0 WR SW2
SBP1 A0 A0int 0 WR SW2
MN1 A0bar A0 D99 D99 PMOS L=3e-006 W=1.5e-005
MI1 A0bar A0 DGND DGND NMOS L=3e-006 W=6e-006
*
*
*Switches for latched mode
*falling clock edge data latches with
*switches. If WR is higher than -1.5V,
*switches pass latched data through, which
*is latched on falling clock edge
*
Vcntlin1 cntlV 0 3
*
*DFF for A1
*
SLAT4 A1bLAT A1barint WR cntlV SW1
SLAT3 A1LAT A1int WR cntlV SW1
*
MN70 FFWRb_1 WR D99 D99 PMOS L=3e-006 W=1.5e-005
MI6 FFWRb_1 WR DGND DGND NMOS L=3e-006 W=6e-006
MN69 FFDb_1 A1 D99 D99 PMOS L=3e-006 W=1.5e-005
MI5 FFDb_1 A1 DGND DGND NMOS L=3e-006 W=6e-006
MN68 A1bLAT A1LAT D99 D99 PMOS L=3e-006 W=1.5e-005
MN67 A1bLAT 132 D99 D99 PMOS L=3e-006 W=1.5e-005
MN66 123 132 DGND DGND NMOS L=3e-006 W=6e-006
MN65 A1bLAT A1LAT 123 DGND NMOS L=3e-006 W=6e-006
MN64 132 FFWRb_1 D99 D99 PMOS L=3e-006 W=1.5e-005
MN63 132 130 D99 D99 PMOS L=3e-006 W=1.5e-005
MN62 122 130 DGND DGND NMOS L=3e-006 W=6e-006
MN61 132 FFWRb_1 122 DGND NMOS L=3e-006 W=6e-006
MN60 A1LAT A1bLAT D99 D99 PMOS L=3e-006 W=1.5e-005
MN59 A1LAT 135 D99 D99 PMOS L=3e-006 W=1.5e-005
MN58 124 135 DGND DGND NMOS L=3e-006 W=6e-006
MN57 A1LAT A1bLAT 124 DGND NMOS L=3e-006 W=6e-006
MN56 135 FFWRb_1 D99 D99 PMOS L=3e-006 W=1.5e-005
MN55 135 131 D99 D99 PMOS L=3e-006 W=1.5e-005
MN54 121 131 DGND DGND NMOS L=3e-006 W=6e-006
MN53 135 FFWRb_1 121 DGND NMOS L=3e-006 W=6e-006
MN52 130 131 D99 D99 PMOS L=3e-006 W=1.5e-005
MN51 130 136 D99 D99 PMOS L=3e-006 W=1.5e-005
MN50 125 136 DGND DGND NMOS L=3e-006 W=6e-006
MN49 130 131 125 DGND NMOS L=3e-006 W=6e-006
MN48 136 WR D99 D99 PMOS L=3e-006 W=1.5e-005
MN47 136 FFDb_1 D99 D99 PMOS L=3e-006 W=1.5e-005
MN46 120 FFDb_1 DGND DGND NMOS L=3e-006 W=6e-006
MN45 136 WR 120 DGND NMOS L=3e-006 W=6e-006
MN44 131 130 D99 D99 PMOS L=3e-006 W=1.5e-005
MN43 131 129 D99 D99 PMOS L=3e-006 W=1.5e-005
MN42 126 129 DGND DGND NMOS L=3e-006 W=6e-006
MN41 131 130 126 DGND NMOS L=3e-006 W=6e-006
MN40 129 WR D99 D99 PMOS L=3e-006 W=1.5e-005
MN39 129 A1 D99 D99 PMOS L=3e-006 W=1.5e-005
MN38 119 A1 DGND DGND NMOS L=3e-006 W=6e-006
MN37 129 WR 119 DGND NMOS L=3e-006 W=6e-006
MN36 FFWRb WR D99 D99 PMOS L=3e-006 W=1.5e-005
*
*DFF for A0
*
SLAT2 A0bLAT A0barint WR cntlV SW1
SLAT1 A0LAT A0int WR cntlV SW1
*
MI4 FFWRb WR DGND DGND NMOS L=3e-006 W=6e-006
MN35 FFDb A0 D99 D99 PMOS L=3e-006 W=1.5e-005
MI3 FFDb A0 DGND DGND NMOS L=3e-006 W=6e-006
MN34 A0bLAT A0LAT D99 D99 PMOS L=3e-006 W=1.5e-005
MN33 A0bLAT 4 D99 D99 PMOS L=3e-006 W=1.5e-005
MN32 91 4 DGND DGND NMOS L=3e-006 W=6e-006
MN31 A0bLAT A0LAT 91 DGND NMOS L=3e-006 W=6e-006
MN30 4 FFWRb D99 D99 PMOS L=3e-006 W=1.5e-005
MN29 4 12 D99 D99 PMOS L=3e-006 W=1.5e-005
MN28 64 12 DGND DGND NMOS L=3e-006 W=6e-006
MN27 4 FFWRb 64 DGND NMOS L=3e-006 W=6e-006
MN26 A0LAT A0bLAT D99 D99 PMOS L=3e-006 W=1.5e-005
MN25 A0LAT 127 D99 D99 PMOS L=3e-006 W=1.5e-005
MN24 94 127 DGND DGND NMOS L=3e-006 W=6e-006
MN23 A0LAT A0bLAT 94 DGND NMOS L=3e-006 W=6e-006
MN22 127 FFWRb D99 D99 PMOS L=3e-006 W=1.5e-005
MN21 127 11 D99 D99 PMOS L=3e-006 W=1.5e-005
MN20 61 11 DGND DGND NMOS L=3e-006 W=6e-006
MN19 127 FFWRb 61 DGND NMOS L=3e-006 W=6e-006
MN18 12 11 D99 D99 PMOS L=3e-006 W=1.5e-005
MN17 12 128 D99 D99 PMOS L=3e-006 W=1.5e-005
MN16 118 128 DGND DGND NMOS L=3e-006 W=6e-006
MN15 12 11 118 DGND NMOS L=3e-006 W=6e-006
MN14 128 WR D99 D99 PMOS L=3e-006 W=1.5e-005
MN13 128 FFDb D99 D99 PMOS L=3e-006 W=1.5e-005
MN12 27 FFDb DGND DGND NMOS L=3e-006 W=6e-006
MN11 128 WR 27 DGND NMOS L=3e-006 W=6e-006
MN10 11 12 D99 D99 PMOS L=3e-006 W=1.5e-005
MN9 11 3 D99 D99 PMOS L=3e-006 W=1.5e-005
MN8 10 3 DGND DGND NMOS L=3e-006 W=6e-006
MN7 11 12 10 DGND NMOS L=3e-006 W=6e-006
MN6 3 WR D99 D99 PMOS L=3e-006 W=1.5e-005
MN5 3 A0 D99 D99 PMOS L=3e-006 W=1.5e-005
MN4 20 A0 DGND DGND NMOS L=3e-006 W=6e-006
MN3 3 WR 20 DGND NMOS L=3e-006 W=6e-006
*
*Resistor fb Network, output op amp
R4 201 OUT 10000
R3 103 201 10000
R2 202 REF 10000
R1 104 202 10000
*
* OUTPUT AMPLIFIER
*+PS perturbation stage output amp
EPSC2 34 98 99 0 1
RPSC4 98 37 0.29
CPSC2 37 34 5.2e-010
RPSC3 37 34 100000
*
*CM voltage stage output amp
ECMC3 109 98 +IN 98 1
RCMC2 98 81 0.29
CCMC1 81 113 2.5e-010
RCMC1 81 113 100000
ECMC2 113 109 -IN 98 1
*
*output stage output amp
VMO9 100 OUT 0
VMO8 102 50 0
VMO7 99 101 0
ROUT6 102 100 10
ROUT5 100 101 10
GOUT6 102 100 95 50 0.1
GOUT5 100 101 99 95 0.1
*
*Current limiting output amp
VILIM6 97 100 0.415
VILIM5 100 96 0.415
DILIM6 97 95 DIODE4
DILIM5 95 96 DIODE3
*
*Supply current adjustment output amp
FADJ4 0 99 VLIM6 1
FADJ3 50 0 VLIM5 1
*
*voltage limiting circuitry output amp
VLIM6 99 92 1.96
VLIM5 93 50 2.1
DOUT6 93 89 DIODE6
DOUT5 89 92 DIODE5
*
*Intermediate gain stage output amp
RP6 98 95 1000
GP5 95 98 89 98 0.001
CP4 95 98 1e-011
*
*Gain stage with dominant pole = 13 Hz output amp
GP6 89 98 52 83 1
CP3 89 98 2.1e-007
RP5 98 89 10000000
*
*-PS perturbation output amp
EPSC1 88 98 50 0 1
RPSC2 87 88 100000
CPSC1 87 88 2e-008
RPSC1 98 87 0.39
*
*Voltage Noise stage output amp
VN3 86 98 0.618
DN3 86 85 DIODE1
RNOI6 98 85 0.0004
VMEASC1 85 98 0
F3 84 98 VMEASC1 1
RNOI5 98 84 1
*
*Offset V, CM, PS, voltage noise introduction
D6 202 99 DIODE2
D5 50 202 DIODE2
EPSRC_P1 202 82 37 98 1
VOSC1 80 79 0.0006425
ENOISC1 106 80 84 98 1
ECMC1 82 106 81 98 1
EPSRC_N1 201 117 87 98 1
VPSRC1 117 78 5.85e-005
*
*Input stage output amplifier
Q5 52 78 133 PNP
Q6 83 79 55 PNP
RC6 50 52 5750
RC5 50 83 5750
RE6 59 133 175
RE5 59 55 175
IBIASC1 99 59 0.001
CC1 52 83 7e-013
*
*COMP AMPLIFIER 2
*
*Output stage comp amp 2
VMO6 68 104 0
VMO5 70 50 0
VMO4 99 69 0
ROUT4 70 68 10
ROUT3 68 69 10
GOUT4 70 68 65 50 0.1
GOUT3 68 69 99 65 0.1
*
*Current limiting comp amp 2
VILIM4 67 68 0.415
VILIM3 68 66 0.415
DILIM4 67 65 DIODE4
DILIM3 65 66 DIODE3
*
*Voltage limiting circuitry comp amp 2
VLIM4 99 62 1.5
VLIM3 63 50 1.75
DOUT4 63 60 DIODE6
DOUT3 60 62 DIODE5
*
*Supply Current adjustment amp2
FADJ6 50 0 VLIM3 1
FADJ5 0 99 VLIM4 1
*
*Gain stage with dominant pole=0.8Hz comp amp 2
GP4 60 98 44 56 1
RP3 98 60 10000000
CP2 60 98 5e-008
*
*Intermediate gain stage comp amp 2
GP3 65 98 60 98 0.001
RP4 98 65 1000
*
*+PS Perturbation stage comp amp 2
EPSB1 77 98 99 0 1
RPSB2 74 77 100000
CPSB1 74 77 1e-017
RPSB1 98 74 0.1
*
*Voltage noise stage comp amp 2
VN2 58 98 0.623
DN2 58 57 DIODE1
RNOI4 98 57 0.000135
VMEASB1 57 98 0
F2 51 98 VMEASB1 1
RNOI3 98 51 1
*
*Common mode voltage stage comp amp 2
ECMB3 73 98 -IN 98 1
RCMB2 98 76 0.19
*RCMB2 98 76 0.05
CCMB1 76 54 5e-011
RCMB1 76 54 100000
ECMB2 54 73 +IN 98 1
*
*CM, +PS, Noise introduction
D4 +IN 99 DIODE2
D3 50 +IN DIODE2
ECMB1 +IN 1 76 98 1
EPSRB1 75 49 74 98 1
ENOISB1 1 75 51 98 1
*
*Bias Current Compensation
FBIASCMPB1 +IN 0 VBIASMONB1 0.9988
VBIASMONB1 49 48 0
IBIASP +IN 0 8.68375u
*
*Input stage compare amplifier 2
Q3 44 Rg+ 43 PNP
Q4 56 48 45 PNP
RC4 47 44 5000
RC3 47 56 5000
RE4 46 43 415
RE3 46 45 415
IBIASB1 99 46 0.001
VADJB1 50 47 1.5
*
*COMP AMPLIFIER 1
*Output stage comp amp 1
VMO3 39 103 0
VMO2 41 50 0
VMO1 99 42 0
ROUT2 41 39 10
ROUT1 39 42 10
GOUT2 41 39 36 50 0.1
GOUT1 39 42 99 36 0.1
*
*Current limiting comp amp 1
VILIM2 38 39 0.415
VILIM1 39 35 0.415
DILIM2 38 36 DIODE4
DILIM1 36 35 DIODE3
*
*Supply current adjustment comp amp 1
FADJ2 0 99 VLIM2 1
FADJ1 50 0 VLIM1 1
*
*Voltage limiting circuitry comp amp 1
VLIM2 99 29 1.5
VLIM1 33 50 1.75
DOUT2 33 32 DIODE6
DOUT1 32 29 DIODE5
*
*Intermediate gain stage comp amp 1
GP1 36 98 32 98 0.001
RP2 98 36 1000
*
*Gain stage with dominant pole=0.8Hz comp amp 1
GP2 32 98 18 16 1
CP1 32 98 5e-008
RP1 98 32 10000000
*
*-PS Perturbation stage comp amp 1
EPSA1 31 98 50 0 1
RPSA2 30 98 0.15
CPSA1 31 30 4.5e-010
RPSA1 31 30 100000
*
*Voltage noise stage comp amp 1
VN1 26 98 0.623
DN1 26 24 DIODE1
RNOI2 98 24 0.000135
VMEASA1 24 98 0
F1 28 98 VMEASA1 1
RNOI1 98 28 1
*
* noise, -PS offset V introduction
D2 -IN 99 DIODE2
D1 50 -IN DIODE2
VPSRA_N1 23 A9 0.0001408
EPSRA_N1 Rg- 23 98 30 1
VOSA1 25 19 0.000158
ENOISA1 -IN 25 28 98 1
*
*Bias Current Compensation
FBIASCMPA1 -IN 0 VBIASMONA1 0.9988
VBIASMONA1 19 2 0
IBIASN -IN 0 8.688756u
*
*Input stage compare amplifier 1
Q1 18 A9 15 PNP
Q2 16 2 8 PNP
RC2 21 18 5000
RC1 21 16 5000
RE2 22 15 415
RE1 22 8 415
IBIASA1 99 22 0.001
VADJA1 50 21 1.5
*
.model PMOS pmos
+ (
+ Level=2 VTO=-0.738861 KP=2.7e-005 GAMMA=0.58 PHI=0.6 LAMBDA=0.0612279
+ PB=0.64 CGSO=4.3e-010 CGDO=4.3e-010 RSH=120.6 CJ=0.0005 MJ=0.5052
+ CJSW=1.349e-010 MJSW=0.2417 TOX=2e-007 LD=1.5e-007 U0=261.977
+ NSUB=4.3318e+015 TPG=-1 NSS=100000000000 DELTA=1.79192 UEXP=0.323932
+ UCRIT=65719.8 VMAX=25694 XJ=2.5e-007 NEFF=1.001 NFS=1000000000000
+ )
.model NMOS nmos
+ (
+ Level=2 VTO=0.743469 KP=8.00059e-005 GAMMA=0.543 PHI=0.6 LAMBDA=0.0367072
+ PB=0.58 CGSO=4.3e-010 CGDO=4.3e-010 RSH=70 CJ=0.0003 MJ=0.6585
+ CJSW=8e-010 MJSW=0.2402 TOX=2e-007 LD=1.5e-007 U0=655.881 NSUB=5.36726e+015
+ TPG=1 NSS=100000000000 DELTA=2.39824 UEXP=0.157282 UCRIT=31443.8
+ VMAX=55260.9 XJ=2.5e-007 NEFF=1.001 NFS=1000000000000
+ )
.model DIODE4 D
+ (
+ IS=5e-012
+ )
.model DIODE3 D
+ (
+ IS=5e-012
+ )
.model DIODE6 D
+ (
+ IS=5e-012
+ )
.model DIODE5 D
+ (
+ IS=5e-012
+ )
.model DIODE1 D
+ (
+ KF=2e-010 AF=1.5
+ )
.model DIODE2 D
+ (
+ IS=1e-016
+ )
.model PNP PNP
+ (
+ Level=1 VAF=100
+ )
.model sw1 vswitch(Von=1.5 Voff=1.2 Ron=0.01 Roff=100000000)
.model sw2 vswitch(Von=3 Voff=2.7 Ron=0.01 Roff=100000000)
.ENDS AD8253

106
lib/sub/AD8310.lib Normal file
View File

@@ -0,0 +1,106 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt AD8310 1 2 3 4 5 6 7 8
R1 8 CM_IN 500
R2 1 CM_IN 500
C1 8 1 1.4p
E13 N022 2 GC6_out 2 1
R5 GC1_out N016 1k
C2 GC1_out 2 0.18p
R6 GC2_out N017 1k
C3 GC2_out 2 0.08p
R7 GC3_out N018 1k
C4 GC3_out 2 0.08p
R8 GC4_out N019 1k
C5 GC4_out 2 0.108p
R9 GC5_out N020 1k
C6 GC5_out 2 0.085p
R10 GC6_out N021 1k
C7 GC6_out 2 0.085p
R25 DET_out 2 3.075k
R26 6 N001 3k
R27 N014 2 1k
R28 N006 N014 3k
E10 AMP1 2 6 N014 1000
C22 6 2 2.1p
I<EFBFBD>G20 DET_out 2 45<34>
R4 1 N028 1e8
R3 8 N028 1e8
B_GC1 N016 2 V={I_GC1*T_GC1}*tanh((V(GC1_in)-V(OFFS))/{denom})
B_GC2 N017 2 V={I_GC2*T_GC2}*tanh((V(GC1_out)-V(2))/{denom})
B_GC3 N018 2 V={I_GC3*T_GC3}*tanh((V(GC2_out)-V(2))/{denom})
B_GC4 N019 2 V={I_GC4*T_GC4}*tanh((V(GC3_out)-V(2))/{denom})
B_GC5 N020 2 V={I_GC5*T_GC5}*tanh((V(GC4_out)-V(2))/{denom})
B_GC6 N021 2 V={I_GC6*T_GC6}*tanh((V(GC5_out)-V(2))/{denom})
B_D2 2 N008 I={I_D2}*(COSH((V(GC1_out)-V(2))/{denom})-1)/(COSH((V(GC1_out)-V(2))/{denom})+1)
C8 N008 2 0.6p
R11 DET_out N008 2k
B_D3 2 N009 I={I_D3}*(COSH((V(GC2_out)-V(2))/{denom})-1)/(COSH((V(GC2_out)-V(2))/{denom})+1)
C9 N009 2 0.6p
R12 DET_out N009 2k
B_D4 2 N010 I={I_D4}*(COSH((V(GC3_out)-V(2))/{denom})-1)/(COSH((V(GC3_out)-V(2))/{denom})+1)
C10 N010 2 0.6p
R13 DET_out N010 2k
B_D5 2 N011 I={I_D5}*(COSH((V(GC4_out)-V(2))/{denom})-1)/(COSH((V(GC4_out)-V(2))/{denom})+1)
C11 N011 2 0.6p
R14 DET_out N011 2k
B_D6 2 N012 I={I_D6}*(COSH((V(GC5_out)-V(2))/{denom})-1)/(COSH((V(GC5_out)-V(2))/{denom})+1)
C12 N012 2 0.6p
R15 DET_out N012 2k
B_D7 2 N013 I={I_D7}*(COSH((V(GC6_out)-V(2))/{denom})-1)/(COSH((V(GC6_out)-V(2))/{denom})+1)
C13 N013 2 0.6p
R16 DET_out N013 2k
B_D1a 2 N007 I={I_D1a}*(COSH(1.2*(V(GC1_in)-V(2))/{denom})-1)/(COSH(1.2*(V(GC1_in)-V(2))/{denom})+1)
C14 N007 2 0.8p
R17 DET_out N007 400
R18 GC1_in 2 1e8
B_EN GC1_in 2 V={Ain}*(V(8)-V(1))*(V(7)-V(2)>2.3)
B1 5 2 I=(8m-0.05u)*(V(7)-V(2)>2.3)*(V(5)-V(2)>2.6)*(V(5)-V(2)<=7.5)+0.05u
B_GC7 OFFS 2 V=15m*tanh((V(INT_FLT)-V(2))/15m)
B2 N001 2 V=(V(DET_out)<=V(REF_p66))*(V(DET_out)-V(REF_p66))+V(REF_p66)-V(2)
B3 N006 2 V=(V(AMP2)<=V(REF_4p75))*(V(AMP2)-V(REF_4p75))+V(REF_4p75)-V(2)
B4 AMP2 2 V=(V(AMP1)>=V(REF_p4))*(V(AMP1)-V(REF_p4))+V(REF_p4)-V(2)
R19 AMP1 2 100k
R20 AMP2 2 100k
B_D1b 2 N007 I={I_D1b}*(COSH(0.25*(V(GC1_in)-V(2))/{denom})-1)/(COSH(0.25*(V(GC1_in)-V(2))/{denom})+1)
B_D1c 2 N007 I={I_D1c}*(COSH(45m*(V(GC1_in)-V(2))/{denom})-1)/(COSH(45m*(V(GC1_in)-V(2))/{denom})+1)
R30 7 2 85.7k
XU1 N006 N004 VCC_INT 2 N004 level2 Avol=1Meg GBW=25Meg Slew=100Meg ilimit=5m rail=0 Vos=0 phimargin=45 En=0 Enk=0 In=0 Ink=0 Rin=500Meg
R33 4 N004 0.05
R31 INT_FLT N022 7.1e7
R32 2 OFFS 1e8
C18 INT_FLT 2 33p
S1 5 VCC_INT CTRL 2 vcc_switch
B_OFLT1 CTRL 2 V=(V(7)-V(2)>2.3)*(V(5)-V(2)>2.6)*(V(5)-V(2)<=7.5)
R24 VCC_INT 2 1e8
B_0p4 REF_p4 2 V=0.4*(V(CTRL)>0.5)
B_0p66 REF_p66 2 V=0.66*(V(CTRL)>0.5)
B_4p75 REF_4p75 2 V=4.75*(V(CTRL)>0.5)
V1 CM_IN 2 3.2578
V5 3 INT_FLT 1.75
.param I_GC1=998.692u
.param I_GC2=904.1875u
.param I_GC3=903.975u
.param I_GC4=801.8u
.param I_GC5=896.75u
.param I_GC6=977.5u
.param T_GC1=TEMP+287.775
.param T_GC2=TEMP+287.334488
.param T_GC3=TEMP+287.7372
.param T_GC4=TEMP+301.1642
.param T_GC5=TEMP+301.1642
.param T_GC6=TEMP+273.2804
.param I_D1a=7.132n*TEMP + 27.5784u
.param I_D1b=4.7n*TEMP + 26.8338u
.param I_D1c=9.564n*TEMP + 31.8017u
.param I_D2 =7.76n*TEMP + 29.8147u
.param I_D3 =.9885n*TEMP + 29.70868u
.param I_D4 =.9885n*TEMP + 29.70868u
.param I_D5 =3.954n*TEMP + 29.6286u
.param I_D6 =7.908n*TEMP + 29.5219u
.param I_D7 =37.46n*TEMP + 57.0747u
.param denom=172.5u*(TEMP+274.15)
.param Ain=1.58
.model vcc_switch SW(Ron=1m, Roff=1e9, Vt=0.5)
.lib UniversalOpAmp2.lib
.ends AD8310

196
lib/sub/AD8422.lib Normal file
View File

@@ -0,0 +1,196 @@
* AD8422 SPICE Macro-model
* Description: Amplifier
* Generic Desc: 36V Bipolar Low Power, Rail to Rail Output, High Performance In-Amp
* Developed by: ADI - LPG
*
* Revision History:
* 1.0 (05/2013) - OQ (Initial Rev)
* 2.0 (1/2015) - SH (Added missing .ENDS statement, improved compatibility, added parameters to model, organized netlist)
* Copyright 2015 by Analog Devices.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance with the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
* Temperature effects
* PSRR
*
* Parameters Modeled Include:
* Gain error, Vos, Ibias
* Bandwidth
* Voltage and current noise with 1/f noise
* CMRR vs frequency
* Supply current incl preamp and output load currents
* Output clamp vs load
* Input range and internal voltage limitations
* Slew Rate
* Pulse response vs cap load
* Input impedance
*
* Typical Specifications from <20>15V Table Used in Model
*
* END Notes
*
* Node Assignments
* inverting input
* | RG
* | | RG
* | | | non_inverting input
* | | | | negative supply
* | | | | | ref
* | | | | | | output
* | | | | | | | positive supply
* | | | | | | | |
.SUBCKT AD8422 IN- RG- RG+ IN+ -Vs REF VOUT +Vs
*** INPUT STAGE ***
FIBIAS1 IN- 0 POLY(1) V21 600.0E-12 9.0E-5
H3 4 IN- V24 6.645
G4 0 5 4 0 2.64E-3
R10 5 0 378.788
D7 5 9 D
D8 10 5 D
V7 10 VNEGx 1.24
V8 VPOSx 9 1.24
E8 22 0 5 0 1
FIBIAS2 IN+ 0 POLY(1) V23 400.0E-12 9.0E-5
VOSI 7 IN+ -25.0E-6
G5 0 8 7 0 2.64E-3
R11 8 0 378.788
D9 8 9 D
D10 10 8 D
E9 15 0 8 0 1
G1 IN+ 0 POLY(2) (IN+, VMID) (IN+, IN-) 0 2.5E-12 5.0E-12
G2 IN- 0 POLY(2) (IN-, VMID) (IN-, IN+) 0 2.5E-12 5.0E-12
CCM1 IN+ 0 1.0E-12
CCM2 IN- 0 1.0E-12
CDIFF IN+ IN- 1.5E-12
*
*** PREAMPLIFIER STAGE ***
GN1 Pos_Fdbk 16 15 16 778.8E-6
VSH1 RG+ 16 -0.474
C4 RG+ 0 3.688E-12
R6 RG+ 17 9802.94
VCS2 noninverting_out 17 0
I1 VBIAS Pos_Fdbk 20.0E-6
R23 Pos_Fdbk VBIAS 1E9
G7 0 18 VBIAS Pos_Fdbk 1
R8 18 0 10E9
C2 noninverting_out Pos_Fdbk 10.19E-12
R25 19 18 100
D5 19 20 D
D6 21 19 D
V5 21 VNEGx 0.19
V6 VPOSx 20 0.19
GN2 Inv_Fdbk 23 22 23 778.8E-6
VSH2 RG- 23 -0.474
C3 RG- 0 3.692E-12
R5 RG- 24 9802.94
VCS1 Inverting_Out 24 0
I2 VBIAS Inv_Fdbk 20.0E-6
R18 VBIAS Inv_Fdbk 1E9
G6 0 25 VBIAS Inv_Fdbk 1
R7 25 0 10E9
C1 Inverting_Out Inv_Fdbk 10.31E-12
R24 26 25 100
D3 26 20 D
D4 21 26 D
V1 VBIAS +Vs 20
D40 Inv_Fdbk VBIAS D
D41 Pos_Fdbk VBIAS D
D42 VBIAS Inv_Fdbk D
D43 VBIAS Pos_Fdbk D
*
*** SUBTRACTOR STAGE ***
E4 Inverting_Out 0 26 0 1
E5 noninverting_out 0 19 0 1
R1 31 sub_neg 10000.0
R2 sub_neg 24 9999.05
R3 sub_pos 17 9998.85
R4 REF sub_pos 10000.0
VCS3 sub_out 31 0
G8 0 sub_out sub_pos sub_neg 1E3
R9 sub_out 0 10E6
D13 REF 38 D
D14 39 REF D
V13 39 VNEGx 0.3
V14 VPOSx 38 0.3
D15 sub_pos 36 D
D16 37 sub_pos D
V15 37 VNEGx 0.05
V16 VPOSx 36 1.05
R22 sub_out_cl sub_out 100
D1 sub_out_cl 45 D
D2 46 sub_out_cl D
H4 VX sub_out_cl V25 71.74
*
*** SLEW RATE AND OUTPUT STAGE ***
G11 0 VZ VX VY 1e-3
R26 VZ 0 100E6
D21 40 VZ DSLEWP
D22 40 0 DSLEWN
G12 0 VY VZ 0 40.0E-6
C7 VY 0 1E-9
R30 VY 0 10e9
G9 0 41 VY 42 1
R12 41 0 1e10
C5 41 0 56.15E-9
G10 0 42 41 0 1.0E-3
R17 42 0 1000.0
C6 42 0 87.03E-12
R27 43 42 0.1
D11 43 45 D
D12 46 43 D
H1 VPOSx 45 POLY(1) VSRC 0.15 0 3E3
H2 46 VNEGx POLY(1) VSNK 0.15 0 3E3
VOSO VOUT 43 157.0E-6
*
*** NOISE ***
V24 60 0 0
R19 60 0 .0166
D17 61 60 DN
V18 61 0 0.2
V25 64 0 0
R20 64 0 .0166
D19 65 64 DN
V20 65 0 0.209
V21 70 0 0
R28 70 0 .0166
D38 71 70 DIN
V22 71 0 0.2
V23 72 0 0
R29 72 0 .0166
D39 73 72 DIN
V27 73 0 0.2
*
*** SUPPLY CURRENT AND BIASING ***
GSUP +Vs -Vs POLY(1) (+Vs,-Vs) 268E-6 1.0E-6
FSUP1 56 0 VOSO -1
D24 90 +Vs DZ
D25 -Vs 52 DZ
D20 90 95 D
VSRC 95 56 0
D23 55 52 D
VSNK 56 55 0
FSUP2 57 0 VCS1 1
D26 90 57 D
D27 57 52 D
FSUP3 58 0 VCS2 1
D30 90 58 D
D31 58 52 D
FSUP4 59 0 VCS3 1
D34 90 59 D
D35 59 52 D
E10 VPOSx 0 +Vs 0 1
E11 VNEGx 0 -Vs 0 1
EMID VMID 0 POLY(2) (+Vs, 0) (-Vs, 0) 0 0.5 0.5
*
*
.MODEL D D(IS=1e-15 N=0.1 RS=1e-3)
.MODEL DN D(IS=1e-15 KF=3.142E-7)
.MODEL DIN D(IS=1e-15 KF=6.221E-6)
.MODEL DZ D(IS=1e-15 BV=50 RS=1)
.MODEL DSLEWP D(IS=1e-15 BV=19.5 RS=0.1)
.MODEL DSLEWN D(IS=1e-15 BV=19.5 RS=0.1)
.ENDS AD8422

BIN
lib/sub/AD8452.sub Normal file

Binary file not shown.

147
lib/sub/AD8475.lib Normal file
View File

@@ -0,0 +1,147 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt AD8475 -IN0.8X -IN0.4X +VS VOCM +OUT -OUT -VS +IN0.4X +IN0.8X
R1 N004 +IN0.8X 1.25e3
R2 N016 -IN0.8X 1.25e3
R17 +IN0.8X +IN0.4X 1.25e3
R18 -IN0.8X -IN0.4X 1.25e3
VISENSE2 VX2 N131 0
R14 N131 N016 1.00077741736e3
VISENSE1 VX1 N130 0
R15 N130 N004 1.00022262661e3
DC1 N004 N110 DX
V6 +VS N110 1.2
DC2 N111 N004 DX
V7 N111 -VS 0.4
G1 N013 N018 N004 N016 -.034349
R16 N013 N018 1e9
G3 0 VX1 VMID N013 .253192
G4 0 VX2 VMID N018 .253192
C1 N009 N013 3.2e-12
C2 N023 N018 3.2e-12
R19 VX1 N009 200
R20 VX2 N023 200
R11 VX1 0 1e9
R12 0 VX2 1e9
E5_VOCM_ERROR N032 VOCM VOCM 0 .2e-3
R7 +VS N032 200e3
R8 N032 -VS 200e3
V3 N031 N032 -10e-6
E1_balance N030 N031 +OUT -OUT 99.7927e-6
R5 N015 VX2 1e6
R6 VX1 N015 1e6
G2 0 N018 N015 N030 .00015
R9 N018 0 1e9
C3 N018 0 1e-18
G5 0 N013 N015 N030 .00015
R10 N013 0 1e9
C4 N013 0 1e-18
V_Noise N001 0 0
R13 N001 0 .0166
DN1 N002 N001 DN
VN1 0 N002 0.2
H1_Noise -OUT N008 V_Noise -2.5
H2_Noise +OUT N027 V_Noise 2.5
R34 N040 0 2
C11 N040 N039 1e-9
R35 8 0 2
C12 8 N041 1e-9
E11 N039 0 N042 0 1
R36 N040 N039 1000
E12 N041 0 N040 0 1
R37 8 N041 1000
R38 N044 0 2
C13 N044 N043 1e-9
R39 6 0 2
C14 6 N045 1e-9
E13 N043 0 N042 0 1
R40 N044 N043 1000
E14 N045 0 N044 0 1
R41 6 N045 1000
E15 N012 N011 6 0 -8e-3
E16 N026 N025 8 0 8e-3
R42 +IN0.4X N042 1e6
R43 N042 -IN0.4X 1e6
R44 +IN0.8X N042 1e6
R45 N042 -IN0.8X 1e6
R23 N034 0 46
C5 N034 N033 1e-9
R27 4 0 46
C8 4 N035 1e-9
E4 N033 0 +VS -VS 1
R21 N034 N033 1000
E5 N035 0 N034 0 1
R22 4 N035 1000
R24 N037 0 46
C6 N037 N036 1e-9
R25 2 0 46
C7 2 N038 1e-9
E3 N036 0 +VS -VS 1
R26 N037 N036 1000
E6 N038 0 N037 0 1
R28 2 N038 1000
E7 N011 N010 2 0 -8.173e-3
E8 N025 N024 4 0 8.173e-3
I1 +VS -VS 3.2e-3
GIsy +VS -VS VALUE={I(V_current_sense+)-I(V_current_sense-)}
*Fsup1 N100 0 POLY(4) V_Current_Sense+ V_Current_Sense- VISENSE1 VISENSE2 0 -1 -1 1 1
*Dsup1 +VS N101 DX
*DZsup1 N100 N101 DZ
*Dsup2 N102 -VS DX
*DZsup2 N102 N100 DZ
EMID VMID 0 POLY(2) +VS 0 -VS 0 0 0.5 0.5
EVP VP 0 +VS 0 1
EVN 0 VN 0 -VS 1
G10 0 VZ1 VX1 VY1 1e-3
RZ1 0 VZ1 1e9
DSLEW1 VC1 0 DZ
DSLEW2 VC1 VZ1 DZ
GZ1 0 VY1 VZ1 0 1e-6
C10 0 VY1 1e-12
R33 VY1 0 1e9
E9 N006 0 VY1 0 1
G11 0 VZ2 VX2 VY2 1e-3
RZ2 0 VZ2 1e9
DSLEW3 VC2 0 DZ
DSLEW4 VC2 VZ2 DZ
GZ2 0 VY2 VZ2 0 1e-6
C9 0 VY2 1e-12
R31 VY2 0 1e9
E10 N020 0 VY2 0 1
VOS- N010 N006 27.158e-6
VOS+ N024 N020 -27.158e-6
V_Current_Sense- N008 N005 0
V_Current_Sense+ N027 N022 0
D1 N021 N019 DX
D2 N028 N021 DX
D3 P001 N007 DX
D4 N007 P002 DX
V1 P003 N019 .57837
V2 N028 N029 .58737
V4 N003 P002 .57837
V5 P001 N014 .58737
G8 0 N120 N007 N005 1
R50 N120 0 1e9
C50 N120 0 1.18e-9
G9 0 N005 N120 0 8.33e-3
R51 N005 0 120
C51 N005 0 10e-12
G12 0 N121 N021 N022 1
R52 N121 0 1e9
C52 N121 0 1.18e-9
G13 0 N022 N121 0 8.33e-3
R53 N022 0 120
C53 N022 0 10e-12
G6 0 N007 N012 0 1e-3
G7 0 N021 N026 0 1e-3
R29 N007 0 1e3
R30 N021 0 1e3
H1 N029 VN V_Current_Sense+ 13.1
H2 VP P003 V_Current_Sense+ -17.42
H3 N014 VN V_Current_Sense- 13.1
H4 VP N003 V_Current_Sense- -17.42
*R32 NC 0 1e6
.model DX D(IS=1e-15 RS=.1)
.model DN D(IS=1e-15 KF=2.1e-3)
.model DZ D(IS=1e-15 BV=24.5)
.ends AD8475

125
lib/sub/AD8541.lib Normal file
View File

@@ -0,0 +1,125 @@
* AD8541 SPICE Macro-model Typical Values
* Function: CMOS Rail-to-Rail General-Purpose Amplifier
* Developed by: TAM / ADSC
* Revision History:
* 1.0 (06/1998)
* 1.1 (07/2021) -HAG
* Copyright 2021 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Parameters modeled include: Vos, Ibias, Ios, Input CM limits, CMRR, Supply Current, Output Current, Voltage & Current Noise,
* Open-loop Gain and Phase, GBWP, Closed-loop Output Impedance, Large and Small Signal Transient Response, Slew Rate,
*
* Not modeled: Full-power BW, Settling time, Over-temperature characteristics (modeled on 25degC only), VS=2.7V/3.0V
*
* Tested on LTSpice
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AD8541 1 2 99 50 45
*
* INPUT STAGE
*
*Note: min length for MOS level 2 = 2E-6
*
M1 4 1 8 8 PIX L=2.0E-6 W=98E-6
M2 6 7 8 8 PIX L=2.0E-6 W=98E-6
M3 11 1 10 10 NIX L=2.0E-6 W=98E-6
M4 12 7 10 10 NIX L=2.0E-6 W=98E-6
RC1 4 50 20E3
RC2 6 50 20E3
RC3 99 11 20E3
RC4 99 12 20E3
C1 4 6 1.5E-12
C2 11 12 1.5E-12
I1 99 8 1.77E-5
I2 10 50 1.77E-5
V1 99 9 0.2
V2 13 50 0.2
D1 8 9 DX
D2 13 10 DX
EOS 7 2 POLY(3) (22,98) (73,98) (81,0) 1.0E-3 1 1 1
IOS 1 2 0.05E-12
GB1 1 50 POLY(3) (8,1) (4,1) (50,1) 0.5E-12 1E-12 1E-12 1E-12
GB2 7 50 POLY(3) (8,7) (6,7) (50,7) 0.5E-12 1E-12 1E-12 1E-12
GB3 1 50 POLY(3) (10,1) (11,1) (50,1) 0.5E-12 1E-12 1E-12 1E-12
GB4 7 50 POLY(3) (10,7) (12,7) (50,7) 0.5E-12 1E-12 1E-12 1E-12
*
* CMRR 64dB, ZERO AT 20kHz
*
ECM1 21 98 POLY(2) (1,98) (2,98) 0 .5 .5
RCM1 21 22 63E3
CCM1 21 22 30E-12
RCM2 22 98 50
*
* PSRR=68dB, ZERO AT 200Hz
*
RPS1 70 0 1E6
RPS2 71 0 1E6
CPS1 99 70 1E-5
CPS2 50 71 1E-5
EPSY 98 72 POLY(2) (70,0) (0,71) 0 1 1
RPS3 72 73 1.59E6
CPS3 72 73 500E-12
RPS4 73 98 25
*
* VOLTAGE NOISE REFERENCE OF 35nV/rt(Hz)
*
VN1 80 0 0
RN1 80 0 16.45E-3
HN 81 0 VN1 37
RN2 81 0 1
*
* INTERNAL VOLTAGE REFERENCE
*
VFIX 90 98 DC 1
S1 90 91 (50,99) VSY_SWITCH
VSN1 91 92 DC 0
RSY 92 98 1E3
EREF 98 0 POLY(2) (99,0) (50,0) 0 .5 .5
GSY 99 50 POLY(1) (99,50) 0 -32E-6
*
* ADAPTIVE GAIN STAGE
* AT Vsy>+4.2, AVol=45 V/mv
* AT Vsy<+3.8, AVol=450 V/mv
*
G1 98 30 POLY(2) (4,6) (11,12) 0 2.5E-5 2.5E-5
VR1 30 31 DC 0
H1 31 98 POLY(2) VR1 VSN1 0 5.45E6 0 0 49.05E9
CF 45 30 19E-12
D3 30 99 DX
D4 50 30 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=2E-6 W=0.98E-3
M6 45 47 50 50 NOX L=2E-6 W=0.98E-3
EG1 99 46 POLY(1) (98,30) 1.170 1
EG2 47 50 POLY(1) (30,98) 1.170 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=20E-6,VTO=-1,LAMBDA=0.067)
.MODEL NOX NMOS (LEVEL=2,KP=20E-6, VTO=1,LAMBDA=0.067)
.MODEL PIX PMOS (LEVEL=2,KP=20E-6,VTO=-0.1,LAMBDA=0.01,KF=1E-31)
.MODEL NIX NMOS (LEVEL=2,KP=20E-6, VTO=0.1,LAMBDA=0.01,KF=1E-31)
.MODEL DX D(IS=1E-14)
.MODEL VSY_SWITCH VSWITCH(ROFF=100E3,RON=1,VOFF=-4.2,VON=-3.5)
.ENDS AD8541

BIN
lib/sub/AD8561.sub Normal file

Binary file not shown.

72
lib/sub/AD8676.lib Normal file
View File

@@ -0,0 +1,72 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt AD8676 1 2 3 4 5
C1 N005 N004 {Cf}
A1 N008 0 N010 N010 N010 N010 N004 N010 OTA g={Ga} Iout={Islew} en=2.8n enk=4.5 Vhigh=1e308 Vlow=-1e308
D5 N005 3 X1
D6 4 N005 X2
G2 0 N010 3 0 500<30>
R4 N010 0 1k Noiseless
G3 0 N010 4 0 500<30>
S1 N004 N010 4 3 SD
C4 N002 0 {5p*x} Rpar=1k Noiseless
C11 3 2 950f Rpar=1T Noiseless
C18 2 1 8.65p Rpar=1T Noiseless
D8 3 1 1nA m=0.5
C3 3 5 250f
C7 5 4 250f
A2 2 1 0 0 0 0 0 0 OTA g=0 in=.1p ink=1.5k incm=.1p incmk=1.5k
֧A3 N005 3 4 N004 N010 Gm1={Gb} Ibias={Isy}
C2 2 4 950f Rpar=1T Noiseless
C5 3 1 950f Rpar=1T Noiseless
C6 1 4 950f Rpar=1T Noiseless
D1 3 2 1nA m=0.5
B3 N002 0 I=2m*Dnlim(Uplim(V(2),V(3)-2, 0.1), V(4)+2, 0.1)+100n*V(2)
B4 0 N002 I=2m*(Vos+V(PSR)+Dnlim(Uplim(V(1),V(3)-2, 0.1), V(4)+2, .01)+100n*V(1))
D3 N004 N010 IO
R5 5 N005 22
L1 N002 N006 {5<>*x}
L2 N007 N008 {5<>*x}
C10 N008 0 {5p*x} Rpar=1k Noiseless
C8 N006 0 {10p*x}
L3 N006 N007 {5<>*x}
C12 N007 0 {10p*x}
G1 0 PSR VS 0 1<>
R3 PSR 0 1 Noiseless
G4 0 VS 3 4 1m
C13 VS 0 1f Rpar=1k Noiseless
.param Cf = 6p
.param Ro = 5k
.param Avol = 4Meg
.param RL = 2k
.param AVmid = 10
.param FmidA = 1Meg
.param Zomid = 5
.param FmidZ = 1Meg
.param Vslew = 2.5Meg
.param Vmin = 2
.param Roe = 1/(1/RL+1/Ro)
.param Gb = ((FmidZ/FmidA)*(Roe/(AVmid*Zomid))-1)/Roe
.param Ga = 2*pi*FmidZ*Cf/(Zomid*gb)
.param RH = Avol/(Ga*Gb*Roe)
.param Islew = Vslew*Cf*(1+1/(Roe*Gb))
.model X1 D(Ron=1m Roff=1G Vfwd=-50m epsilon=10m Noiseless)
.model X2 D(Ron=1m Roff=1G Vfwd=20m epsilon=10m Noiseless)
.model SD SW(Ron=10m Roff={RH} Vt={-Vmin-100m} Vh=-.1 Noiseless)
.model 1nA D(Ron=500Meg epsilon=.5 Ilimit=1n Noiseless)
.model IO D(Ron=2k Roff=1T Vfwd={Isc/Gb} Vrev={Isc/Gb} revepsilon=.1 epsilon=.1 Noiseless)
.param X=.6
.param Vos=-18u
.param Isc=37.1m
.param Isy=2.7m
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param Rej_dc_PSRp=120
.param R1a_PSRp=1Meg
.param fz1_PSRp=1k
.param fp1_PSRp=10Meg
.ends AD8676

376
lib/sub/ADA4077.lib Normal file
View File

@@ -0,0 +1,376 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4077 1 2 3 4 5
R1 Inn1 2 {Rser} Temp=-273.15
C1 Clamp COM {Cfp1}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}* V(Aol1,COM), {Isink}-V(OL,COM)* 0.2, 20m), {Isrc}+V(OL,COM)*0.2, 20m)
A1 Inn2 Inp2 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
G2 0 VCC_Int N045 0 1
G3 0 Vee_Int N058 0 1
R6 VCC_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N041 VCC_Int 1Meg Temp=-273.15
R9 N041 Vee_Int 1Meg Temp=-273.15
C2 N041 0 1
E1 COM 0 N041 0 1
R10 COM 0 1Meg Temp=-273.15
R25 Aol2 COM 1Meg Temp=-273.15
C7 Aol2 COM {Cfp2}
G7 COM Aol2 Clamp COM 1<>
Cinp COM Inp1 {Ccm}
Cinn Inn1 COM {Ccm}
Cdiff Inp1 Inn1 {Cdiff}
Rinn Inn1 COM {Rcm} Temp=-273.15
Ibp Inp1 COM {Ib}
Ibn Inn1 COM {Ib-Ios}
R26 N015 N018 1k Temp=-273.15
B3 N018 N015 I=1m*{Vos+Drift* (Temp-25)}
G6 N022 Inp2 N032 N036 1m
R28 Inp2 N022 1k Temp=-273.15
C8 N032 N033 {C1a_PSRp}
G8 COM N033 VCC_Int COM {G1_PSRp}
R29 N033 COM 1 Temp=-273.15
R30 N032 N033 {R1a_PSRp} Temp=-273.15
R31 N032 COM {R2a_PSRp} Temp=-273.15
G12 N016 N017 N007 COM 1m
R39 N017 N016 1k Temp=-273.15
Vimon N014 5 0
BIq N045 N058 I=IF(V(EN,COM)>0.5, {Iq_on},{Iq_off})
G1 COM N018 Inp1 COM 1k
G14 COM Inn2 Inn1 COM 1k
R5 COM N018 1m Temp=-273.15
R43 COM Inn2 1m Temp=-273.15
C12 Inn2 COM 1p
C13 N018 COM 1p
DIP N034 Inp2 DI
DIN Inp2 N035 DI
C14 VCC_Int 0 1n
C15 Vee_Int 0 1n
DOP Vsatp N013 DO
DON N013 Vsatn DO
DGP N037 Clamp DGP
DGN Clamp N038 DGN
S2 Cap2R Cap2L OL COM OL
F1 COM OLp VGP 1m
A4 OLp OLn COM COM COM COM OL COM OR Ref=100u Vh=50u Trise=10n
R44 OLp COM 1k
F2 COM OLn VGN -1m
R45 OLn COM 1k
C16 OLp COM 1n
C17 OLn COM 1n
DOI N013 N014 LIM
COI N014 N013 1p
G15 COM Vsatp Vsatpi COM 1
R48 Vsatp COM 1
C21 Vsatp COM 1n
G16 COM Vsatn Vsatni COM 1
R49 Vsatn COM 1
C22 Vsatn COM 1n
S3 3 N018 N018 3 ESDI
S4 3 Inn2 Inn2 3 ESDI
S5 N018 4 4 N018 ESDI
S6 Inn2 4 4 Inn2 ESDI
C24 N013 Vsatp 1f
C25 N013 Vsatn 1f
S7 3 5 5 3 ESDO
S8 5 4 4 5 ESDO
C26 OL COM 1p
B6 COM N039 I=1m*({Zo_max}* {Iscp}+V(3,COM)) Rpar=1k Cpar=1n
G18 COM GRp N039 COM 1
R51 GRp COM 1
G19 COM GRn N040 COM 1
R52 GRn COM 1
B7 COM N040 I=1m*({Zo_max}* {Iscn}+V(4,COM)) Rpar=1k Cpar=1n
VGP N037 GRp 0
VGN N038 GRn 0
G17 COM Vs 3 4 1m
R50 Vs COM 1k Temp=-273.15
A5 Vs COM COM COM COM COM VminGD COM SCHMITT Vt={Vsmin-50m} Vh=10m Trise=5n
A6 Vs COM COM COM COM VmaxGD COM COM SCHMITT Vt={Vsmax-50m} Vh=10m Trise=5n
A7 VminGD COM COM COM VmaxGD COM EN COM AND Trise=5n
R53 EN COM 1G Temp=-273.15
R54 VmaxGD COM 1G Temp=-273.15
R55 COM VminGD 1G Temp=-273.15
S9 COM Aol1 EN COM ENA
S10 COM Clamp EN COM ENA
Rx N013 N019 {Rx_Zo} Temp=-273.15
Rdummy N013 COM {Rdummy_Zo} Temp=-273.15
G20 COM Cap2L N025 N013 {G1_Zo}
R3 Cap2L COM 1 Temp=-273.15
R4 Cap2L Cap2R {R1a_Zo} Temp=-273.15
R17 Cap2R COM {R2a_Zo} Temp=-273.15
G21 COM N008 Cap2R COM {G2_Zo}
C20 Cap2R Cap2L {C1a_Zo}
R56 N010 COM 1 Temp=-273.15
R57 N010 N011 {R2c_Zo} Temp=-273.15
R58 N011 N023 {R1c_Zo} Temp=-273.15
C23 COM N023 {C1c_Zo}
Gb3 COM N012 N011 COM 1
R59 N019 COM 1 Temp=-273.15
B8 COM N019 I=Uplim(Dnlim({G4_Zo}*V(ZoF,COM), {IZon}, 25m), {IZop}, 25m)
R60 N012 COM 1 Temp=-273.15
R61 N012 ZoF {R1d_Zo} Temp=-273.15
R62 ZoF COM {R2d_Zo} Temp=-273.15
C27 ZoF N012 {C1d_Zo}
R63 N008 COM 1 Temp=-273.15
R64 N008 N009 {R1b_Zo} Temp=-273.15
R65 N009 COM {R2b_Zo} Temp=-273.15
G22 COM N010 N009 COM {G3_Zo}
C28 N009 N008 {C1b_Zo}
R11 N024 COM 1Meg Temp=-273.15
C29 N024 COM {Cfp2}
G24 COM N024 Aol2 COM 1<>
R16 N025 COM 1Meg Temp=-273.15
C30 N025 COM {Cfp2}
G25 COM N025 N024 COM 1<>
C3 N002 N001 {C1a_CMR}
G4 COM N001 Inp1 COM {G1_CMR}
R13 N002 N001 {R1a_CMR} Temp=-273.15
R14 N002 COM {R2a_CMR} Temp=-273.15
R15 N003 N004 {R1b_CMR} Temp=-273.15
R18 N004 COM {R2b_CMR} Temp=-273.15
G5 COM N005 N004 COM {G2_CMR}
C4 N004 N003 {C1b_CMR}
R19 N003 COM 1
G23 COM N003 N002 COM 1
R20 N005 N006 {R1c_CMR} Temp=-273.15
R21 N006 COM {R2c_CMR} Temp=-273.15
G26 COM N007 N006 COM {G3_CMR}
C5 N006 N005 {C1c_CMR}
R22 N005 COM 1 Temp=-273.15
R23 N007 COM 1
R12 N001 COM 1 Temp=-273.15
C6 N027 N026 {C1a_PSRn}
G9 COM N026 VEE_Int COM {G1_PSRn}
R32 N026 COM 1 Temp=-273.15
R33 N027 N026 {R1a_PSRn} Temp=-273.15
R34 N027 COM {R2a_PSRn} Temp=-273.15
C9 N029 N028 {C1b_PSRn}
R35 N028 COM 1 Temp=-273.15
R40 N029 N028 {R1b_PSRn} Temp=-273.15
R41 N029 COM {R2b_PSRn} Temp=-273.15
G10 COM N030 N029 COM {G2_PSRn}
R42 N036 COM 1 Temp=-273.15
G13 COM N028 N027 COM 1
C11 N031 N030 {C1c_PSRn}
R66 N030 COM 1 Temp=-273.15
R67 N031 N030 {R1c_PSRn} Temp=-273.15
R68 N031 COM {R2c_PSRn} Temp=-273.15
G27 COM N036 N031 COM {G3_PSRn}
A8 COM COM COM COM COM COM N052 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={fA}/(freq**{M})
R36 N046 COM 1 Temp=-273.15
R37 N048 N049 {R1a_E_n} Temp=-273.15
R38 N049 COM {R2a_E_n} Temp=-273.15
G11 COM N050 N049 COM {G1_E_n}
C10 N049 N048 {C1a_E_n}
R69 N050 COM 1 Temp=-273.15
R70 N050 N051 {R1a_E_n} Temp=-273.15
R71 N051 COM {R2a_E_n} Temp=-273.15
G28 COM N054 N051 COM {1u*G1_E_n}
C31 N051 N050 {C1a_E_n}
R72 N054 COM 1Meg Temp=-273.15
C32 N054 COM {CEn}
G29 COM N055 N054 COM 1<>
R73 N055 COM 1Meg Temp=-273.15
G30 COM E_np N056 COM 1<>
R74 E_np COM 1Meg Temp=-273.15
R75 N052 COM 100k Temp=-273.15
G31 COM N046 N053 COM 1
R76 N046 N047 {R1a_E_n} Temp=-273.15
R77 N047 COM {R2a_E_n} Temp=-273.15
G32 COM N048 N047 COM {G1_E_n}
C33 N047 N046 {C1a_E_n}
R78 N048 COM 1 Temp=-273.15
A9 COM N052 COM COM COM COM N053 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={Enp}
R79 N053 COM 100k Temp=-273.15
C35 E_np COM 15f
G33 COM N056 N055 COM 1<>
R80 N056 COM 1Meg Temp=-273.15
R81 N016 N015 1k Temp=-273.15
G34 N015 N016 E_np COM 1m
B2 COM N042 I=1m*(V(3,COM)+{Vcm_max}) Rpar=1k Cpar=1n
G36 COM CMp N042 COM 1
R24 CMp COM 1
B9 COM N043 I=1m*(V(4,COM)+{Vcm_min}) Rpar=1k Cpar=1n
G37 COM CMn N043 COM 1
R27 CMn COM 1
VIP N034 CMp 0
VIN CMn N035 0
A10 COM COM COM COM COM COM N059 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={fAi}/(freq**{Mi})
R83 N059 COM 100k Temp=-273.15
A11 COM N059 COM COM COM COM N060 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={BBi}
R84 N060 COM 100k Temp=-273.15
F3 Inp1 COM V_I_n 1
Gb1 COM N061 N060 COM 1
R85 N062 COM 1 Temp=-273.15
V_I_n N061 N062 0
F4 Inn1 COM V_I_n 1
R86 Vsatp2 3 1k
C37 Vsatp2 3 1n
B10 4 Vsatn1 I=1m*Max(Mn*(-I(Vimon))+OSn,40u)
R87 Vsatn1 4 1k
C38 Vsatn1 4 1n
B11 4 Vsatn2 I=1m*(An+((Bn*(-I(Vimon)**Cn))/((Dn**Cn)+(-I(Vimon)**Cn))))
R88 Vsatn2 4 1k
C39 Vsatn2 4 1n
B12 COM Vsatni I=1m*IF(-I(Vimon)>15m, V(Vsatn2,COM), V(Vsatn1,COM))
R89 Vsatpi COM 1k
C40 Vsatpi COM 1n
B13 Vsatp1 3 I=1m*Max(Mp*(I(Vimon))+OSp,40u)
R90 Vsatp1 3 1k
C41 Vsatp1 3 1n
B14 COM Vsatpi I=1m*IF(I(Vimon)>16m, V(Vsatp2,COM), V(Vsatp1,COM))
R91 Vsatni COM 1k
C42 Vsatni COM 1n
B15 Vsatp2 3 I=1m*Max(Ap+((Bp*(I(Vimon)**Cp))/((Dp**Cp)+(I(Vimon)**Cp))),40u)
G35 COM N022 N017 COM 1k
R46 COM N022 1m Temp=-273.15
Rinp COM Inp1 {Rcm} Temp=-273.15
R2 Inp1 1 {Rser} Temp=-273.15
F5 N045 N058 Vimon 1
C18 N055 COM {CEn}
C19 N056 COM {CEn}
R47 N045 3 1<>
R82 N058 4 1<>
.param Vos=-1.94u Drift=0.1u
.param Ib=-0.4n Ios=0.1n
.param Vcm_min=1.2 Vcm_max=-2
.param Vsmin=3 Vsmax=36
.param Iscp=22m Iscn=-22m
.param Iq_on=400u Iq_off=1u
.param IZop={2*Rx_Zo*Iscp} IZon={2*Rx_Zo*Iscn}
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1)
.model LIM D(Vfwd=1n Vrev=1n Ron=1m Roff=1m Ilimit={Iscp} Revilimit={-Iscn} Epsilon=1u)
.model DGP D(Vfwd=1k Vrev=0 Revepsilon=0.5)
.model DGN D(Vfwd=1k Vrev=0 Revepsilon=0.5)
.model ESDI SW(Ron=50 Roff=1T Vt=31.6 Vh=-500m Vser=0.1)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n)
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m)
.model ENA SW(Ron=1Meg Roff=1u Vt=500m Vh=-100m Noiseless)
.model ENZ SW(Ron=1 Roff=1u Vt=500m Vh=-100m Noiseless)
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param beta_Zo=1.14
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=1.58k
.param Zo_max=1.58k
.param R1a_Zo=10k
.param fz1_Zo=0.96
.param fp1_Zo=9.8
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
+* R1a_Zo) - 1)}
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
.param G2_Zo = {1/actual1_Zo}
.param R1c_Zo=10k
.param fp3_Zo=7.1Meg
.param fz3_Zo=12.5Meg
.param C1c_Zo = {1 / (fz3_Zo * R1c_Zo * 2 * pi)}
.param R2c_Zo = {(1 / (fp3_Zo * C1c_Zo * 2 * pi))
+- R1c_Zo}
.param R1b_Zo=10k
.param fz2_Zo=33.5k
.param fp2_Zo=45.5k
.param C1b_Zo = {1 / (2 * pi * R1b_Zo * fz2_Zo)}
.param R2b_Zo = {R1b_Zo/ ((2 * pi * fp2_Zo * C1b_Zo
+* R1b_Zo) - 1)}
.param actual3_Zo = {R2b_Zo / (R1b_Zo + R2b_Zo)}
.param G3_Zo = {1/actual3_Zo}
.param R1d_Zo=10k
.param fz4_Zo=96Meg
.param fp4_Zo=100G
.param C1d_Zo = {1 / (2 * pi * R1d_Zo * fz4_Zo)}
.param R2d_Zo = {R1d_Zo/ ((2 * pi * fp4_Zo * C1d_Zo
+* R1d_Zo) - 1)}
.param actual4_Zo = {R2d_Zo / (R1d_Zo + R2d_Zo)}
.param G4_Zo = {1/actual4_Zo}
.param Aol_PB=135.06
.param SRp=1.3 SRn=-1.3
.param fp1=0.695 fp2=21.15Meg
.param Rser=1m
.param Ccm=5p Rcm=70G
.param Cdiff=3p ;Rdiff=100T
.param Aol2_dB = {Aol_PB-40+1}
.param Aol2 = {pwr(10, (Aol2_dB)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Isrc = {Cfp1 * SRp * 1Meg} Isink = {Cfp1 * SRn * 1Meg}
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Rej_dc_CMR=149.5
.param R1a_CMR=1Meg
.param fz1_CMR=70m
.param fp1_CMR=10
.param R1b_CMR=1Meg
.param fz2_CMR=6k
.param fp2_CMR=200k
.param C1b_CMR = {1 / (2 * pi * R1b_CMR * fz2_CMR)}
.param R2b_CMR = {R1b_CMR/ ((2 * pi * fp2_CMR * C1b_CMR
+* R1b_CMR) - 1)}
.param actual2_CMR = {R2b_CMR / (R1b_CMR + R2b_CMR)}
.param G2_CMR = {1/actual2_CMR}
.param R1c_CMR=1Meg
.param fz3_CMR=300k
.param fp3_CMR=10Meg
.param C1c_CMR = {1 / (2 * pi * R1c_CMR * fz3_CMR)}
.param R2c_CMR = {R1c_CMR/ ((2 * pi * fp3_CMR * C1c_CMR
+* R1c_CMR) - 1)}
.param actual3_CMR = {R2c_CMR / (R1c_CMR + R2c_CMR)}
.param G3_CMR = {1/actual3_CMR}
.param Rej_dc_PSRp=128
.param R1a_PSRp=100Meg
.param fz1_PSRp=1.6
.param fp1_PSRp=4Meg
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param Rej_dc_PSRn=128
.param R1a_PSRn=1Meg
.param fz1_PSRn=0.35
.param fp1_PSRn=10
.param C1b_PSRn = {1 / (2 * pi * R1b_PSRn * fz2_PSRn)}
.param R2b_PSRn = {R1b_PSRn/ ((2 * pi * fp2_PSRn * C1b_PSRn
+* R1b_PSRn) - 1)}
.param actual2_PSRn = {R2b_PSRn/ (R1b_PSRn + R2b_PSRn)}
.param G2_PSRn = {1/actual2_PSRn}
.param R1b_PSRn=1Meg
.param fz2_PSRn=950
.param fp2_PSRn=4.1Meg
.param C1c_PSRn = {1 / (2 * pi * R1c_PSRn * fz3_PSRn)}
.param R2c_PSRn = {R1c_PSRn/ ((2 * pi * fp3_PSRn * C1c_PSRn
+* R1c_PSRn) - 1)}
.param actual3_PSRn = {R2c_PSRn/ (R1c_PSRn + R2c_PSRn)}
.param G3_PSRn = {1/actual3_PSRn}
.param R1c_PSRn=1Meg
.param fz3_PSRn=200k
.param fp3_PSRn={fp2_PSRn}
.param R1a_E_n=1Meg
.param fz1_E_n=2.2Meg
.param fp1_E_n=5.2Meg
.param C1a_E_n = {1 / (2 * pi * R1a_E_n * fz1_E_n)}
.param R2a_E_n = {R1a_E_n/ ((2 * pi * fp1_E_n * C1a_E_n
+* R1a_E_n) - 1)}
.param actual1_E_n = {R2a_E_n / (R1a_E_n + R2a_E_n)}
.param G1_E_n = {1/actual1_E_n}
.param Enp=6.9n CEn=22f
.param BB=6.9n fC=2.7 M=0.58 fA={BB*(fC**M)}
.param BBi=0.16p fCi=5 Mi=0.75 fAi={BBi*(fCi**Mi)}
.param Mp=14.12 OSp=0.96
.param Ap=1.08 Bp=1.71 Cp=8.54 Dp=2.2e-2
.param Mn=20 OSn=1
.param An=1.11 Bn=2.33 Cn=6.86 Dn=2.13e-2
.ends ADA4077

119
lib/sub/ADA4091.lib Normal file
View File

@@ -0,0 +1,119 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.SUBCKT ADA4091 1 2 99 50 45
I1 99 7 8.00E-06
Q1 6 4 7A QP
Q2 5 3 7B QP
RE1 7A 7 7.774E+02
RE2 7B 7 7.774E+02
D1 3 99 DX
D2 4 99 DX
D3 50 3 DX
D4 50 4 DX
D5 3 4 DX
D6 4 3 DX
R1 3 8 5E+03
R2 4 2 5E+03
R3 5 50 7.500E4;
R4 6 50 7.500E4;
Cph 5 5A 0.235E-12
Rph 5A 6 300
VOS 8 8A -50.48u
EPSRp 8A 1 99 50 495.4n
IOS 3 4 -50E-12
CDiff 1 2 2.5E-12
Cin1 1 50 2E-12
Cin2 2 50 2E-12
*
* INPUT PROTECTION NETWORK
*
X_in1 1 50 Diac1
X_in2 2 50 Diac1
X_in3 1 99 Diac1
X_in4 2 99 Diac1
*
*
RS1 99 39 400.0E3
RS2 39 50 400.0E3
EREF 98 0 (39,0) 1
*
* 1ST GAIN STAGE
*
G1 9 98 (6,5) 1.0E-06
R7 9 98 1E6
*
* 2ND GAIN STAGE AND DOMINANT POLE
*
R8 12 98 1.094E+08
G2 12 98 (98,9) 3.881E-06
D7 12 13 DX
D8 14 12 DX
V1 13 98 +0.2; source
V2 14 98 -0.2; sink
*
* Provision for second pole
*
G3 18 98 (98,12) 1E-05
R11 18 98 1E5
*
* CMRR=90dB, Pole at 1100 Hz
*
ECM 21 98 POLY(2) (1,98) (2,98) 0 1.318E-01 1.318E-01
R10 21 22 1.326E+05
R20 22 98 1.592E+01
C10 21 22 1E-9
*
* PSRR=85dB, POLE AT 300 Hz
*
EPSY 72 98 POLY(1) (99,50) +0.1E-1 1.770E+01
RPS1 72 73 7.958E+02
RPS2 73 98 3.183E-03
CPS1 72 73 1.00E-06
*
* VOLTAGE NOISE REFERENCE OF 24nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 96.300E-3
HN 81 98 VN1 2.397E+01
RN2 81 98 1
*
* FLICKER NOISE CORNER = 300 Hz
*
DFN 82 98 DNOISE
VFN 82 98 DC 0.6551
HFN 83 98 POLY(1) VFN 1.00E-03 1.00E+00
RFN 83 98 1
*
* OUTPUT STAGE
*
Q3 451 41 99 POUT
RB1 40 41 1.5E+03
EB1 99 40 POLY(1) (98,18) 6.190E-01 1E-0;
Q4 451 43 50 NOUT
RB2 42 43 2.0E+03
EB2 42 50 POLY(1) (18,98) 6.155E-01 1E-0;
Lout 45 451 10E-10
RZ 45 453 100
CZ 453 12 4.67E-12
*
GSY 99 50 POLY(1) (99 50) 106.2E-6 -0.89E-06
*
* MODELS
*
.MODEL QP PNP(BF=80, IS=1.00E-16, VA=130)
.MODEL POUT PNP (BF=80,IS=2.8E-15,VA=130,IK=6E+00,BR=15,VAR=14.4, RC=30)
.MODEL NOUT NPN (BF=120,IS=3.2E-15,VA=250,IK=11E+00,BR=30, VAR=20.0, RC=7)
.MODEL DW D(IS=1E-18)
.MODEL DX D()
.MODEL DY D(IS=1E-9)
.MODEL DZ D(IS=1E-6)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=8.640E-12)
*
.SUBCKT Diac1 1 2
Done 1 3 DZ42hh
Dtwo 2 3 DZ42hh
.MODEL DZ42hh D(IS=3.3179E-6, N=2.0, RS=1.0000E-3, CJO=10.00E-12, M=.31349, VJ=.3905, ISR=2.9061E-9, BV=42.0, IBV=5.0E-03, TT=300.0E-9)
.ENDS Diac1
*
*
.ENDS ADA4091

255
lib/sub/ADA4096.lib Normal file
View File

@@ -0,0 +1,255 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4096 1 2 3 4 5
R1 Inn1 2 {Rsern} Temp=-273.15
R2 Inp1 1 {Rserp} Temp=-273.15
R3 Aol1 COM 1Meg Temp=-273.15
R4 Clamp COM 1Meg Temp=-273.15
C1 Clamp COM {Cfp1a}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}* V(Aol1,COM), {Isink}-V(OL,COM)* 0.2, 20m), {Isrc}+V(OL,COM)*0.2, 20m)
A1 Inn2 Inp2 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k En={En} Enk={Enk}
G2 0 VCC_Int 3 0 1
G3 0 Vee_Int 4 0 1
R6 VCC_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N032 VCC_Int 1Meg Temp=-273.15
R9 N032 Vee_Int 1Meg Temp=-273.15
C2 N032 0 1
E1 COM 0 N032 0 1
R10 COM 0 1Meg Temp=-273.15
Rx N008 N013 {Rx_Zo} Temp=-273.15
Rdummy N008 COM {Rdummy_Zo} Temp=-273.15
G4 COM N003 Aol2 N008 {G1_Zo}
R11 Cap2L COM 1 Temp=-273.15
R12 Cap2L Cap2R {R1a_Zo} Temp=-273.15
R13 Cap2R COM {R2a_Zo} Temp=-273.15
G5 COM N005 Cap2R COM {G2_Zo}
C3 Cap2R Cap2L {C1a_Zo}
R14 N003 COM 1 Temp=-273.15
R15 N003 N004 {R2b_Zo} Temp=-273.15
R16 N004 Cap1 {R1b_Zo} Temp=-273.15
C4 COM Cap1 {C1b_Zo}
Gb1 COM Cap2L N004 COM 1
R17 N013 COM 1 Temp=-273.15
B2 COM N013 I=Uplim(Dnlim({G3_Zo}* V(ZoF,COM), {Izon}, 25m), {Izop}, 25m)
R18 N007 COM 1 Temp=-273.15
R19 N007 ZoF {R1c_Zo} Temp=-273.15
R20 ZoF COM {R2c_Zo} Temp=-273.15
C5 ZoF N007 {C1c_Zo}
R21 N005 COM 1 Temp=-273.15
R22 N005 N006 {R2d_Zo} Temp=-273.15
R23 N006 N018 {R1d_Zo} Temp=-273.15
C6 COM N018 {C1d_Zo}
Gb2 COM N007 N006 COM 1
R25 Aol2 COM 1Meg Temp=-273.15
C7 Aol2 COM {Cfp2}
G7 COM Aol2 Clamp COM 1<>
Cinp COM Inp1 {Cinp}
Cinn Inn1 COM {Cinn}
Cdiff Inp1 Inn1 {Cdiff}
Rinn Inn1 COM {Rinn} Temp=-273.15
Rinp COM Inp1 {Rinp} Temp=-273.15
R24 Inn2 N027 1m Temp=-273.15
Ibp Inp1 COM {Ib}
Ibn Inn1 COM {Ib-Ios}
R26 N010 N012 1k Temp=-273.15
A2 COM Inp1 COM COM COM COM COM COM OTA G=1u In={Inp} Ink={Inkp}
A3 COM Inn1 COM COM COM COM COM COM OTA G=0 In={Inn} Ink={Inkn}
B3 N012 N010 I=1m*{Vos+Drift* (Temp-27)}
R27 N017 N011 1m Temp=-273.15
G6 N017 Inp2 N025 N020 1m
R28 Inp2 N017 1k Temp=-273.15
C8 N023 N024 {C1a_PSRp}
G8 COM N024 VCC_Int COM {G1_PSRp}
R29 N024 COM 1 Temp=-273.15
R30 N023 N024 {R1a_PSRp} Temp=-273.15
R31 N023 COM {R2a_PSRp} Temp=-273.15
C9 N021 N022 {C1b_PSRp}
R32 N021 COM {R2b_PSRp} Temp=-273.15
R33 N021 N022 {R1b_PSRp} Temp=-273.15
G9 COM N022 N023 COM 1
R34 N022 COM 1 Temp=-273.15
G10 COM N025 N021 COM {G2_PSRp}
R35 N025 COM 1 Temp=-273.15
C10 N020 N019 {C1a_PSRn}
G11 COM N019 VEE_Int COM {G1_PSRn}
R36 N019 COM 1 Temp=-273.15
R37 N020 N019 {R1a_PSRn} Temp=-273.15
R38 N020 COM {R2a_PSRn} Temp=-273.15
G12 N010 N011 N002 COM 1m
R39 N011 N010 1k Temp=-273.15
C11 N002 N001 {C1a_CMR}
G13 COM N001 Inp1 COM {G1_CMR}
R40 N001 COM 1 Temp=-273.15
R41 N002 N001 {R1a_CMR} Temp=-273.15
R42 N002 COM {R2a_CMR} Temp=-273.15
Vimon N009 5 0
BIq 3 4 I={Iq_on} +I(VImon)
G1 COM N012 Inp1 COM 1k
G14 COM N027 Inn1 COM 1k
R5 COM N012 1m Temp=-273.15
R43 COM N027 1m Temp=-273.15
C12 N027 COM 1p
C13 N012 COM 1p
DIP 3 Inp2 DIP
DIN Inp2 4 DIN
C14 VCC_Int 0 1n
C15 Vee_Int 0 1n
DOP Vsatp N008 DO
DON N008 Vsatn DO
DGP N028 Clamp DGP
DGN Clamp N029 DGN
S1 COM Cap1 OL COM OL
S2 Cap2R Cap2L OL COM OL
F1 COM OLp VGP 1m
A4 OLp OLn COM COM COM COM OL COM OR Ref=100u Vh=50u Trise=10n
R44 OLp COM 1k
F2 COM OLn VGN -1m
R45 OLn COM 1k
C16 OLp COM 1n
C17 OLn COM 1n
DOI N008 N009 LIM
COI N009 N008 1p
R46 Vsatni 4 1k
R47 Vsatpi 3 1k
C18 Vsatpi 3 1n
C19 Vsatni 4 1n
B4 4 Vsatni I=Max(Ap*(Bp**(-I(Vimon)*1k))* (-(I(Vimon)*1k)**Cp),40u)
B5 Vsatpi 3 I=Max(Ap*(Bp**(I(Vimon)*1k))* ((I(Vimon)*1k)**Cp),40u)
G15 COM Vsatp Vsatpi COM 1
R48 Vsatp COM 1
C21 Vsatp COM 1n
G16 COM Vsatn Vsatni COM 1
R49 Vsatn COM 1
C22 Vsatn COM 1n
S3 3 Inp1 Inp1 3 ESDI
S4 3 Inn1 Inn1 3 ESDI
S5 Inp1 4 4 Inp1 ESDI
S6 Inn1 4 4 Inn1 ESDI
C24 N008 Vsatp 10p
C25 N008 Vsatn 10p
S7 3 5 5 3 ESDO
S8 5 4 4 5 ESDO
C26 OL COM 1p
B6 COM N030 I=1m*({Zo_max}* {Iscp}+V(3,COM)) Rpar=1k Cpar=1n
G18 COM GRp N030 COM 1
R51 GRp COM 1
G19 COM GRn N031 COM 1
R52 GRn COM 1
B7 COM N031 I=1m*({Zo_max}* {Iscn}+V(4,COM)) Rpar=1k Cpar=1n
VGP N028 GRp 0
VGN N029 GRn 0
DIP1 3 Inn2 DIP
DIN1 Inn2 4 DIN
.param En=27n Enk=1.2
.param Inp=0.2p Inkp=100
.param Inn=0.2p Inkn=100
.param Vos=-18.175u Drift=1u
.param Ib=10n Ios=1.5n
.param Vcm_min=0 Vcm_max=0
.param Vsmin=3 Vsmax=36
.param Iscp=10m Iscn=-10m
.param Torp=5u Torn=5u
.param Iq_on=47u Iq_off=5u
.param Ap=1.17e-5 Bp=1.17 Cp=1.76
.param Mor=0.7036 Bor=1.4284 Wor=0.16
.param IZop={2*Rx_Zo*Iscp} IZon={2*Rx_Zo*Iscn}
.model DIP D(Vfwd={Vsmax} Vrev={Vcm_max} Revepsilon=0.1)
.model DIN D(Vfwd={Vsmax} Vrev={-Vcm_min} Revepsilon=0.1)
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1)
.model LIM D(Vfwd=1n Vrev=1n Ron=1m Roff=1m Ilimit={Iscp} Revilimit={-Iscn} Epsilon=1u)
.model DGP D(Vfwd=1k Vrev=0 Revepsilon=0.5)
.model DGN D(Vfwd=1k Vrev=0 Revepsilon=0.5)
.model ESDI SW(Ron=50 Roff=1T Vt=31.6 Vh=-500m Vser=0.1)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n)
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m)
.param Rsern=10m Rserp=10m
.param Rinp=1T Cinp=7p
.param Rinn=1T Cinn=7p
.param Cdiff=2.5p
.param Aol=111 RL_dc=10k
.param SRp=0.38 SRn=-0.38
.param fp1=450 fp2=13.5Meg fp3=100G
.param Aol_v= {pwr(10, (Aol/20))}
.param Aol_adj = {(Aol_v/RL_dc)*(Zo_dc + RL_dc)}
.param Aol_adj_dB = {20*log10(Aol_adj)}
.param Aol2 = {pwr(10, (Aol_adj_dB - 40)/20)}
.param Cfp1 = {1 / (2 * pi * fp1 * Aol2)}
.param A=8.85e-1 B=5.56e-2 C=1.06 D=2.99m
.param ratio = {Zo_dc/RL_dc}
.param Cfp1a = {Cfp1*((A+B*ratio)/(1+C*ratio+D*ratio**2))}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Isrc = {Cfp1a * SRp * 1Meg} Isink = {Cfp1a * SRn * 1Meg}
.param beta_Zo=1.04
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=874
.param Zo_max=2k
.param R1a_Zo=10k
.param fz1_Zo=3.5
.param fp1_Zo=170
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
+* R1a_Zo) - 1)}
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
.param G2_Zo = {1/actual1_Zo}
.param R1b_Zo=10k
.param fp2_Zo=1m
.param fz2_Zo=90m
.param C1b_Zo = {1 / (fz2_Zo * R1b_Zo * 2 * pi)}
.param R2b_Zo = {(1 / (fp2_Zo * C1b_Zo * 2 * pi))
+- R1b_Zo}
.param R1c_Zo=10k
.param fz3_Zo=1.5Meg
.param fp3_Zo=100G
.param C1c_Zo = {1 / (2 * pi * R1c_Zo * fz3_Zo)}
.param R2c_Zo = {R1c_Zo/ ((2 * pi * fp3_Zo * C1c_Zo
+* R1c_Zo) - 1)}
.param actual3_Zo = {R2c_Zo / (R1c_Zo + R2c_Zo)}
.param G3_Zo = {1/actual3_Zo}
.param R1d_Zo=10k
.param fp4_Zo=250k
.param fz4_Zo=600k
.param C1d_Zo = {1 / (fz4_Zo * R1d_Zo * 2 * pi)}
.param R2d_Zo = {(1 / (fp4_Zo * C1d_Zo * 2 * pi))
+- R1d_Zo}
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param Rej_dc_PSRp=106
.param R1a_PSRp=100k
.param fz1_PSRp=220
.param fp1_PSRp=750k
.param C1b_PSRp = {1 / (2 * pi * R1b_PSRp * fz2_PSRp)}
.param R2b_PSRp = {R1b_PSRp/ ((2 * pi * fp2_PSRp * C1b_PSRp
+* R1b_PSRp) - 1)}
.param actual2_PSRp = {R2b_PSRp / (R1b_PSRp + R2b_PSRp)}
.param G2_PSRp = {1/actual2_PSRp}
.param R1b_PSRp=100k
.param fz2_PSRp=15k
.param fp2_PSRp=750k
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param Rej_dc_PSRn=105
.param R1a_PSRn=1Meg
.param fz1_PSRn=3.5
.param fp1_PSRn=750k
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Rej_dc_CMR=103
.param R1a_CMR=1Meg
.param fz1_CMR=3.5
.param fp1_CMR=550k
.ends ADA4096

109
lib/sub/ADA4097-1.lib Normal file
View File

@@ -0,0 +1,109 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4097-1 1 2 3 4 5 6
B1 0 N006 I=10u*dnlim(uplim(V(1),V(4)+69.3,.1), V(4)-.15, .1)+1n*V(1)-10.72254n
B2 N006 0 I=10u*dnlim(uplim(V(2),V(4)+69.3,.1), V(4)-.16, .1)+1n*V(2)
C10 N006 0 50f Rpar=100K noiseless
M1 N019 NG 4 4 NI temp=27
C2 3 5 1p IC=0 Rpar=1g
D5 NG 4 DLIMN1
M2 P001 N007 N004 N004 PI temp=27
A3 N014 N016 4 4 4 4 N007 4 OTA g=2u ref=-.305 linear vlow=-1e308 vhigh=1e308
C11 5 4 1p IC=0 Rpar=1g
D6 NG 4 DLIMN2
C16 N016 5 52p
A5 N012 0 N014 N014 N014 N014 N016 N014 OTA g=40u isource=5.05u Vlow=-1e308 Vhigh=1e308
G1 4 NG N016 N014 140n
D9 N016 N014 DLIM
C7 2 0 3p Rser=1k Rpar=100G noiseless
C13 3 4 10p
C1 N009 0 280f
G2 0 N014 4 0 .5m
G4 0 N014 3 0 .5m
C18 N014 0 200p Rpar=1K noiseless
C6 1 0 3p Rser=1k Rpar=100G noiseless
D3 3 N004 DSBD
C5 3 N004 100f Rpar=10Meg noiseless
D4 N004 N007 DLIMP
D2 N009 0 DLIM0
D1 4 5 DESD
D8 4 1 DESD
D10 4 2 DESD
A2 N015 0 0 0 0 0 0 0 OTA g=0 in=0.5p ink=15
D11 5 N019 DNR
C15 N019 4 100f Rpar=10Meg noiseless
D7 N007 3 DLIMPR
A6 4 3 M M M M N005 M OTA g=2u iout=1u ref=-2.5 Rout=1Meg Cout=100f vlow=-1e308 vhigh=1e308
S4 N021 4 N005 0 SBiasN
D13 3 N013 DBiasDrop
C14 N021 4 100f
S2 N004 N007 0 N005 SHUT
S3 NG 4 0 N005 SHUT
D16 2 1 D10Meg
C17 N010 0 2250f noiseless Rser=2.7Meg Rpar=1Meg
G3 0 N010 N009 0 1<>
D17 0 N009 DNLIN
G5 0 N011 N010 0 1<>
S5 N014 N016 4 5 SGK
C3 3 N007 .9p Rser=700k noiseless
C12 NG 4 .9p Rser=700k noiseless
D14 2 N013 DBiasOTT
D15 1 N021 DBiasOTT
S1 0 N008 3 2 SNOI
A7 N008 0 0 0 0 0 0 0 OTA g=0 in=17.25p ink=5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=0f ink=15
GNOI_I 1 2 N015 0 1<>
S6 0 N015 3 2 SNOI
A4 0 N006 0 0 0 0 N009 0 OTA g=1u linear en=53n*(1+freq/160e3) enk=0.98 Vhigh=1e308 Vlow=-1e308
GNOI_V N006 0 N008 0 10n
S9 3 4 N017 0 SP
S10 3 N007 N017 0 SHUT2
S11 NG 4 N017 0 SHUT2
S7 5 0 N017 0 SHUT2
S8 P001 5 0 N017 SHUT3
S13 N018 4 0 N017 SHUT3
G6 0 M 3 0 500<30>
R1 M 0 1k noiseless
G7 0 M 4 0 500<30>
R2 N024 0 58 noiseless
C4 N025 N024 10n Rpar=47.9K noiseless
R3 N025 0 1 noiseless
G8 0 N025 1 0 5.25m
G9 0 N025 2 0 5.25m
G10 0 N025 0 3 5.25m
G11 0 N025 0 4 5.25m
G12 0 N006 0 N024 1<>
D12 3 N018 DP
S12 N013 N021 0 N017 SHUT3
C20 N012 0 330f Rpar=1Meg noiseless
G13 0 N012 N011 0 1<>
C19 N011 0 125.26f noiseless Rser=2.667Meg Rpar=1Meg
D18 4 6 DSHUT1
C8 6 0 100f
A8 6 4 0 0 0 0 N017 0 SCHMITT Vt=1.5 Vh=1m Trise=1u Tfall=20u IC=0
I1 0 2 125p
.model DP D(Ron=1k Roff=1G Vfwd=2.5 epsilon=100m ilimit=6.5u noiseless)
.model SP SW(Ron=100 Roff=1G vt=.5 vh=10m ilimit=15u noiseless)
.model DESD D(Ron=1k Roff=1G vfwd=700m epsilon=100m noiseless)
.model SNOI SW(Ron=1 Roff=1Meg vt=1.2 vh=-100m noiseless)
.model NI VDMOS(Vto=361.95m Kp=69.6m Mtriode=.9 lambda=.01)
.model PI VDMOS(Vto=-361.95m Kp=174m lambda=.01 pchan is=0)
.model DLIM0 D(Ron=10 Roff=10Meg Vfwd=1 epsilon=100m Vrev=1 epsilon=100m noiseless)
.model DNLIN D(Roff=1.8Meg Ron=800k vfwd=0 epsilon=10m noiseless)
.model DLIM D(Ron=100 Roff=4.755Meg Vfwd=700m Vrev=100m epsilon=10m revepsilon=10 noiseless)
.model SHUT SW(level=2 Ron=10k Roff=100G vt=-.5 vh=-.2 noiseless)
.model DSHUT1 D(Ron=1000 Roff=0.823E6 Vfwd=1 epsilon=100m Vrev=1 epsilon=100m ilimit=100n revilimit=0.1n noiseless)
.model DSBD D( Ron=15 Roff=100Meg Vfwd=-70m epsilon=50m Vrev=100 revepsilon=10m noiseless)
.model DNR D(Ron=1 Roff=100Meg Vfwd=-16m epsilon=300m noiseless)
.model DLIMN1 D(Ron=200k Roff=415Meg Vfwd=1.378 Vrev=-330m epsilon=.1 noiseless)
.model DLIMN2 D(Ron=5Meg Roff=1G Vfwd=-20m epsilon=50m ilimit=44n noiseless)
.model DLIMP D(Ron=100k Roff=100Meg Vfwd=0.805 epsilon=10m noiseless)
.model DLIMPR D(Ron=5Meg Roff=1G Vfwd=100m epsilon=10m noiseless)
.model SGK SW(level=2 Ron=65k Roff=100G vt=-260m vh=150m oneway epsilon=10m noiseless)
.model SBiasN SW(level=2 Ron=5k Roff=1g vt=.5 vh=-.2 ilimit=0.2u noiseless)
.model DBiasDrop D(Ron=1k Roff=1G vfwd=0.31 epsilon=200m noiseless)
.model DBiasOTT D(Ron=500 Roff=1G vfwd=700m epsilon=200m noiseless)
.model D10Meg D(Ron=10Meg Roff=10Meg vfwd=0 vrev=0 ilimit=10n revilimit=10n noiseless)
.model SHUT3 SW(Ron=10 Roff=10G vt=-0.5 vh=100m noiseless)
.model SHUT2 SW(Ron=10 Roff=10G vt=0.5 vh=100m noiseless)
.ends ADA4097-1

109
lib/sub/ADA4097-2.lib Normal file
View File

@@ -0,0 +1,109 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4097-2 1 2 3 4 5 6
B1 0 N006 I=10u*dnlim(uplim(V(1),V(4)+69.3,.1), V(4)-.15, .1)+1n*V(1)-10.72254n
B2 N006 0 I=10u*dnlim(uplim(V(2),V(4)+69.3,.1), V(4)-.16, .1)+1n*V(2)
C10 N006 0 50f Rpar=100K noiseless
M1 N019 NG 4 4 NI temp=27
C2 3 5 1p Rpar=1g noiseless
D5 NG 4 DLIMN1
M2 P001 N007 N004 N004 PI temp=27
A3 N014 N016 4 4 4 4 N007 4 OTA g=2u ref=-.305 linear vlow=-1e308 vhigh=1e308
C11 5 4 1p Rpar=1g noiseless
D6 NG 4 DLIMN2
C16 N016 5 52p
A5 N012 0 N014 N014 N014 N014 N016 N014 OTA g=40u isource=5.05u Vlow=-1e308 Vhigh=1e308
G1 4 NG N016 N014 140n
D9 N016 N014 DLIM
C7 2 0 3p Rser=1k Rpar=100G noiseless
C13 3 4 10p
C1 N009 0 280f
G2 0 N014 4 0 .5m
G4 0 N014 3 0 .5m
C18 N014 0 200p Rpar=1K noiseless
C6 1 0 3p Rser=1k Rpar=100G noiseless
D3 3 N004 DSBD
C5 3 N004 100f Rpar=10Meg noiseless
D4 N004 N007 DLIMP
D2 N009 0 DLIM0
D1 4 5 DESD
D8 4 1 DESD
D10 4 2 DESD
A2 N015 0 0 0 0 0 0 0 OTA g=0 in=0.5p ink=15
D11 5 N019 DNR
C15 N019 4 100f Rpar=10Meg noiseless
D7 N007 3 DLIMPR
A6 4 3 M M M M N005 M OTA g=2u iout=1u ref=-2.5 Rout=1Meg Cout=100f vlow=-1e308 vhigh=1e308
S4 N021 4 N005 0 SBiasN
D13 3 N013 DBiasDrop
C14 N021 4 100f
S2 N004 N007 0 N005 SHUT
S3 NG 4 0 N005 SHUT
D16 2 1 D10Meg
C17 N010 0 2250f noiseless Rser=2.7Meg Rpar=1Meg
G3 0 N010 N009 0 1<>
D17 0 N009 DNLIN
G5 0 N011 N010 0 1<>
S5 N014 N016 4 5 SGK
C3 3 N007 .9p Rser=700k noiseless
C12 NG 4 .9p Rser=700k noiseless
D14 2 N013 DBiasOTT
D15 1 N021 DBiasOTT
S1 0 N008 3 2 SNOI
A7 N008 0 0 0 0 0 0 0 OTA g=0 in=17.25p ink=5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=0f ink=15
GNOI_I 1 2 N015 0 1<>
S6 0 N015 3 2 SNOI
A4 0 N006 0 0 0 0 N009 0 OTA g=1u linear en=53n*(1+freq/160e3) enk=0.98 Vhigh=1e308 Vlow=-1e308
GNOI_V N006 0 N008 0 10n
S9 3 4 N017 0 SP
S10 3 N007 N017 0 SHUT2
S11 NG 4 N017 0 SHUT2
S7 5 0 N017 0 SHUT2
S8 P001 5 0 N017 SHUT3
S13 N018 4 0 N017 SHUT3
G6 0 M 3 0 500<30>
R1 M 0 1k noiseless
G7 0 M 4 0 500<30>
R2 N024 0 58 noiseless
C4 N025 N024 10n Rpar=47.9K noiseless
R3 N025 0 1 noiseless
G8 0 N025 1 0 5.25m
G9 0 N025 2 0 5.25m
G10 0 N025 0 3 5.25m
G11 0 N025 0 4 5.25m
G12 0 N006 0 N024 1<>
D12 3 N018 DP
S12 N013 N021 0 N017 SHUT3
C20 N012 0 330f Rpar=1Meg noiseless
G13 0 N012 N011 0 1<>
C19 N011 0 125.26f noiseless Rser=2.667Meg Rpar=1Meg
D18 4 6 DSHUT1
C8 6 0 100f
A8 6 4 0 0 0 0 N017 0 SCHMITT Vt=1.5 Vh=1m Trise=1u Tfall=20u
I1 0 2 125p
.model DP D(Ron=1k Roff=1G Vfwd=2.5 epsilon=100m ilimit=6.5u noiseless)
.model SP SW(Ron=100 Roff=1G vt=.5 vh=10m ilimit=15u noiseless)
.model DESD D(Ron=1k Roff=1G vfwd=700m epsilon=100m noiseless)
.model SNOI SW(Ron=1 Roff=1Meg vt=1.2 vh=-100m noiseless)
.model NI VDMOS(Vto=361.95m Kp=69.6m Mtriode=.9 lambda=.01)
.model PI VDMOS(Vto=-361.95m Kp=174m lambda=.01 pchan is=0)
.model DLIM0 D(Ron=10 Roff=10Meg Vfwd=1 epsilon=100m Vrev=1 epsilon=100m noiseless)
.model DNLIN D(Roff=1.8Meg Ron=800k vfwd=0 epsilon=10m noiseless)
.model DLIM D(Ron=100 Roff=4.755Meg Vfwd=700m Vrev=100m epsilon=10m revepsilon=10 noiseless)
.model SHUT SW(level=2 Ron=10k Roff=100G vt=-.5 vh=-.2 noiseless)
.model DSHUT1 D(Ron=1000 Roff=0.823E6 Vfwd=1 epsilon=100m Vrev=1 epsilon=100m ilimit=100n revilimit=0.1n noiseless)
.model DSBD D( Ron=15 Roff=100Meg Vfwd=-70m epsilon=50m Vrev=100 revepsilon=10m noiseless)
.model DNR D(Ron=1 Roff=100Meg Vfwd=-16m epsilon=300m noiseless)
.model DLIMN1 D(Ron=200k Roff=415Meg Vfwd=1.378 Vrev=-330m epsilon=.1 noiseless)
.model DLIMN2 D(Ron=5Meg Roff=1G Vfwd=-20m epsilon=50m ilimit=44n noiseless)
.model DLIMP D(Ron=100k Roff=100Meg Vfwd=0.805 epsilon=10m noiseless)
.model DLIMPR D(Ron=5Meg Roff=1G Vfwd=100m epsilon=10m noiseless)
.model SGK SW(level=2 Ron=65k Roff=100G vt=-260m vh=150m oneway epsilon=10m noiseless)
.model SBiasN SW(level=2 Ron=5k Roff=1g vt=.5 vh=-.2 ilimit=0.2u noiseless)
.model DBiasDrop D(Ron=1k Roff=1G vfwd=0.31 epsilon=200m noiseless)
.model DBiasOTT D(Ron=500 Roff=1G vfwd=700m epsilon=200m noiseless)
.model D10Meg D(Ron=10Meg Roff=10Meg vfwd=0 vrev=0 ilimit=10n revilimit=10n noiseless)
.model SHUT3 SW(Ron=10 Roff=10G vt=-0.5 vh=100m noiseless)
.model SHUT2 SW(Ron=10 Roff=10G vt=0.5 vh=100m noiseless)
.ends ADA4097-2

113
lib/sub/ADA4098-1.lib Normal file
View File

@@ -0,0 +1,113 @@
* Copyright (c) 1998-2022 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4098-1 1 2 3 4 5 6
B1 0 N004 I=10u*dnlim(uplim(V(1),V(4)+69.3,.1), V(4)-.15, .1)+1n*V(1)-10.72254n
B2 N004 0 I=10u*dnlim(uplim(V(2),V(4)+69.3,.1), V(4)-.16, .1)+1n*V(2)
C10 N004 0 50f Rpar=100K noiseless
M1 N018 NG 4 4 NI temp=27
C2 3 5 1p Rpar=1g noiseless
D5 NG N021 DLIMN1
M2 P001 N005 N002 N002 PI temp=27
A3 N013 N015 4 4 4 4 N005 4 OTA g=2u ref=-.305 linear vlow=-1e308 vhigh=1e308
C11 5 4 1p Rpar=1g noiseless
D6 NG 4 DLIMN2
C16 N015 5 12p
A5 N010 0 N013 N013 N013 N013 N015 N013 OTA g=70u isource=10.3u Vlow=-1e308 Vhigh=1e308
G1 4 NG N015 N013 140n
D9 N015 N013 DLIM
C7 2 0 2.7p Rser=1k Rpar=100G noiseless
C13 3 4 10p
C1 N007 0 30f
G2 0 N013 4 0 .5m
G4 0 N013 3 0 .5m
C18 N013 0 200p Rpar=1K noiseless
C6 1 0 2.7p Rser=1k Rpar=100G noiseless
D3 3 N002 DSBD
C5 3 N002 100f Rpar=10Meg noiseless
D4 N002 N005 DLIMP
D2 N007 0 DLIM0
A2 N014 0 0 0 0 0 0 0 OTA g=0 in=1.8p ink=15
D11 5 N018 DNR
C15 N018 4 100f Rpar=10Meg noiseless
D7 N005 3 DLIMPR
A6 4 3 M M M M N003 M OTA g=2u iout=1u ref=-2.5 Rout=1Meg Cout=100f vlow=-1e308 vhigh=1e308
S4 N020 N022 N003 0 SBiasN
D13 3 N012 DBiasDrop
C14 N020 4 100f
S2 N002 N005 0 N003 SHUT
S3 NG 4 0 N003 SHUT
D16 2 1 D1Meg
C17 N008 0 174.26f noiseless Rser=2.667Meg Rpar=1Meg
G3 0 N008 N007 0 1<>
D17 0 N007 DNLIN
C20 N010 0 47f Rpar=1Meg noiseless
G5 0 N010 N009 0 1<>
S5 N013 N015 4 5 SGK
C3 3 N005 .9p Rser=700k noiseless
C12 NG 4 .9p Rser=700k noiseless
D14 2 N012 DBiasOTT
D15 1 N020 DBiasOTT
S1 0 N006 3 2 SNOI
A7 N006 0 0 0 0 0 0 0 OTA g=0 in=17.25p ink=5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=145f ink=6
GNOI_I 1 2 N014 0 1<>
S6 0 N014 3 2 SNOI
A4 0 N004 0 0 0 0 N007 0 OTA g=1u linear en=16.95n*(1+freq/12e5) enk=3.3 Vhigh=1e308 Vlow=-1e308
GNOI_V N004 0 N006 0 10n
I1 0 1 1.76n
S9 3 4 N016 0 SP
S10 3 N005 N016 0 SHUT2
S11 NG 4 N016 0 SHUT2
A8 6 4 0 0 0 0 N016 0 SCHMITT Vt=1.5 Vh=1m Trise=1u Tfall=100u
S7 5 0 N016 0 SHUT2
S8 P001 5 0 N016 SHUT3
S13 N017 4 0 N016 SHUT3
G6 0 M 3 0 500<30>
R1 M 0 1k noiseless
G7 0 M 4 0 500<30>
R2 N025 0 48 noiseless
C4 N026 N025 10n Rpar=47.9K noiseless
R3 N026 0 1 noiseless
G8 0 N026 1 0 5.25m
G9 0 N026 2 0 5.25m
G10 0 N026 0 3 5.25m
G11 0 N026 0 4 5.25m
G12 0 N004 0 N025 1<>
D12 3 N017 DP
S12 N012 N020 0 N016 SHUT3
C9 6 0 100f
C19 N009 0 174.26f noiseless Rser=3.667Meg Rpar=1Meg
G13 0 N009 N008 0 1<>
S14 N022 4 0 N016 SHUT3
S15 N021 4 0 N016 SHUT3
I2 0 2 2.04n
D1 4 6 DSHUT1
D18 4 5 DESD
S16 2 4 4 2 ESDI
S18 1 4 4 1 ESDI
.model DP D(Ron=1k Roff=1G Vfwd=2.5 epsilon=100m ilimit=1.4u noiseless)
.model SP SW(Ron=100 Roff=1G vt=.5 vh=10m ilimit=17u noiseless)
.model DESD D(Ron=1k Roff=1G vfwd=700m epsilon=100m noiseless)
.model SNOI SW(Ron=1 Roff=1Meg vt=1.2 vh=-100m noiseless)
.model NI VDMOS(Vto=325.5m kp=72.3m Mtriode=.9 lambda=.01)
.model PI VDMOS(Vto=-325.5m Kp=341m lambda=.01 pchan is=0)
.model DLIM0 D(Ron=10 Roff=10Meg Vfwd=1 epsilon=100m Vrev=1 epsilon=100m noiseless)
.model DNLIN D(Roff=1.8Meg Ron=800k vfwd=0 epsilon=10m noiseless)
.model DLIM D(Ron=100 Roff=2.949Meg Vfwd=700m Vrev=100m epsilon=10m revepsilon=10 noiseless)
.model SHUT SW(level=2 Ron=10k Roff=100G vt=-.5 vh=-.2 noiseless)
.model DSHUT1 D(Ron=1000 Roff=0.823E6 Vfwd=1 epsilon=100m Vrev=1 epsilon=100m ilimit=100n revilimit=0.1n noiseless)
.model DSBD D( Ron=15 Roff=100Meg Vfwd=-58.5m epsilon=50m Vrev=100 revepsilon=10m noiseless)
.model DNR D(Ron=1 Roff=100Meg Vfwd=-6.5m epsilon=300m noiseless)
.model DLIMN1 D(Ron=200k Roff=415Meg Vfwd=1.378 Vrev=-330m epsilon=.1 noiseless)
.model DLIMN2 D(Ron=5Meg Roff=1G Vfwd=-20m epsilon=50m ilimit=44n noiseless)
.model DLIMP D(Ron=100k Roff=100Meg Vfwd=0.63 epsilon=10m noiseless)
.model DLIMPR D(Ron=5Meg Roff=1G Vfwd=100m epsilon=10m noiseless)
.model SGK SW(level=2 Ron=65k Roff=100G vt=-260m vh=150m oneway epsilon=10m noiseless)
.model SBiasN SW(level=2 Ron=5k Roff=1g vt=.5 vh=-.2 ilimit=8u noiseless)
.model DBiasDrop D(Ron=1k Roff=1G vfwd=2.37 epsilon=200m noiseless)
.model DBiasOTT D(Ron=500 Roff=1G vfwd=700m epsilon=200m noiseless)
.model D1Meg D(Ron=1Meg Roff=1Meg vfwd=0 vrev=0 ilimit=10n revilimit=10n noiseless)
.model SHUT3 SW(Ron=10 Roff=10G vt=-0.5 vh=100m noiseless)
.model SHUT2 SW(Ron=10 Roff=10G vt=0.5 vh=100m noiseless)
.model ESDI SW(Ron=50 Roff=1T Vt=31.6 Vh=-500m Vser=0.1 noiseless)
.ends ADA4098-1

112
lib/sub/ADA4098-2.lib Normal file
View File

@@ -0,0 +1,112 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4098-2 1 2 3 4 5 6
B1 0 N006 I=10u*dnlim(uplim(V(1),V(4)+69.3,.1), V(4)-.15, .1)+1n*V(1)-10.72254n
B2 N006 0 I=10u*dnlim(uplim(V(2),V(4)+69.3,.1), V(4)-.16, .1)+1n*V(2)
C10 N006 0 50f Rpar=100K noiseless
M1 N019 NG 4 4 NI temp=27
C2 3 5 1p Rpar=1g noiseless
D5 NG N022 DLIMN1
M2 P001 N007 N004 N004 PI temp=27
A3 N014 N016 4 4 4 4 N007 4 OTA g=2u ref=-.305 linear vlow=-1e308 vhigh=1e308
C11 5 4 1p Rpar=1g noiseless
D6 NG 4 DLIMN2
C16 N016 5 12p
A5 N012 0 N014 N014 N014 N014 N016 N014 OTA g=70u isource=10.3u Vlow=-1e308 Vhigh=1e308
G1 4 NG N016 N014 140n
D9 N016 N014 DLIM
C7 2 0 2.7p Rser=1k Rpar=100G noiseless
C13 3 4 10p
C1 N009 0 30f
G2 0 N014 4 0 .5m
G4 0 N014 3 0 .5m
C18 N014 0 200p Rpar=1K noiseless
C6 1 0 2.7p Rser=1k Rpar=100G noiseless
D3 3 N004 DSBD
C5 3 N004 100f Rpar=10Meg noiseless
D4 N004 N007 DLIMP
D2 N009 0 DLIM0
D1 4 5 DESD
D8 4 1 DESD
D10 4 2 DESD
A2 N015 0 0 0 0 0 0 0 OTA g=0 in=1.8p ink=15
D11 5 N019 DNR
C15 N019 4 100f Rpar=10Meg noiseless
D7 N007 3 DLIMPR
A6 4 3 M M M M N005 M OTA g=2u iout=1u ref=-2.5 Rout=1Meg Cout=100f vlow=-1e308 vhigh=1e308
S4 N021 N023 N005 0 SBiasN
D13 3 N013 DBiasDrop
C14 N021 4 100f
S2 N004 N007 0 N005 SHUT
S3 NG 4 0 N005 SHUT
D16 2 1 D1Meg
C17 N010 0 174.26f noiseless Rser=2.667Meg Rpar=1Meg
G3 0 N010 N009 0 1<>
D17 0 N009 DNLIN
C20 N012 0 47f Rpar=1Meg noiseless
G5 0 N012 N011 0 1<>
S5 N014 N016 4 5 SGK
C3 3 N007 .9p Rser=700k noiseless
C12 NG 4 .9p Rser=700k noiseless
D14 2 N013 DBiasOTT
D15 1 N021 DBiasOTT
S1 0 N008 3 2 SNOI
A7 N008 0 0 0 0 0 0 0 OTA g=0 in=17.25p ink=5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=145f ink=6
GNOI_I 1 2 N015 0 1<>
S6 0 N015 3 2 SNOI
A4 0 N006 0 0 0 0 N009 0 OTA g=1u linear en=16.95n*(1+freq/12e5) enk=3.3 Vhigh=1e308 Vlow=-1e308
GNOI_V N006 0 N008 0 10n
I1 0 1 1.76n
S9 3 4 N017 0 SP
S10 3 N007 N017 0 SHUT2
S11 NG 4 N017 0 SHUT2
A8 6 4 0 0 0 0 N017 0 SCHMITT Vt=1.5 Vh=1m Trise=1u Tfall=100u
S7 5 0 N017 0 SHUT2
S8 P001 5 0 N017 SHUT3
S13 N018 4 0 N017 SHUT3
G6 0 M 3 0 500<30>
R1 M 0 1k noiseless
G7 0 M 4 0 500<30>
R2 N026 0 48 noiseless
C4 N027 N026 10n Rpar=47.9K noiseless
R3 N027 0 1 noiseless
G8 0 N027 1 0 5.25m
G9 0 N027 2 0 5.25m
G10 0 N027 0 3 5.25m
G11 0 N027 0 4 5.25m
G12 0 N006 0 N026 1<>
D12 3 N018 DP
S12 N013 N021 0 N017 SHUT3
D18 4 6 DSHUT1
C9 6 0 100f
C19 N011 0 174.26f noiseless Rser=3.667Meg Rpar=1Meg
G13 0 N011 N010 0 1<>
S14 N023 4 0 N017 SHUT3
S15 N022 4 0 N017 SHUT3
I2 0 2 2.04n
.model DP D(Ron=1k Roff=1G Vfwd=2.5 epsilon=100m ilimit=1.4u noiseless)
.model SP SW(Ron=100 Roff=1G vt=.5 vh=10m ilimit=17u noiseless)
.model DESD D(Ron=1k Roff=1G vfwd=700m epsilon=100m noiseless)
.model SNOI SW(Ron=1 Roff=1Meg vt=1.2 vh=-100m noiseless)
.model NI VDMOS(Vto=325.5m kp=72.3m Mtriode=.9 lambda=.01)
.model PI VDMOS(Vto=-325.5m Kp=341m lambda=.01 pchan is=0)
.model DLIM0 D(Ron=10 Roff=10Meg Vfwd=1 epsilon=100m Vrev=1 epsilon=100m noiseless)
.model DNLIN D(Roff=1.8Meg Ron=800k vfwd=0 epsilon=10m noiseless)
.model DLIM D(Ron=100 Roff=2.949Meg Vfwd=700m Vrev=100m epsilon=10m revepsilon=10 noiseless)
.model SHUT SW(level=2 Ron=10k Roff=100G vt=-.5 vh=-.2 noiseless)
.model DSHUT1 D(Ron=1000 Roff=0.823E6 Vfwd=1 epsilon=100m Vrev=1 epsilon=100m ilimit=100n revilimit=0.1n noiseless)
.model DSBD D( Ron=15 Roff=100Meg Vfwd=-58.5m epsilon=50m Vrev=100 revepsilon=10m noiseless)
.model DNR D(Ron=1 Roff=100Meg Vfwd=-6.5m epsilon=300m noiseless)
.model DLIMN1 D(Ron=200k Roff=415Meg Vfwd=1.378 Vrev=-330m epsilon=.1 noiseless)
.model DLIMN2 D(Ron=5Meg Roff=1G Vfwd=-20m epsilon=50m ilimit=44n noiseless)
.model DLIMP D(Ron=100k Roff=100Meg Vfwd=0.63 epsilon=10m noiseless)
.model DLIMPR D(Ron=5Meg Roff=1G Vfwd=100m epsilon=10m noiseless)
.model SGK SW(level=2 Ron=65k Roff=100G vt=-260m vh=150m oneway epsilon=10m noiseless)
.model SBiasN SW(level=2 Ron=5k Roff=1g vt=.5 vh=-.2 ilimit=8u noiseless)
.model DBiasDrop D(Ron=1k Roff=1G vfwd=2.37 epsilon=200m noiseless)
.model DBiasOTT D(Ron=500 Roff=1G vfwd=700m epsilon=200m noiseless)
.model D1Meg D(Ron=1Meg Roff=1Meg vfwd=0 vrev=0 ilimit=10n revilimit=10n noiseless)
.model SHUT3 SW(Ron=10 Roff=10G vt=-0.5 vh=100m noiseless)
.model SHUT2 SW(Ron=10 Roff=10G vt=0.5 vh=100m noiseless)
.ends ADA4098-2

112
lib/sub/ADA4099-1.lib Normal file
View File

@@ -0,0 +1,112 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4099-1 1 2 3 4 5 6
B1 0 N006 I=10u*dnlim(uplim(V(1),V(4)+69.1,.1), V(4)-.15, .1)+1n*V(1)-10.72254n
B2 N006 0 I=10u*dnlim(uplim(V(2),V(4)+69.1,.1), V(4)-.16, .1)+1n*V(2)
C10 N006 0 50f Rpar=100K noiseless
M1 N018 NG 4 4 NI temp=27
C2 3 5 1p Rpar=1g noiseless
D5 NG N022 DLIMN1
M2 P001 N007 N004 N004 PI temp=27
A3 N013 N015 4 4 4 4 N007 4 OTA g=2u ref=-.305 linear vlow=-1e308 vhigh=1e308
C11 5 4 1p Rpar=1g noiseless
D6 NG 4 DLIMN2
C16 N015 5 1.8p
A5 N011 0 N013 N013 N013 N013 N015 N013 OTA g=50u iout=9.8u Vlow=-1e308 Vhigh=1e308
G1 4 NG N015 N013 140n
D9 N015 N013 DLIM
C7 2 0 2.7p Rser=1k Rpar=100G noiseless
C13 3 4 10p
C1 N009 0 7f
G2 0 N013 4 0 .5m
G4 0 N013 3 0 .5m
C18 N013 0 200p Rpar=1K noiseless
C6 1 0 2.7p Rser=1k Rpar=100G noiseless
D3 3 N004 DSBD
C5 3 N004 100f Rpar=10Meg noiseless
D4 N004 N007 DLIMP
D2 N009 0 DLIM0
D1 4 5 DESD
D8 4 1 DESD
D10 4 2 DESD
A2 N014 0 0 0 0 0 0 0 OTA g=0 en=8n enk=5 in=5p ink=15
D11 5 N018 DNR
C15 N018 4 100f Rpar=10Meg noiseless
D7 N007 3 DLIMPR
A6 4 3 M M M M N005 M OTA g=2u iout=1u ref=-2.5 Rout=1Meg Cout=100f vlow=-1e308 vhigh=1e308
S4 N020 N021 N005 0 SBiasN
D13 3 N012 DBiasDrop
C14 N020 4 100f
S2 N004 N007 0 N005 SHUT
S3 NG 4 0 N005 SHUT
D16 2 1 D100k
C17 N010 0 80.26f noiseless Rser=2.667Meg Rpar=1Meg
G3 0 N010 N009 0 1<>
D17 0 N009 DNLIN
C19 N011 0 6f Rpar=1Meg noiseless
G5 0 N011 N010 0 1<>
S5 N013 N015 4 5 SGK
C3 3 N007 .9p Rser=700k noiseless
C12 NG 4 .9p Rser=700k noiseless
D14 2 N012 DBiasOTT
D15 1 N020 DBiasOTT
S1 0 N008 3 2 SNOI
A7 N008 0 0 0 0 0 0 0 OTA g=0 in=17.25p ink=5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=500f ink=6
GNOI_I 1 2 N014 0 1<>
S6 0 N014 3 2 SNOI
A4 0 N006 0 0 0 0 N009 0 OTA g=1u linear en=7n*(1+freq/40e6) enk=6 Vhigh=1e308 Vlow=-1e308
GNOI_V N006 0 N008 0 10n
I1 1 0 1.4n
S9 3 4 N016 0 SP
S10 3 N007 N016 0 SHUT2
S11 NG 4 N016 0 SHUT2
A8 6 4 0 0 0 0 N016 0 SCHMITT Vt=1.5 Vh=1m Trise=1u Tfall=12u
S7 5 0 N016 0 SHUT2
S8 P001 5 0 N016 SHUT3
S13 N017 4 0 N016 SHUT3
G6 0 M 3 0 500<30>
R1 M 0 1k noiseless
G7 0 M 4 0 500<30>
R2 N025 0 48 noiseless
C4 N026 N025 10n Rpar=47.9K noiseless
R3 N026 0 1 noiseless
G8 0 N026 1 0 5.25m
G9 0 N026 2 0 5.25m
G10 0 N026 0 3 5.25m
G11 0 N026 0 4 5.25m
G12 0 N006 0 N025 1<>
D12 3 N017 DP
S12 N012 N020 0 N016 SHUT3
S14 N021 4 0 N016 SHUT3
S16 N022 4 0 N016 SHUT3
D18 4 6 DSHUT1
C8 6 0 100f
.model DP D(Ron=1k Roff=1G Vfwd=2.5 epsilon=100m ilimit=0.49m noiseless)
.model SP SW(Ron=100 Roff=1G vt=.5 vh=10m ilimit=24u noiseless)
.model DESD D(Ron=1k Roff=1G vfwd=700m epsilon=100m noiseless)
.model SNOI SW(Ron=1 Roff=1Meg vt=1.2 vh=-100m noiseless)
.model NI VDMOS(Vto=220m kp=60m Mtriode=.9 lambda=.01)
.model PI VDMOS(Vto=-220m Kp=120m lambda=.01 pchan is=0)
.model DLIM0 D(Ron=10 Roff=10Meg Vfwd=1 epsilon=100m Vrev=1 epsilon=100m noiseless)
.model DNLIN D(Roff=1.8Meg Ron=800k vfwd=0 epsilon=10m noiseless)
.model DLIM D(Ron=100 Roff=4.111Meg Vfwd=700m Vrev=100m epsilon=10m revepsilon=10 noiseless)
.model SHUT SW(level=2 Ron=10k Roff=100G vt=-.5 vh=-.2 noiseless)
.model DSHUT1 D(Ron=1000 Roff=0.823E6 Vfwd=1 epsilon=100m Vrev=1 epsilon=100m ilimit=100n revilimit=0.1n noiseless)
.model DSBD D( Ron=15 Roff=100Meg Vfwd=-48.5m epsilon=50m Vrev=100 revepsilon=10m noiseless)
.model DNR D(Ron=1 Roff=100Meg Vfwd=-8.5m epsilon=300m noiseless)
.model DLIMN1 D(Ron=200k Roff=415Meg Vfwd=1.378 Vrev=-330m epsilon=.1 noiseless)
.model DLIMN2 D(Ron=5Meg Roff=1G Vfwd=-20m epsilon=50m ilimit=44n noiseless)
.model DLIMP D(Ron=100k Roff=100Meg Vfwd=0.815 epsilon=10m noiseless)
.model DLIMPR D(Ron=5Meg Roff=1G Vfwd=100m epsilon=10m noiseless)
.model SGK SW(level=2 Ron=65k Roff=100G vt=-260m vh=150m oneway epsilon=10m noiseless)
.model SBiasN SW(level=2 Ron=5k Roff=1g vt=.5 vh=-.2 ilimit=82.5u noiseless)
.model DBiasDrop D(Ron=1k Roff=1G vfwd=2.37 epsilon=200m noiseless)
.model DBiasOTT D(Ron=500 Roff=1G vfwd=700m epsilon=200m noiseless)
.model D100k D(Ron=100k Roff=100k vfwd=0 vrev=0 ilimit=10n revilimit=10n noiseless)
.model 600nA D(Ron=1Meg Roff=1G Ilimit=600n epsilon=1 Vfwd=1 noiseless)
.model 300nA D(Ron=1Meg Roff=1G Ilimit=300n epsilon=1 Vfwd=0 noiseless)
.model SHUT3 SW(Ron=10 Roff=10G vt=-0.5 vh=100m noiseless)
.model SHUT2 SW(Ron=10 Roff=10G vt=0.5 vh=100m noiseless)
.model SHUTD SW(Ron=10 Roff=10G vt=0 vh=100m ilimit=300n noiseless)
.ends ADA4099-1

112
lib/sub/ADA4099-2.lib Normal file
View File

@@ -0,0 +1,112 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4099-2 1 2 3 4 5 6
B1 0 N006 I=10u*dnlim(uplim(V(1),V(4)+69.1,.1), V(4)-.15, .1)+1n*V(1)-10.72254n
B2 N006 0 I=10u*dnlim(uplim(V(2),V(4)+69.1,.1), V(4)-.16, .1)+1n*V(2)
C10 N006 0 50f Rpar=100K noiseless
M1 N018 NG 4 4 NI temp=27
C2 3 5 1p Rpar=1g noiseless
D5 NG N022 DLIMN1
M2 P001 N007 N004 N004 PI temp=27
A3 N013 N015 4 4 4 4 N007 4 OTA g=2u ref=-.305 linear vlow=-1e308 vhigh=1e308
C11 5 4 1p Rpar=1g noiseless
D6 NG 4 DLIMN2
C16 N015 5 1.8p
A5 N011 0 N013 N013 N013 N013 N015 N013 OTA g=50u iout=9.8u Vlow=-1e308 Vhigh=1e308
G1 4 NG N015 N013 140n
D9 N015 N013 DLIM
C7 2 0 2.7p Rser=1k Rpar=100G noiseless
C13 3 4 10p
C1 N009 0 7f
G2 0 N013 4 0 .5m
G4 0 N013 3 0 .5m
C18 N013 0 200p Rpar=1K noiseless
C6 1 0 2.7p Rser=1k Rpar=100G noiseless
D3 3 N004 DSBD
C5 3 N004 100f Rpar=10Meg noiseless
D4 N004 N007 DLIMP
D2 N009 0 DLIM0
D1 4 5 DESD
D8 4 1 DESD
D10 4 2 DESD
A2 N014 0 0 0 0 0 0 0 OTA g=0 en=8n enk=5 in=5p ink=15
D11 5 N018 DNR
C15 N018 4 100f Rpar=10Meg noiseless
D7 N007 3 DLIMPR
A6 4 3 M M M M N005 M OTA g=2u iout=1u ref=-2.5 Rout=1Meg Cout=100f vlow=-1e308 vhigh=1e308
S4 N020 N021 N005 0 SBiasN
D13 3 N012 DBiasDrop
C14 N020 4 100f
S2 N004 N007 0 N005 SHUT
S3 NG 4 0 N005 SHUT
D16 2 1 D100k
C17 N010 0 80.26f noiseless Rser=2.667Meg Rpar=1Meg
G3 0 N010 N009 0 1<>
D17 0 N009 DNLIN
C19 N011 0 6f Rpar=1Meg noiseless
G5 0 N011 N010 0 1<>
S5 N013 N015 4 5 SGK
C3 3 N007 .9p Rser=700k noiseless
C12 NG 4 .9p Rser=700k noiseless
D14 2 N012 DBiasOTT
D15 1 N020 DBiasOTT
S1 0 N008 3 2 SNOI
A7 N008 0 0 0 0 0 0 0 OTA g=0 in=17.25p ink=5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=500f ink=6
GNOI_I 1 2 N014 0 1<>
S6 0 N014 3 2 SNOI
A4 0 N006 0 0 0 0 N009 0 OTA g=1u linear en=7n*(1+freq/40e6) enk=6 Vhigh=1e308 Vlow=-1e308
GNOI_V N006 0 N008 0 10n
I1 1 0 1.4n
S9 3 4 N016 0 SP
S10 3 N007 N016 0 SHUT2
S11 NG 4 N016 0 SHUT2
A8 6 4 0 0 0 0 N016 0 SCHMITT Vt=1.5 Vh=1m Trise=1u Tfall=12u
S7 5 0 N016 0 SHUT2
S8 P001 5 0 N016 SHUT3
S13 N017 4 0 N016 SHUT3
G6 0 M 3 0 500<30>
R1 M 0 1k noiseless
G7 0 M 4 0 500<30>
R2 N025 0 48 noiseless
C4 N026 N025 10n Rpar=47.9K noiseless
R3 N026 0 1 noiseless
G8 0 N026 1 0 5.25m
G9 0 N026 2 0 5.25m
G10 0 N026 0 3 5.25m
G11 0 N026 0 4 5.25m
G12 0 N006 0 N025 1<>
D12 3 N017 DP
S12 N012 N020 0 N016 SHUT3
S14 N021 4 0 N016 SHUT3
S16 N022 4 0 N016 SHUT3
D18 4 6 DSHUT1
C8 6 0 100f
.model DP D(Ron=1k Roff=1G Vfwd=2.5 epsilon=100m ilimit=0.49m noiseless)
.model SP SW(Ron=100 Roff=1G vt=.5 vh=10m ilimit=24u noiseless)
.model DESD D(Ron=1k Roff=1G vfwd=700m epsilon=100m noiseless)
.model SNOI SW(Ron=1 Roff=1Meg vt=1.2 vh=-100m noiseless)
.model NI VDMOS(Vto=220m kp=60m Mtriode=.9 lambda=.01)
.model PI VDMOS(Vto=-220m Kp=120m lambda=.01 pchan is=0)
.model DLIM0 D(Ron=10 Roff=10Meg Vfwd=1 epsilon=100m Vrev=1 epsilon=100m noiseless)
.model DNLIN D(Roff=1.8Meg Ron=800k vfwd=0 epsilon=10m noiseless)
.model DLIM D(Ron=100 Roff=4.111Meg Vfwd=700m Vrev=100m epsilon=10m revepsilon=10 noiseless)
.model SHUT SW(level=2 Ron=10k Roff=100G vt=-.5 vh=-.2 noiseless)
.model DSHUT1 D(Ron=1000 Roff=0.823E6 Vfwd=1 epsilon=100m Vrev=1 epsilon=100m ilimit=100n revilimit=0.1n noiseless)
.model DSBD D( Ron=15 Roff=100Meg Vfwd=-48.5m epsilon=50m Vrev=100 revepsilon=10m noiseless)
.model DNR D(Ron=1 Roff=100Meg Vfwd=-8.5m epsilon=300m noiseless)
.model DLIMN1 D(Ron=200k Roff=415Meg Vfwd=1.378 Vrev=-330m epsilon=.1 noiseless)
.model DLIMN2 D(Ron=5Meg Roff=1G Vfwd=-20m epsilon=50m ilimit=44n noiseless)
.model DLIMP D(Ron=100k Roff=100Meg Vfwd=0.815 epsilon=10m noiseless)
.model DLIMPR D(Ron=5Meg Roff=1G Vfwd=100m epsilon=10m noiseless)
.model SGK SW(level=2 Ron=65k Roff=100G vt=-260m vh=150m oneway epsilon=10m noiseless)
.model SBiasN SW(level=2 Ron=5k Roff=1g vt=.5 vh=-.2 ilimit=82.5u noiseless)
.model DBiasDrop D(Ron=1k Roff=1G vfwd=2.37 epsilon=200m noiseless)
.model DBiasOTT D(Ron=500 Roff=1G vfwd=700m epsilon=200m noiseless)
.model D100k D(Ron=100k Roff=100k vfwd=0 vrev=0 ilimit=10n revilimit=10n noiseless)
.model 600nA D(Ron=1Meg Roff=1G Ilimit=600n epsilon=1 Vfwd=1 noiseless)
.model 300nA D(Ron=1Meg Roff=1G Ilimit=300n epsilon=1 Vfwd=0 noiseless)
.model SHUT3 SW(Ron=10 Roff=10G vt=-0.5 vh=100m noiseless)
.model SHUT2 SW(Ron=10 Roff=10G vt=0.5 vh=100m noiseless)
.model SHUTD SW(Ron=10 Roff=10G vt=0 vh=100m ilimit=300n noiseless)
.ends ADA4099-2

428
lib/sub/ADA4177.lib Normal file
View File

@@ -0,0 +1,428 @@
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4177 1 2 3 4 5
R3 Aol1 COM 1Meg Temp=-273.15
R4 Clamp COM 1Meg Temp=-273.15
C1 Clamp COM {Cfp1a}
B1 COM Clamp I=Uplim(Dnlim({Aol2/1Meg}* V(Aol1,COM), {Isink}-V(OL,COM)* 0.2, 10m), {Isrc}+V(OL,COM)*0.2, 10m)
A1 Inn2 Inp2 COM COM COM COM Aol1 COM OTA G=100u Iout=1m Vhigh=1k Vlow=-1k
G2 0 VCC_Int 3 0 1
G3 0 Vee_Int 4 0 1
R6 VCC_Int 0 1 Temp=-273.15
R7 Vee_Int 0 1 Temp=-273.15
R8 N060 VCC_Int 1Meg Temp=-273.15
R9 N060 Vee_Int 1Meg Temp=-273.15
C2 N060 0 1
E1 COM 0 N060 0 1
R10 COM 0 1Meg Temp=-273.15
B2 COM N027 I=Uplim(Dnlim({G5_Zo}* V(ZoF,COM), {Izon}, 25m), {Izop}, 25m)
Cinp COM Inp1 {Ccm}
Cinn Inn1 COM {Ccm}
Cdiff Inp1 Inn1 {Cdiff}
Rinn Inn1 COM {Rcm} Temp=-273.15
Rinp COM Inp1 {Rcm} Temp=-273.15
Ibp Inp1 COM {Ib}
Ibn Inn1 COM {Ib-Ios}
R26 N024 N023 1Meg Temp=-273.15
B3 N023 N024 I=1u*{Vos+Drift* (Temp-27)}
G6 N030 N031 N051 N050 1<>
R28 N031 N030 1Meg Temp=-273.15
C8 N044 N045 {C1a_PSRp}
G8 COM N045 VCC_Int COM {G1_PSRp}
R29 N045 COM 1 Temp=-273.15
R30 N044 N045 {R1a_PSRp} Temp=-273.15
R31 N044 COM {R2a_PSRp} Temp=-273.15
C9 N042 N043 {C1b_PSRp}
R32 N042 COM {R2b_PSRp} Temp=-273.15
R33 N042 N043 {R1b_PSRp} Temp=-273.15
G9 COM N043 N044 COM 1
R34 N043 COM 1 Temp=-273.15
G10 COM N051 N042 COM {G2_PSRp}
R35 N051 COM 1 Temp=-273.15
C10 N039 N038 {C1a_PSRn}
G11 COM N038 VEE_Int COM {G1_PSRn}
R36 N038 COM 1 Temp=-273.15
R37 N039 N038 {R1a_PSRn} Temp=-273.15
R38 N039 COM {R2a_PSRn} Temp=-273.15
G12 N021 N022 N009 COM 1<>
R39 N022 N021 1Meg Temp=-273.15
Vimon N020 5 0
BIq 3 4 I={Iq_on} +I(VImon)
G1 COM N023 Inp1 COM 1k
G14 COM Inn2 Inn1 COM 1k
R5 COM N023 1m Temp=-273.15
R43 COM Inn2 1m Temp=-273.15
C12 Inn2 COM 1p
C13 N023 COM 1p
DIP N048 Inp2 DI
DIN Inp2 N049 DI
C14 VCC_Int 0 1n
C15 Vee_Int 0 1n
DOP N046 N019 DO
DON N019 N047 DO
S2 Cap2R Cap2L OL COM OL
F1 COM OLp VGP 1m
A4 OLp OLn COM OLVIp OLVIn COM OL COM OR Ref=100u Vh=50u Trise=10n
R44 OLp COM 1k
F2 COM OLn VGN 1m
R45 OLn COM 1k
C16 OLp COM 10p
C17 OLn COM 10p
DOI N019 N020 LIM
COI N020 N019 1p
G15 COM Vsatp Vsatpi COM 1
R48 Vsatp COM 1
C21 Vsatp COM 1n
G16 COM Vsatn Vsatni COM 1
R49 Vsatn COM 1
C22 Vsatn COM 1n
S3 3 N023 N023 3 ESDI
S4 3 Inn2 Inn2 3 ESDI
S5 N023 4 4 N023 ESDI
S6 Inn2 4 4 Inn2 ESDI
C24 N019 Vsatp 2p
C25 N019 Vsatn 2p
S7 3 5 5 3 ESDO
S8 5 4 4 5 ESDO
R16 N035 COM 1Meg Temp=-273.15
C5 N035 COM {Cfp2}
G5 COM N035 N034 COM 1<>
R18 N036 COM 1Meg Temp=-273.15
C6 N036 COM {Cfp3}
G17 COM N036 N035 COM 1<>
R19 N037 COM 1Meg Temp=-273.15
C20 N037 COM {Cfp3}
G23 COM N037 N036 COM 1<>
G25 COM N025 Clamp COM 1
R21 N025 COM 1 Temp=-273.15
R22 N025 N026 {R1a_Aol} Temp=-273.15
R23 N026 COM {R2a_Aol} Temp=-273.15
G26 COM N034 N026 COM {G1_Aol}
C31 N026 N025 {C1a_Aol}
R50 N034 COM 1 Temp=-273.15
B4 COM N061 I=1m*(V(3,COM)+{Vcm_max}) Rpar=1k Cpar=1n
G13 COM CMp N061 COM 1
R40 CMp COM 1
B5 COM N062 I=1m*(V(4,COM)+{Vcm_min}) Rpar=1k Cpar=1n
G30 COM CMn N062 COM 1
R41 CMn COM 1
R42 Vsatpi 3 1k
C11 Vsatpi 3 1n
B8 Vsatpi 3 I=1m*Max(Ap+((Bp*I(Vimon)**Cp)/(Dp**Cp+I(Vimon)**Cp)),40u)
R14 Vsatni 4 1k
C18 Vsatni 4 1n
B9 4 Vsatni I=1m*Max(An+((Bn*-I(Vimon)**Cn)/(Dn**Cn-I(Vimon)**Cn)),40u)
VIP N048 CMp 0
VIN CMn N049 0
F3 COM OLVIp VIP 1
R46 OLVIp COM 1k
F4 COM OLVIn VIN 1
R51 OLVIn COM 1k
C34 OLVIp COM 10p
C35 OLVIn COM 10p
G4 COM Cap2L N037 N019 {G1_Zo}
R11 Cap2L COM 1 Temp=-273.15
R12 Cap2L Cap2R {R1a_Zo} Temp=-273.15
R13 Cap2R COM {R2a_Zo} Temp=-273.15
G18 COM N010 Cap2R COM {G2_Zo}
C3 Cap2R Cap2L {C1a_Zo}
R17 N010 COM 1 Temp=-273.15
Rx N019 N027 {Rx_Zo} Temp=-273.15
Rdummy N019 COM {Rdummy_Zo} Temp=-273.15
R52 N010 N011 {R2b_Zo} Temp=-273.15
R55 N011 N032 {R1b_Zo} Temp=-273.15
C23 COM N032 {C1b_Zo}
Gb1 COM N012 N011 COM 1
R56 N012 COM 1 Temp=-273.15
R57 N014 N015 {R1c_Zo} Temp=-273.15
R58 N015 COM {R2c_Zo} Temp=-273.15
G19 COM N016 N015 COM {G3_Zo}
C27 N015 N014 {C1c_Zo}
R59 N016 COM 1 Temp=-273.15
R60 N016 N017 {R1d_Zo} Temp=-273.15
R61 N017 COM {R2d_Zo} Temp=-273.15
G20 COM N018 N017 COM {G4_Zo}
C28 N017 N016 {C1d_Zo}
R62 N018 COM 1 Temp=-273.15
R63 N018 ZoF {R1e_Zo} Temp=-273.15
R64 ZoF COM {R2e_Zo} Temp=-273.15
C29 ZoF N018 {C1e_Zo}
R65 N027 COM 1 Temp=-273.15
R66 N012 N013 {R2f_Zo} Temp=-273.15
R72 N013 N033 {R1f_Zo} Temp=-273.15
C36 COM N033 {C1f_Zo}
Gb2 COM N014 N013 COM 1
R75 N014 COM 1 Temp=-273.15
C7 N041 N040 {C1b_PSRn}
R53 N041 COM {R2b_PSRn} Temp=-273.15
R54 N041 N040 {R1b_PSRn} Temp=-273.15
R67 N040 COM 1 Temp=-273.15
G21 COM N040 N039 COM 1
G22 COM N050 N041 COM {G2_PSRn}
R68 N050 COM 1 Temp=-273.15
B6 COM N052 I=1m*({Zo_max}* {Iscp}+V(3,COM)) Rpar=1k Cpar=1n
G27 COM GRp N052 COM 1
R69 GRp COM 1
G28 COM GRn N053 COM 1
R70 GRn COM 1
B7 COM N053 I=1m*({Zo_max}* {Iscn}+V(4,COM)) Rpar=1k Cpar=1n
VGP N046 Vsatp 0
VGN Vsatn N047 0
DGP GRp Clamp DG
DGN Clamp GRn DG
R1 Inp1 1 {Rser} Temp=-273.15
R2 Inn1 2 {Rser} Temp=-273.15
Rdiff Inp1 Inn1 {Rdiff} Temp=-273.15
C4 N002 N001 {C1a_CMR}
G7 COM N001 Inp1 COM {G1_CMR}
R15 N001 COM 1 Temp=-273.15
R24 N002 N001 {R1a_CMR} Temp=-273.15
R25 N002 COM {R2a_CMR} Temp=-273.15
G29 COM N003 N002 COM 1
R27 N003 COM 1 Temp=-273.15
C19 N004 N003 {C1b_CMR}
R47 N004 N003 {R1b_CMR} Temp=-273.15
R71 N004 COM {R2b_CMR} Temp=-273.15
G31 COM N005 N004 COM {G2_CMR}
R73 N005 COM 1 Temp=-273.15
C26 N006 N005 {C1c_CMR}
R74 N006 N005 {R1c_CMR} Temp=-273.15
R76 N006 COM {R2c_CMR} Temp=-273.15
G32 COM N007 N006 COM {G3_CMR}
R77 N007 COM 1 Temp=-273.15
C32 N008 N007 {C1d_CMR}
R78 N008 N007 {R1d_CMR} Temp=-273.15
R79 N008 COM {R2d_CMR} Temp=-273.15
G33 COM N009 N008 COM {G4_CMR}
R80 N009 COM 1 Temp=-273.15
R81 N063 COM 0.94
R82 N054 COM 1 Temp=-273.15
R83 N054 N055 {R2b_I_n} Temp=-273.15
R84 N055 N064 {R1b_I_n} Temp=-273.15
C33 COM N064 {C1b_I_n}
Gb3 COM N056 N055 COM 1
R85 N056 COM 1 Temp=-273.15
R86 N056 N057 {R2b_I_n} Temp=-273.15
R87 N057 N065 {R1b_I_n} Temp=-273.15
C37 COM N065 {C1b_I_n}
Gb4 COM N058 N057 COM 1
R88 N059 COM 1 Temp=-273.15
G34 COM N054 N063 COM 1
V_I_n N058 N059 0
F_I_nn Inn1 COM V_I_n 1
F_I_np Inp1 COM V_I_n 1
A3 COM COM COM COM COM COM N070 COM OTA G=10u Iout=1m Vhigh=1k Vlow=-1k En={En} Enk={Enk}
R96 N070 COM 100k Temp=-273.15
R97 N070 N071 {R1a_E_n} Temp=-273.15
R98 N071 COM {R2a_E_n} Temp=-273.15
G37 COM N072 N071 COM {G1_E_n}
C40 N071 N070 {C1a_E_n}
R99 N072 COM 1 Temp=-273.15
R100 N072 N073 {R1a_E_n} Temp=-273.15
R101 N073 COM {R2a_E_n} Temp=-273.15
G38 N021 N024 N080 COM 1<>
C41 N073 N072 {C1a_E_n}
R102 N024 N021 1Meg Temp=-273.15
G24 COM N030 N022 COM 1k
R20 COM N030 1m Temp=-273.15
G35 COM Inp2 N031 COM 1k
R89 COM Inp2 1m Temp=-273.15
C30 N075 N074 {CHP}
R91 N075 COM 100k Temp=-273.15
G36 COM N074 N073 COM {G1_E_n}
R92 N074 COM 1 Temp=-273.15
R90 N076 COM 100k Temp=-273.15
R93 N077 COM 100k Temp=-273.15
R94 N078 COM 100k Temp=-273.15
R95 N079 COM 100k Temp=-273.15
C38 N076 N075 {CHP}
C39 N077 N076 {CHP}
C42 N078 N077 {CHP}
C43 N079 N078 {CHP}
R103 N080 COM 100k Temp=-273.15
C44 N080 N079 {CHP}
.param En=8.25n Enk=11
.param Inp=0.2p Inkp=74
.param Inn=0.2p Inkn=74
.param Vos=0.313u Drift=1u
.param Ib=-0.3n Ios=0.1n
.param Vcm_min=1.5 Vcm_max=-1.5
.param Vsmin=5 Vsmax=36
.param Iscp=44m Iscn=-59m
.param Iq_on=500u Iq_off=1u
.param IZop={2*Rx_Zo*Iscp} IZon={2*Rx_Zo*Iscn}
.model DI D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model DO D(Vfwd=1k Vrev=0 Revepsilon=0.1 Noiseless)
.model LIM D(Vfwd=1n Vrev=1n Ron=1m Roff=1m Ilimit={Iscp} Revilimit={-Iscn} Epsilon=1u Noiseless)
.model DG D(Vfwd=1k Vrev=0 Revepsilon=0.5 Noiseless)
.model ESDI SW(Ron=50 Roff=1T Vt=0.5 Vh=-0.1 Vser=0.1 Noiseless)
.model ESDO SW(Ron=50 Roff=1G Vt=0.5 Vh=-0.1 Vser=0.6 Ilimit=4m Lser=1n Noiseless)
.model OL SW(Ron=10m Roff=1G Vt=500m Vh=-100m Noiseless)
.param Rser=10m
.param Rcm=130G Ccm=8p
.param Rdiff=4Meg Cdiff=1p
.param gain_PSRp = {pow(10, (-Rej_dc_PSRp/20))}
.param C1a_PSRp = {1 / (2 * pi * R1a_PSRp * fz1_PSRp)}
.param R2a_PSRp = {R1a_PSRp/ ((2 * pi * fp1_PSRp * C1a_PSRp
+* R1a_PSRp) - 1)}
.param actual1_PSRp = {R2a_PSRp / (R1a_PSRp + R2a_PSRp)}
.param G1_PSRp = {gain_PSRp/actual1_PSRp}
.param Rej_dc_PSRp=145
.param R1a_PSRp=100Meg
.param fz1_PSRp=0.37
.param fp1_PSRp=1.7Meg
.param C1b_PSRp = {1 / (2 * pi * R1b_PSRp * fz2_PSRp)}
.param R2b_PSRp = {R1b_PSRp/ ((2 * pi * fp2_PSRp * C1b_PSRp
+* R1b_PSRp) - 1)}
.param actual2_PSRp = {R2b_PSRp / (R1b_PSRp + R2b_PSRp)}
.param G2_PSRp = {1/actual2_PSRp}
.param R1b_PSRp=1Meg
.param fz2_PSRp=475k
.param fp2_PSRp=1.7Meg
.param gain_PSRn = {pow(10, (-Rej_dc_PSRn/20))}
.param C1a_PSRn = {1 / (2 * pi * R1a_PSRn * fz1_PSRn)}
.param R2a_PSRn = {R1a_PSRn/ ((2 * pi * fp1_PSRn * C1a_PSRn
+* R1a_PSRn) - 1)}
.param actual1_PSRn = {R2a_PSRn / (R1a_PSRn + R2a_PSRn)}
.param G1_PSRn = {gain_PSRn/actual1_PSRn}
.param Rej_dc_PSRn=145
.param R1a_PSRn=100Meg
.param fz1_PSRn=4
.param fp1_PSRn=3Meg
.param Aol_v= {pwr(10, (Aol/20))}
.param Aol_adj = {(Aol_v/RL_dc)*(Zo_dc + RL_dc)}
.param Aol_adj_dB={20*log10(Aol_adj)+1}
.param Aol2 = {pwr(10, (Aol_adj_dB - 40)/20)}
.param Cfp1={1 / (2 * pi * fp1 * 1Meg)}
.param Cfp2={1 / (2 * pi * fp2 * 1Meg)}
.param Cfp3={1 / (2 * pi * fp3 * 1Meg)}
.param A=8.85e-1 B=5.56e-2 C=1.06 D=2.99m
.param ratio = {Zo_dc/RL_dc}
.param Cfp1a = {Cfp1*((A+B*ratio)/(1+C*ratio+D*ratio**2))}
.param Isrc = {Cfp1a * SRp * 1Meg} Isink = {Cfp1a * SRn * 1Meg}
.param R1a_Aol=1Meg
.param fz1_Aol=1.5Meg
.param fp1_Aol=10G
.param C1a_Aol = {1 / (2 * pi * R1a_Aol * fz1_Aol)}
.param R2a_Aol = {R1a_Aol/ ((2 * pi * fp1_Aol * C1a_Aol
+* R1a_Aol) - 1)}
.param actual1_Aol = {R2a_Aol / (R1a_Aol + R2a_Aol)}
.param G1_Aol={1/actual1_Aol}
.param beta_Zo=1.125
.param Rx_Zo = {100 * Zo_max}
.param Rdummy_Zo = {10 * Zo_max}
.param G1_Zo={Rx_Zo/(Zo_dc*beta_Zo)}
.param Zo_dc=722.2
.param Zo_max={Zo_dc}
.param R1a_Zo=1Meg
.param fz1_Zo=4.5
.param fp1_Zo=14.5
.param C1a_Zo = {1 / (2 * pi * R1a_Zo * fz1_Zo)}
.param R2a_Zo = {R1a_Zo/ ((2 * pi * fp1_Zo * C1a_Zo
+* R1a_Zo) - 1)}
.param actual1_Zo = {R2a_Zo / (R1a_Zo + R2a_Zo)}
.param G2_Zo = {1/actual1_Zo}
.param R1b_Zo=1Meg
.param fp2_Zo=50k
.param fz2_Zo=70k
.param C1b_Zo = {1 / (fz2_Zo * R1b_Zo * 2 * pi)}
.param R2b_Zo = {(1 / (fp2_Zo * C1b_Zo * 2 * pi))
+- R1b_Zo}
.param R1c_Zo=1Meg
.param fz3_Zo=470k
.param fp3_Zo=560k
.param C1c_Zo = {1 / (2 * pi * R1c_Zo * fz3_Zo)}
.param R2c_Zo = {R1c_Zo/ ((2 * pi * fp3_Zo * C1c_Zo
+* R1c_Zo) - 1)}
.param actual3_Zo = {R2c_Zo / (R1c_Zo + R2c_Zo)}
.param G3_Zo = {1/actual3_Zo}
.param R1d_Zo=1Meg
.param fz4_Zo=1.98Meg
.param fp4_Zo=3.5Meg
.param C1d_Zo = {1 / (2 * pi * R1d_Zo * fz4_Zo)}
.param R2d_Zo = {R1d_Zo/ ((2 * pi * fp4_Zo * C1d_Zo
+* R1d_Zo) - 1)}
.param actual4_Zo = {R2d_Zo / (R1d_Zo + R2d_Zo)}
.param G4_Zo = {1/actual4_Zo}
.param R1e_Zo=1Meg
.param fz5_Zo=34.5Meg
.param fp5_Zo=1G
.param C1e_Zo = {1 / (2 * pi * R1e_Zo * fz5_Zo)}
.param R2e_Zo = {R1e_Zo/ ((2 * pi * fp5_Zo * C1e_Zo
+* R1e_Zo) - 1)}
.param actual5_Zo = {R2e_Zo / (R1e_Zo + R2e_Zo)}
.param G5_Zo = {1/actual5_Zo}
.param R1f_Zo=1Meg
.param fp6_Zo=140k
.param fz6_Zo=160k
.param C1f_Zo = {1 / (fz6_Zo * R1f_Zo * 2 * pi)}
.param R2f_Zo = {(1 / (fp6_Zo * C1f_Zo * 2 * pi))
+- R1f_Zo}
.param Aol=114 RL_dc=2k
.param SRp=1.76 SRn=-1.76
.param fp1=4.05 fp2=1.5Meg fp3=13.6Meg
.param C1b_PSRn = {1 / (2 * pi * R1b_PSRn * fz2_PSRn)}
.param R2b_PSRn = {R1b_PSRn/ ((2 * pi * fp2_PSRn * C1b_PSRn
+* R1b_PSRn) - 1)}
.param actual2_PSRn = {R2b_PSRn/ (R1b_PSRn + R2b_PSRn)}
.param G2_PSRn = {1/actual2_PSRn}
.param R1b_PSRn=1Meg
.param fz2_PSRn=130k
.param fp2_PSRn=3Meg
.param Ap=0.15 Bp=818 Cp=5.62 Dp=9e-2
.param An=0.15 Bn=69.5 Cn=6.32 Dn=7.27e-2
.param gain_CMR = {pow(10, (-Rej_dc_CMR/20))}
.param C1a_CMR = {1 / (2 * pi * R1a_CMR * fz1_CMR)}
.param R2a_CMR = {R1a_CMR/ ((2 * pi * fp1_CMR * C1a_CMR
+* R1a_CMR) - 1)}
.param actual1_CMR = {R2a_CMR / (R1a_CMR + R2a_CMR)}
.param G1_CMR = {gain_CMR/actual1_CMR}
.param Rej_dc_CMR=130
.param R1a_CMR=1Meg
.param fz1_CMR=500
.param fp1_CMR=11.5k
.param R1b_CMR=1Meg
.param fz2_CMR=30k
.param fp2_CMR=185k
.param C1b_CMR = {1 / (2 * pi * R1b_CMR * fz2_CMR)}
.param R2b_CMR = {R1b_CMR/ ((2 * pi * fp2_CMR * C1b_CMR
+* R1b_CMR) - 1)}
.param actual2_CMR = {R2b_CMR / (R1b_CMR + R2b_CMR)}
.param G2_CMR = {1/actual2_CMR}
.param R1c_CMR=1Meg
.param fz3_CMR=350k
.param fp3_CMR=2.5Meg
.param R1d_CMR=1Meg
.param fz4_CMR=7Meg
.param fp4_CMR=25Meg
.param C1c_CMR = {1 / (2 * pi * R1c_CMR * fz3_CMR)}
.param R2c_CMR = {R1c_CMR/ ((2 * pi * fp3_CMR * C1c_CMR
+* R1c_CMR) - 1)}
.param actual3_CMR = {R2c_CMR / (R1c_CMR + R2c_CMR)}
.param G3_CMR = {1/actual3_CMR}
.param C1d_CMR = {1 / (2 * pi * R1d_CMR * fz4_CMR)}
.param R2d_CMR = {R1d_CMR/ ((2 * pi * fp4_CMR * C1d_CMR
+* R1d_CMR) - 1)}
.param actual4_CMR = {R2d_CMR / (R1d_CMR + R2d_CMR)}
.param G4_CMR = {1/actual4_CMR}
.param R1b_I_n=1Meg
.param fp1_I_n=0.1
.param fz1_I_n=2.5
.param C1b_I_n = {1 / (fz1_I_n * R1b_I_n * 2 * pi)}
.param R2b_I_n = {(1 / (fp1_I_n * C1b_I_n * 2 * pi))
+- R1b_I_n}
.param R1a_E_n=1Meg
.param fz1_E_n=700k
.param fp1_E_n=1.05Meg
.param C1a_E_n = {1 / (2 * pi * R1a_E_n * fz1_E_n)}
.param R2a_E_n = {R1a_E_n/ ((2 * pi * fp1_E_n * C1a_E_n
+* R1a_E_n) - 1)}
.param actual1_E_n = {R2a_E_n / (R1a_E_n + R2a_E_n)}
.param G1_E_n = {1/actual1_E_n}
.param R1b_E_n=1Meg
.param fp2_E_n=90G
.param fz2_E_n=100G
.param C1b_E_n = {1 / (fz2_E_n * R1b_E_n * 2 * pi)}
.param R2b_E_n={(1 / (fp2_E_n * C1b_E_n * 2 * pi)) - R1b_I_n}
.param CHP=4.75u
.ends ADA4177

Some files were not shown because too many files have changed in this diff Show More